高二理科复习卷
高二数学上学期期末复习题4(理科)答案

高二数学上学期期末复习题四(理科)(2013.12)1. 命题“存在Z x ∈,使022≤++m x x ”的否定是( )A .存在Z x ∈,使022>++m x x B. 不存在Z x ∈,使022>++m x xC .对于任意 Z x ∈,都有022≤++m x x D.对于任意Z x ∈,都有022>++m x x2. 7.已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a =C . -3D .33.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A.-14B.-4C.4D.144.直线l 的方程为Ax +By +C =0,若直线l 过原点和二、四象限,则 ( )A .C =0,B >0 B .A >0,B >0,C =0 C .AB <0,C =0D .AB >0,C =05.过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若 1260F PF ∠=,则椭圆的离心率为A.2 BC .12D .136. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别在A 1D 、AC 上,且A 1E =23A 1D ,AF =13AC ,则( )A .EF 至多与A 1D 、AC 之一垂直B .EF 与A 1D 、AC 都垂直 C .EF 与BD 1相交 D .EF 与BD 1异面 7.设α、β、γ为平面,l 、m 、n 为直线,则m ⊥β的一个充分条件为A .α⊥β,α∩β=l ,m ⊥lB .n ⊥α,n ⊥β,m ⊥αC .α∩γ=m ,α⊥γ,β⊥γD .α⊥γ,β⊥γ,m ⊥α8.设α、β、γ是三个互不重合的平面,m 、n 是两条不重合的直线,下列命题中正确的是( )A .若α⊥β,β⊥γ,则α⊥γB .若m ∥α,n ∥β,α⊥β,则m ⊥nC .若α⊥β,m ⊥α,则m ∥βD .若α∥β,m ⊄β,m ∥α,则m ∥β9.下已知m n 、是两条不同的直线,αβ、是两个不同的平面,有下列命题: ①若,//m n αα⊂,则//m n ; ②若//m α,//m β,则//αβ;③若,m m n α⊥⊥,则α//n ; ④若,m m αβ⊥⊥,则//αβ;其中真命题的个数是( )(A )1个 (B )2个 (C )3个 (D )4个10.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =1,DD 1=3,则AC 与BD 1所成角的余弦值是 ( ).A .0B.37070 C .-37070 D.707011.已知双曲线)0(12222>=-b b y x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则1PF ·2PF =A. -12B. -2C. 0D. 412.已知动点P (x ,y )满足5(x -1)2+(y -2)2=|3x +4y -11|,则P 点的轨迹是( ).A .直线B .抛物线C .双曲线D .椭圆13.已知圆x 2+y 2+Dx +Ey =0的圆心在直线x +y =1上,则D 与E 的关系是D +E =-214. 直线l 1:kx +(1-k )y -3=0和l 2:(k -1)x +(2k +3)y -2=0互相垂直,则k =-3或115.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________.x 216+y 28=116.如图是一几何体的三视图,那么这个几何体的体积为( ).32+π817.过点M ⎝ ⎛⎭⎪⎫12,1的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为________.2x -4y +3=018.已知F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →.当点P在y 轴上运动时,N 点的轨迹C 的方程为________. 答案 y 2=4x (x >0)19.如图,四棱锥P ABCD -中,,AB AC AB PA ⊥⊥,,2AB CD AB CD =∥,,,,,E F G M N 分别为,,,,PB AB BC PD PC 的中点.(Ⅰ)求证:CE PAD ∥平面; (Ⅱ)求证:EFG EMN ⊥平面平面.20.如图,已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,且有|PQ |=|P A |. (1)求a 、b 间关系; (2)求|PQ |的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最 小的圆的方程.解 (1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|P A |,所以|OP |2=|OQ |2+|PQ |2=1+|P A |2,所以a 2+b 2=1+(a -2)2+(b -1)2,故2a +b -3=0. (2) |PQ |min =255. (3)所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.21.如图,在菱形ABCD 中,60DAB ∠=,E 是AB 的中点, MA ⊥平面ABCD ,且在矩形ADNM 中,2AD =,AM =(Ⅰ)求证:AC ⊥BN ; (Ⅱ)求证:AN // 平面MEC ; (Ⅲ)求二面角M EC D --的大小.CDNM解:(Ⅰ)连结BD ,则AC BD ⊥. 由已知DN ⊥平面ABCD , 因为DN DB D = ,所以AC ⊥平面NDB .……………………2分 又因为BN ⊂平面NDB ,所以AC BN ⊥.……………………4分 (Ⅱ)CM 与BN 交于F ,连结EF . 由已知可得四边形BCNM 是平行四边形,所以F 是BN 的中点. 因为E 是AB 的中点,所以//AN EF .…………………………7分 又EF ⊂平面MEC ,AN ⊄平面MEC ,所以//AN 平面MEC . ……………………………………………………………9分(Ⅲ)由于四边形ABCD 是菱形,E 是AB 的中点,可得DE AB ⊥. 如图建立空间直角坐标系D xyz -,则(0,0,0)D,E , (0,2,0)C ,M -.2.0)CE =-,(0,EM =- .…………………………………………10分错误!未找到引用源。
2013-2014高二理科数学期末复习-----综合练习

2013-2014高二理科数学期末复习-----综合练习一、选择题(本大题共8小题,每小题5分,共40分.) 1.在△ABC 中,60A =︒,75B =︒,c =20,则边a 的长为( ) A.B.C.D.2.不等式(50)(60)0x x -->的解集是( ) A .(,50)-∞B .(60,)+∞C .(50,60)D .(,50)(60,)-∞+∞3.十三世纪初,意大利数学家斐波那契(Fibonacci ,1170~1250)从兔子繁殖的问题,提出了世界著名数学问题“斐波那契数列”,该数列可用递推公式121,1,2;, 3.n n n n F F F n --=⎧=⎨+≥⎩ 由此可计算出8F = ( ) A .8B .13C .21D .34 4.已知平行六面体ABCD -A 1B 1C 1D 1,以顶点A 为端点的三条棱长都等于1,且两两夹角都是60°,则对角线AC 1的长为( )A. 3 B .2 C. 6D .2 25.等差数列{}n a 的前n 项和12...n n S a a a =+++,若1031S =,20122S =,则30S =( ) A .153B .182C .242D .2736.关于双曲线22916144y x -=,下列说法错误的是( ) A .实轴长为8,虚轴长为6 B .离心率为54C .渐近线方程为43y x =±D .焦点坐标为(5,0)±7.下列命题为真命题的是( ) A .x ∀∈N ,32x x > B .0x ∃∈R ,200220x x ++≤ C .“3x >”是“29x >”的必要条件D .函数2()f x ax bx c =++为偶函数的充要条件是0b =8.若抛物线y 2=2x 上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +b 对称,且y 1y 2=-1,则实数b 的值为( )A .-52B.52C.12D .-12第Ⅱ卷(非选择题共110分)二、填空题(本大题共6小题,每小题5分,共30分,把答案填在答题卡相应横线上) 9.一个等比数列的第3项和第4项分别是12和18,则它的第2项为 .10.与椭圆221259x y +=焦点相同的等轴双曲线的标准方程为 . 11.在双曲线x 2a 2-y 2b 2=1上有一点P ,F 1,F 2分别为该双曲线的左、右焦点,∠F 1PF 2=90°,△F 1PF 2的三条边长成等差数列,则双曲线的离心率是________. 12.已知(2,1,3)a =,(4,2,)b x =-,且a b ⊥,则||a b -= .13.在周长为定值P 的扇形中,当半径为 时,扇形的面积最大,最大面积为 . 14.已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM →的取值范围是_________三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.) 15.(12分)在△ABC 中,若sin(C -A )=1,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.16.(12分)设数列{}n a 的前n 项和为n S ,点(,)()n S n n N n *∈均在直线12y x =+上. (1)求数列{}n a 的通项公式;(2)设123n a n b +=,n T 是数列{}n b 的前n 项和,试求n T .17.(12分)已知点A(-1,0),B(1,0),分别过A、B作直线l1与l2,使l1⊥l2,求l1与l2交点P的轨迹方程.18.(14分)某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值大?最大日产值为多少?19.(14分)如图,在长方体1AC中,12,AB BC AA ==点E 、F 分别是面11AC 、面1BC 的中心.(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.20. (14分)已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上,右焦点到直线0x y -+=的距离为3.(1)求椭圆的标准方程;(2)设椭圆与直线(0)y kx m k =+≠相交于不同的两点M 、N ,当A M A N =时,求实数m 的取值范围.AA 1BC D B 1C 1D 1 EF2013-2014斗门一中高二理科数学期末复习-----综合练习答案一、选择题:ACCCD DDA二、填空题:9. 8; 10. 22188x y -=; 11.5; 12. ;13. 4P ,216P ; 14. [0,2]三、解答题:15.解 (1)由sin(C -A )=1知, C -A =π2,且C +A =π-B ,∴A =π4-B 2,∴sin A =sin ⎝⎛⎭⎫π4-B 2=22⎝⎛⎭⎫cos B 2-sin B 2, ∴sin 2A =12(1-sin B )=13,又sin A >0,∴sin A =33. (2)由正弦定理得AC sin B =BCsin A ,∴BC =AC sin Asin B =6·3313=32,由(1)知sin A =33,∴cos A =63. 又sin B =13,∴cos B =223.又sin C =sin(A +B ) =sin A cos B +cos A sin B =33×223+63×13=63,∴S △ABC =12AC ·BC ·sin C =12×6×32×63=3 2.16. 解:(1)依题意得,1,2n S n n =+即212n S n n =+. ……………(2分)当n≥2时, 221111()(1)(1)2222n n n a S S n n n n n -⎡⎤=-=+--+-=-⎢⎥⎣⎦; ………(5分)当n=1时,2111311121222a S ==+⨯==⨯-. ……………(6分) 所以*12()2n a n n N =-∈.……………(7分)(2)由(1)得12233n a n n b +==,……………(8分) 由2(1)2123393n n n n b b ++===,可知{}n b 为等比数列. ……………(10分) 由21139b ⨯==,……………(11分)故19(19)99198n n n T +--==-. ……(13分)17.[解析] 设l 1:y =k (x +1),(k ≠0)(1)则l 2:y =-1k(x -1)(2)(1)与(2)两式相乘,消去k 得,y 2=-(x 2-1), ∴x 2+y 2=1,特别地,当k 不存在或k =0时,P 分别与A 、B 重合,也满足上述方程,∴所求轨迹方程为x 2+y 2=1.18. 解:设该厂每天安排生产甲产品x 吨,乙产品y 吨,则日产值812z x y =+,…(1分)线性约束条件为735620504500,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩.…………(3分)作出可行域.…………(6分)把812z x y =+变形为一组平行直线系8:1212zl y x =-+,由图可知,当直线l 经过可行域上的点M 时,截距12z最大,即z 取最大值. 解方程组73562050450x y x y +=⎧⎨+=⎩,得交点(5,7)M ,……………(10分) max 85127124z =⨯+⨯=.……………(12分)所以,该厂每天安排生产甲产品5吨,乙产品7吨,则该厂日产值最大,最大日产值为124万元.………………(13分)19. 解:(1)A (2,0,0),F (1,2),B (2,2,0),E (1,1,C (0,2,0). ∴2(1,2,),(1,AF BE =-=--, ……(4分) ∴ 1210AF BE →→∙=-+=.……(6分) 所以AF 和BE 所成的角为90︒ .……(7分)(2)设平面BEC 的一个法向量为(,,),n x y z =又 (2,0,0),BC =- (1,2),BE =--则:20n BC x ∙=-=,0n BE x y ∙=--=. ∴0x =, 令1z =,则:y =,∴ (,1)n →=. …………(10分)∴,22AF n COS AF n AF n∙<>===∙.……………(12分)设直线AF 和平面BEC 所成角为θ,则:Sin θ=. 即 直线AF 和平面BEC ……………(14分)AA 1BC DB 1C 1D 1EF20. 解:(1)依题意可设椭圆方程为 2221(1)x y a a+=> ,……………(1分)则右焦点F . ……(2分)3=, 解得:23a =.……………(4分) 故 所求椭圆的标准方程为:2213x y +=.……………(5分)(2)设P 为弦MN 的中点,联立2213y kx m x y =+⎧⎪⎨+=⎪⎩ , ………………(6分)消y 得: 222(31)63(1)0k x mkx m +++-=. ………………(7分)由于直线与椭圆有两个交点, 0,∴∆>即 2231m k <+ ① …………(8分)23231M N p x x mk x k +∴==-+, 从而 231p p my kx m k =+=+, 21313p Ap py m k k x mk+++∴==-. 又 ,A M A N A P M N=∴⊥, 则: 23113m k mk k++-=- ,即: 2231m k =+ ② ,……………(12分)把②代入①得:22m m >,解得: 02m <<; 由②得:22103m k -=>,解得:12m > . 所以,122m <<.………………(14分)。
高二上学期中数学理科试卷(含答案)题型归纳

高二上学期中数学理科试卷(含答案)题型归纳在中国古代把数学叫算术,又称算学,最后才改为数学。
数学分为两部分,一部分是几何,另一部分是代数。
小编准备了高二上学期中数学理科试卷,具体请看以下内容。
一、填空题(本大题共14小题,每小题5分,共70分)1.在直角坐标系中,直线的斜率是▲ .2.圆的半径是▲ .3.椭圆的焦点坐标为▲ .4.抛物线的准线方程为▲ .5.双曲线的渐近线方程是▲ .6.若圆与圆相外切,则实数▲ .7.已知点P为直线上一动点,则P到坐标原点的距离的最小值是▲ .8.若方程表示椭圆,则的取值范围是▲ .9.已知两圆和相交于A,B 两点,则直线AB的方程是▲ .10.已知点P在抛物线上运动,F为抛物线的焦点,点M的坐标为(3,2),当取最小值时,点P的坐标为▲ .11.已知点P是圆C:上任意一点,若点P关于直线的对称点仍在圆C上,则的最小值是▲ .12.已知O为坐标原点,点,动点P与两点O、A的距离之比为1∶ ,则P点轨迹方程是▲ .13.设集合,当时,则实数的取值范围是▲ .14.已知椭圆C:的左、右焦点分别、,过点的直线交椭圆C于两点,若,且,则椭圆C的离心率是▲ .二、解答题(本题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)16.(本小题满分14分)已知三点P(5,2)、 (-6,0)、 (6,0).(Ⅰ)求以、为焦点且过点P的椭圆的标准方程;(Ⅱ)设点P、、关于直线的对称点分别为、、,求以、为焦点且过点的双曲线的标准方程.17.(本题满分14分)某城市交通规划中,拟在以点O为圆心,半径为50m的高架圆形车道外侧P处开一个出口,以与圆形道相切的方式,引申一条直道连接到距圆形道圆心O正北250 m的道路上C处(如图),以O为原点,OC为y轴建立如图所示的直角坐标系,求直道PC所在的直线方程,并计算出口P的坐标.18.(本题满分16分)过点P(4,4)作直线l与圆O:相交于A、B两点.(Ⅰ)若直线l变动时,求AB中点M的轨迹方程;(Ⅱ)若直线l的斜率为,求弦AB的长;(Ⅲ)若一直线与圆O相切于点Q且与轴的正半轴,轴的正半轴围成一个三角形,当该三角形面积最小时,求点Q的坐标.19.(本题满分16分)在平面直角坐标系中,抛物线C的顶点在原点,经过点其焦点F在轴上.(Ⅰ)求抛物线C的标准方程;(Ⅱ)求过点F和OA的中点的直线的方程 ;(Ⅲ)设点 ,过点F的直线交抛物线C于B、D两点,记PB,PF,PD的斜率分别为,求证: .20.(本题满分16分)在平面直角坐标系中,已知定点A(-4,0),B(4,0),动点P与A、B连线的斜率之积为 .(Ⅰ)求点P的轨迹方程;(Ⅱ)设点P的轨迹与y轴负半轴交于点C,半径为r的圆M的圆心M在线段AC 的垂直平分线上,且在y轴右侧,圆M被y轴截得弦长为 .⑴求圆M的方程;⑵当r变化时,是否存在定直线l与动圆 M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.第一学期期中试卷高二数学(理科)参考答案一、填空题1. 22.33.4.5.6.7.8. 9. _ + 3y 5 =0 10. 11. 1812. (或 ) 13. 14.二、解答题15. 解:由题意得:(1) ,解得:,所以 3分因为所求直线与直线平行,所以,则所求直线方程为: 7分(2)直线MN所在直线的斜率为: 10分因为所求直线与两点所在直线垂直,所以则所求直线方程为: 14分16.解:(1)由题意,可设所求椭圆的标准方程为 + ,其半焦距 . ,,, 5分故所求椭圆的标准方程为 + ; 7分(2)点P(5,2)、 (-6,0)、 (6,0)关于直线y=_的对称点分别为:、 (0,-6)、 (0,6) 9分设所求双曲线的标准方程为 - ,由题意知半焦距,,,, 12分故所求双曲线的标准方程为 . 14分17. 解:圆形道的方程为_2+y2=2500, 2 分引伸道与北向道路的交接点C的坐标为(0,250 ), 4分设的方程为,由图可知又与圆相切,到距离,解得,的方程为①, 8分又,则OP的方程是:② 10分由①②解之得点坐标 13分引伸道在所建坐标系中的方程为,出口P的坐标是 14分18.解:(1)因为点M是AB的中点,所以OMAB,则点M所在曲线是以OP为直径的圆,其方程为,即 ; 4分(2)因为直线l的斜率为,所以直线l的方程是:,即, 6分设点O到直线l的距离为d,则,所以,解得: ; 10分(3)设切点Q的坐标为 .则切线斜率为 .所以切线方程为 .又,则12分此时,两个坐标轴的正半轴于切线围成的三角形面积 .14分由知当且仅当时,有最大值.即有最小值.因此点Q的坐标为 . 16分19.解:(Ⅰ)由题意可设抛物线的方程为:,因为抛物线经过点,所以,解得:,则抛物线C的标准方程是: ; 3分(Ⅱ)由(1)知:F(1,0),OA的中点M的坐标为,则,所以直线FM的方程是: ; 6分(Ⅲ)当直线的斜率不存在时,则所以,则 ;8分当直线的斜率存在时,设为k,则直线的方程为设,则,同理可得:,所以= , 12分由方程组消去y,并整理得:,所以, 14分则,又,所以,综上所述: 16分20. 解:(Ⅰ)设P点的坐标为(_, y),则因为动点P与A、B连线的斜率之积为,所以,化简得:,所以点P的轨迹方程为 (_4) 6分(Ⅱ)(1)由题意知:C(0, 2),A(4,0),所以线段AC的垂直平分线方程为y=2_+3, 8分设M(a, 2a+3)(a0),则⊙M的方程为,因为圆心M 到y轴的距离d=a,由,得:,10分所以圆M的方程为。
高二数学理科期末试卷1

高二数学理科期末试卷1第 I 卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在客观题答题卡上。
1. 21()n x x-的展开式中,常数项为15,则n =( ) A .3 B .4 C .5 D .62. )3.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 60B. 48C. 42D. 364. 已知随机变量X 服从正态分布()3,1N ,且(24)P X ≤≤=0.6826,则()4P X >=( )A 、0.1588B 、0.1587C 、0.1586D 0.15855. 已知离散型随机变量X 的分布列如下表.若E (X )=0,D (X )=1,则a ,b ,c 的值依次为( )A .,,1244B .,,4124C .115,,4412D .以上答案均不对 6. 甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( )A .16B .14C .13D .128.已知函数()x f 在R 上满足 672)2(2+-=-x x x f ,则曲线()x f y =在()()1,1f 处的切线方程是( )A. 21y x =-B. y x =C. 32y x =-D. 23y x =-+8. 从5,4,3,2,1中任取两个不同的数,事件A 为“取到的两个数之和为偶数”,事件B 为 “取到的两个数均为偶数”,则()=A B P ( )A .18B .14C .25D .129. 有一批种子,每一粒种子发芽的概率都为0.9,那么播下15粒种子,恰有14粒发芽的概率是( )A .1410.9-B .140.9C .()1414150.910.9C - D .()1414150.910.9C - 10.用数学归纳法证明)1(12131211>∈<-++++n N n n n 且 ,第二步证明从“k 到k+1”,左端增加的项数是A . 12+kB .12-kC . k 2D .12-k11. 设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a =A .0B .1C .11D .1212. 下列命题正确的个数是 ( )(1)比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好(2)605.1精确到01.0的近似值是24.1(3)若随机变量X ~()p n B ,,且7=EX ,6=DX ,则17P =A .0个B .1个C .2个D .3个 第 II 卷(非选择题 共90分 二.填空题:本题共4小题,每小题5分,共20分,请将答案写在答题纸指定的位置上。
高二下学期理科期末复习模拟试题(1)

高二数学(理)期末测试(一)命题人: 审核: 时间:2013-6-6第Ⅰ卷(选择题 共60分)一.选择题(本大题共12个小题,每小题5分,共60分.在每个小题的四个选项中,只有一项是符合题目要求的.) 1.复数13)31(2-+i i 的值是 ( )A .2B .21C .21-D .2- 2.)('0x f =0是可导函数)(x f 在点0x x =处取极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.如果复数Z ai Z =+-<322满足条件||,那么实数a 的取值范围是 ( )A .)22,22(-B .(,)-22C .(,)-11D .(,)-334.已知(p x x-22)6的展开式中,不含x 的项是2720,那么正数p 的值是 ( )A . 1B .2C .3D .45.如果654321,,,,,a a a a a a 的方差为3,那么2)3(1-a .2)3(2-a . 2)3(3-a .2)3(4-a .2)3(5-a .2)3(6-a 的方差是( )A .0B .3C .6D .126.在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步, 程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有( ) A . 34种 B .48种 C .96种 D .144种 7.函数22()()x a y x a b+=++的图象如右图所示,则 ( )A .(0,1),(0,1)a b ∈∈B .(0,1),(1,)a b ∈∈+∞C .(1,0),(1,)a b ∈-∈+∞D .(1,0),(0,1)a b ∈-∈8.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有 ( )A .10B .48C .60D .809.设随机变量~(0,1)N ξ,记)()(x P x <=Φξ,则(11)P ξ-<<等于 ( )A .2(1)1Φ-B .2(1)1Φ--C .(1)(1)2Φ+Φ-D .(1)(1)Φ+Φ-10.把语文、数学、物理、历史、外语这五门课程安排在一天的五节课里,如果数学必须比历史先上,则不同的排法有 ( ) A .48 B .24 C .60 D .120 11. 口袋里放有大小相同的2个红球和1个白球,有 放回的每次模取一个球,定义数列{}n a :⎩⎨⎧-=次摸取白球第次摸取红球第n n a n 11 如果n S 为数列{}n a 的前n 项之和,那么37=S 的概率为( )A .729224 B .72928C .238735D .7528 12.直线42+=x y 与抛物线12+=x y 所围成封闭图形的面积是A .310 B .316 C .332 D .335第Ⅱ卷(非选择题满分90)二、填空题:(本题共4小题,每小题4分,共16分)13.设命题p :|4x -3|≤1; q :2(21)(1)x a x a a -+++≤0.若﹁ p 是﹁ q 的必要而不充分的条件,则实数a 的取值范围是 .14.已知奇函数)(x f 满足)()2(x f x f -=+,且当)1,0(∈x 时,x x f 2)(=,则)27(f 的值为______.15.如图,把数列{}2n 中的所有项按照从小到大,从左到右的顺序写成如图所示的数表,且第k 行有12k -个数.若第k 行从左边起的第s 个数记为(,)k s ,则2010这个数可记为 .16.已知函数)0(1)1(3)(223>+-+-=k k x k kx x f ,若)(x f 的单调减区间是 (0,4),则在曲线)(x f y =的切线中,斜率最小的切线方程是________________.高二数学(理)期末测试(一)班级:________________ 姓名:________________ 得分:________________13、____________14、____________15、___________16、____________ 三、解答题17.(12分)已知二次函数2()f x ax x =+,若对任意12,x x R ∈,恒有12122()()()2x x f f x f x +≤+成立,不等式()0f x <的解集为A (Ⅰ)求集合A ; (Ⅱ)设集合{}4,B x x a =+<,若集合B 是集合A 的子集,求a 的取值范围18.(12分)已知(41x +3x 2)n展开式中的倒数第三项的系数为45,求:(1)含x 3的项; (2)系数最大的项.19.(本小题满分12分) 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(Ⅰ)记“函数x x x f ξ+=2)(为R 上的偶函数”为事件A ,求事件A 的概率; (Ⅱ)求ξ的分布列和数学期望.20.(12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花园AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,|AB |=3米,|AD |=2米, (I )要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内?(II ) 若AN 的长度不少于6米,则当AM 、AN 的长度 是多少时,矩形AMPN 的面积最小?并求出最小面积.A B CD M NP21. (12分).已知()1)f n n N *=++∈L ,()1)()g n n N *=∈. (1)当n=1,2,3时,分别比较()f n 与()g n 的大小(直接给出结论); (2)由(1)猜想()f n 与()g n 的大小关系,并证明你的结论. .22.(14分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点.(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.参考答案一、选择题 ABDCD C D DAC BC 二、填空题13.[0,12] 14.2- 15.(10,494) 16.1280x y +-= 三、解答题17.解:(Ⅰ)对任意12,x x R ∈,有1212()()2()2x x f x f x f ++-2121()02a x x =-≥……………………3分 要使上式恒成立,所以0a ≥由2()f x ax x =+是二次函数知0a ≠故0a >……………………4分由21()()0f x ax x ax x a=+=+<所以不等式()0f x <的解集为1(,0)A a=-……………………6分(Ⅱ)解得(4,4)B a a =---,……………………8分 B A ⊆ 4014a a a -≤⎧⎪∴⎨--≥-⎪⎩………………………………………………10分解得02a <≤-2分18.解:(1)由题设知2245,45,10.n n n C C n -==∴=即21113010363341211010710433101130()(),3,6,12210.r r rrr r r T C x x C xr x T C xC x x ---+-=⋅======令得含的项为 (2)系数最大的项为中间项,即55302551212610252.T C xx -==19.解:设该学生选修甲、乙、丙的概率分别为x 、y 、z依题意得⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧=----=-=--5.06.04.0,88.0)1)(1)(1(1,12.0)1(,08.0)1)(1(z y x z y x z xy z y x 解得(I )若函数x x x f ξ+=2)(为R 上的偶函数,则ξ=0当ξ=0时,表示该学生选修三门功课或三门功课都没选.)1)(1)(1()0()(z y x xyz P A P ---+===∴ξ=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24 ∴事件A 的概率为0.24(II )依题意知ξ=0.2则ξ的分布列为∴ξ的数学期望为E ξ=0×0.24+2×0.76=1.5220.解:设AN 的长为x 米(x >2) ∵||||||||DN DC AN AM =,∴|AM |=232x x - ∴S AMPN =|AN |•|AM |=232x x -(I )由S AMPN > 32 得 232x x - > 32 ,∵x >2,∴2332640x x -+>,即(3x -8)(x -8)> 0 ∴8283x x <<> 或即AN 长的取值范围是8(2)(8)3∞ ,,+(II ) 令y =232xx -,则y ′=2226(2)334)(2)(2)x x x x x x x ---=--(∴当x > 4,y ′> 0,即函数y =232x x -在(4,+∞)上单调递增,∴函数y =232xx -在[6,+∞]上也单调递增。
高二上学期期末考试数学(理科)试卷(含参考答案)

高二第一学期理科数学期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{14}A x x =<<,{lg(1)}B x y x ==-,则AB =( )A .{12}x x <<B .{12}x x ≤<C .{12}x x -<<D .{12}x x -≤< 2. 如果命题“p 且q ”是假命题,“q ⌝”也是假命题,则( ) A .命题“⌝p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“⌝p 且q ”是真命题 D .命题“p 且q ⌝”是真命题3. 已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( ) A. 110 B. 55 C. 50 D. 不能确定4. 以抛物线28y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A. 22(1)1x y ++= B. 22(1)1x y -+= C. 22(2)4x y ++= D. 22(2)4x y -+=5.“3a =”是 “函数()3xf x ax =-有零点”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.已知n m ,是两条不同的直线, βα,是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ; ②若α⊥m,β⊥n ,且n m ⊥,则βα⊥;③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//. 其中正确命题的序号是( )A .①④B .②④C .②③ D.①③7.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题: “今有蒲生一日,长三尺。
莞生一日,长一尺。
蒲生日自半。
莞生日自倍。
问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入3A =,1a =.那么在①处应填( )A .2?T S >B .2?S T >C .2?S T <D .2?T S < 8.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A. 3[0,]4π B.3π[0,)[,π) 24π⋃ C. 3π[,π) 4 D. 3(,]24ππ 9.已知定义在R 上的函数()f x 满足: ()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时, ()1x f x e =-,则()()20162017f f +-= ( )(其中e为自然对数的底)A. 1e -B. 1e -C. 1e --D. 1e +10.已知Rt ABC ∆,点D 为斜边BC 的中点,63AB =,6AC =,12AE ED =,则A E E B ⋅等于( ) A. 14- B. 9- C. 9 D.1411.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为 ( )A .1- B.17- C. 13 D .75-12. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B. 224-C.225-D.223+ 二、填空题:本大题共4小题,每小题5分,满分20分.13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.14.已知α为锐角,向量(cos ,sin )a αα=、(1,1)b =-满足223a b ⋅=,则sin()4πα+= .15.某三棱锥的三视图如图所示,则其外接球的表面积为______.16.若实数,,a b c 满足22(21)(ln )0a b a c c --+--=,则b c -的最小值是_________.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17. (本小题满分10分)在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18. (本小题满分12分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c,且sin sin sin sin 3a Ab Bc C C a B +-= .(1)求角C ;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)在五面体ABCDEF 中, ////,222AB CD EF CD EF CF AB AD =====,60DCF ︒∠=,AD ⊥平面CDEF .(1)证明:直线CE ⊥平面ADF ; (2)已知P 为棱BC 上的点,23CP CB =,求二面角P DF A --的大小.21. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点(1,0)F ,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)T t (0)t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.22.(本小题满分12分)已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间; (2)证明:当2a e≥时, ()x f x e ->.高二数学期末考试试题参考答案ACBDA CBBAD DC 13. 56 14.315. 323π 16. 117.解:(1)21(1)22n n na n a n n +-+=+的两边同时除以(1)n n +,得*12()1n na a n n n+-=∈+N , …………3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. …………………4分(2)由(1),得22n an n=+,…………………5分所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-==⋅=⋅-+++,………………7分所以111111[(1)()()]22231n S n n =-+-++-+, 1111111[(1)()]223231n n =++++-++++ 11(1)212(1)n n n =-=++. ……………10分 18.解:(1)∵ sin sinsin sin a A b B c C Ca B +-=,222cos 2a b c C Cab +-∴==…………4分,即tan C =(0,)C π∈3C π∴=.………………6分(2) 由222211()(2)44CD CA CB CA CB CA CB =+=++⋅ 即2222111(2cos )()44b a ab C b a ab =++=++…………………8分从而22442,3ab a b ab ab -=+≥≤(当且仅当a b ==10分 即114sin 223ABC S ab C ∆=≤⨯=…………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分因为51()()(3)(1)000316iii x x y y =--=-⨯-++++⨯=∑,…………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分=…………………………4分所以相关系数()()0.95ni ix x y yr--===≈∑.………………5分因为0.75r>,所以可用线性回归模型拟合y与的关系.……………6分(2)记商家周总利润为Y元,由条件可得在过去50周里:当70X>时,共有10周,此时只有1台光照控制仪运行,周总利润Y=1×3000-2×1000=1000元.…………8分当5070X≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y=2×3000-1×1000=5000元.……………………………9分当50X<时,共有5周,此时3台光照控制仪都运行,周总利润Y=3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………………………12分20.证明:(1)//,2,CD EF CD EF CF===∴四边形CDEF为菱形,CE DF∴⊥,………1分又∵AD⊥平面CDEF∴CE AD⊥………2分又,AD DF D⋂=∴直线CE⊥平面ADF.………4分(2) 60DCF∠=,DEF∴∆为正三角形,取EF的中点G,连接GD,则,GD EF GD CD⊥∴⊥,又AD⊥平面CDEF,∴,,DA DC DG两两垂直,以D为原点,,,DA DC DG所在直线分别为,,x y z轴,建立空间直角坐标系D xyz-,………5分2,1CD EF CF AB AD=====,((0,,E F∴-,(1,1,0),(0,2,0)B C………6分由(1)知(0,CE=-是平面ADF的法向量,………7分()()0,1,3,1,1,0DF CB==-,222(,,0)333CP CB==-,(0,2,0)DC=则24(,,0)33DP DC CP=+=,………8分设平面PDF的法向量为(),,n x y z=,∴n DFn DP⎧⋅=⎪⎨⋅=⎪⎩,即2433yx y⎧=⎪⎨+=⎪⎩,令z=3,6y x==-,∴(6,3,n=-………10分∴1cos ,223n CE n CE n CE⋅===-………11分∴二面角P DF A --大小为60.………12分21. 解:(1)由题意知1c =,又tan 603bc ==,所以23b =,………2分2224a b c =+=,所以椭圆的方程为:22143x y += ;………4分 (2)当0k =时, 0t =,不合题意设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y+=,得:2222(34)84120k x k x k +-+-=,故0∆>,则,0k R k ∈≠ 设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则2120002243,(1)23434x x k k x y k x k k +===-=-++ ,………7分由QP TP PQ TQ ⋅=⋅ 得:()(2)0PQ TQ TP PQ TR ⋅+=⋅= , 所以直线TR 为直线PQ 的垂直平分线,………8分直线TR 的方程为:222314()3434k k y x k k k +=--++ , ………10分 令0y =得:T 点的横坐标22213344k t k k ==++,………11分因为2(0,)k ∈+∞, 所以234(4,)k +∈+∞,所以1(0,)4t ∈. ………12分所以线段OF 上存在点(,0)T t 使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈.22.解:(1)函数()ln af x x x=+的定义域为()0,+∞.由()ln a f x x x =+,得()221a x af x x x x ='-=-.………1分①当0a ≤时, ()0f x '>恒成立, ()f x 递增, ∴函数()f x 的单调递增区间是()0,+∞ ………2分 ②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分 (2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln xa x e x-+>,………5分 即ln xx x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+,当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1x e =时, ()min1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()xx xe φ-=,则()()1xx x x exe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<. 所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e≥时, (f x )xe ->.………12分。
高二数学上学期期末复习题8(理科)

高二数学上学期期末复习题八(理科)(2013.12)1.已知命题1sin ,:≤∈∀x R x p ,则p ⌝为( )A .1sin ,≥∈∃x R xB .1sin ,≥∈∀x R xC .1sin ,>∈∃x R xD .1sin ,>∈∀x R x2.“2a =-”是“直线2(3)180a x a y -++=与直线440x y a -+-=平行”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件3.若双曲线的顶点为椭圆1222=+y x 长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是( )A.122=-y x B.122=-x y C.222=-y x D.222=-x y 4.若直线02:1=+y ax l 与直线()011:2=+++y a x l 垂直,则=a ( )A.32B.32- C.2 D.1- 5.已知椭圆()012222>>=+b a by a x ,过椭圆的右焦点2F 且与x 轴垂直的直线交椭圆于P Q、两点,设椭圆的左焦点1F ,若1PQF ∆为正三角形,则此椭圆的离心率为( )A.22B.21C.33D.316.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ( )A .//B .⊥C .也不垂直于不平行于,D .以上三种情况都可能 7.若R a ∈则“2=a ”是“0)2)(1(=--a a ”的( ) A .充分而不必要条件B .必要而不充分条件 C .充要条件D .既不充分又不必要条件8.如图,在三棱柱中,侧棱垂直于底面,底面是边长为2的正三角形侧棱长为3,则与平面所成的角为( ) A.B. C. D.9.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 10.如图所示,正六棱柱ABCD-EFA 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是( ) A.90° B.60 C.45°D.30°11.方程02=+ny mx 与)0(122>>=+n m ny mx 的曲线在同一坐标系中的图象是( )12.若双曲线的顶点为椭圆1222=+y x 长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是( )A.122=-y xB.122=-x yC.222=-y xD.222=-x y 13. 圆122=+y x 上的点到直线02543=-+y x 的距离最小值为____。
高二数学必修二复习卷(理科)

歙州学校2011—2012高二数学(理科)第一学期期中考试本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.经过点),2(m P -和)4,(m Q 的直线的斜率等于1,则m 的值是 ( ) A .4 B .1 C .1或3 D .1或42.若已知A (1,1,1),B (-3,-3,-3),则线段AB 的长为( )A .B .C .D .3.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为 ( ) A .πQ B .2πQ C . 3πQ D . 4πQ 4.圆22220x y x y +-+=的周长是( )A .B .2πC D .4π5. 两圆229x y +=和228690x y x y +-++=的位置关系是( ) A .相离 B .相交 C .内切 D .外切6.经过点)1,2(的直线l 到A )1,1(、B )5,3(两点的距离相等,则直线l 的方程为 ( )A .032=--y xB .2=xC .032=--y x 或2=xD .都不对 7.直线kx -y +1=3k ,当k 变动时,所有直线都通过定点 ( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)8.方程052422=+-++m y mx y x 表示圆的充要条件是( )A .141<<m B .141><m m 或C .41<m D .1>m9.下列说法的正确的是( ) A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示 B .经过定点()b A ,0的直线都可以用方程y kx b =+表示 C .不经过原点的直线都可以用方程x a yb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示10.已知两定点A (-3,5),B (2,15),动点P 在直线3x -4y +4=0上,当PA +PB 取最小值时,这个最小值为( )A .513B .362C .155D .5+102第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题5分,共25分).11. .那么这个长方体外接球半径是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二(上)期末数学模拟试卷(理科)
一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选
项中,只有一项是符合题目要求的)
1.(5分)不等式x2﹣1≥0的解集为()
A.{x|﹣1≤x≤1}B.{x|﹣1<x<1}
C.{x|x≥1或x≤﹣1} D.{x|x>1或x<﹣1}
2.(5分)命题“对任意x∈R都有x2≥1”的否定是()
A.对任意x∈R,都有x2<1B.不存在x∈R,使得x2<1
C.存在x0∈R,使得x02≥1D.存在x0∈R,使得x02<1
3.(5分)已知{a n}是等比数列,若a1=2,a5=8a2,数列{a n}的前n项和为S n,则S n为()
A.2n﹣2B.2n+1﹣1C.2n+1﹣2D.2n﹣1
4.(5分)命题“若a>b,则a﹣1>b﹣1”的逆否命题是()A.若a<b,则a﹣1<b﹣1B.若a﹣1>b﹣1,则a>b
C.若a≤b,则a﹣1≤b﹣1D.若a﹣1≤b﹣1,则a≤b
5.(5分)已知直线m和平面α,β,若m⊂α,则“m⊥β”是“α⊥β”的()A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
6.(5分)已知F1,F2是椭圆+=1的两个焦点,经过点F2的直线交椭圆于
A,B两点,若|AB|=4,则|AF1|+|BF1|=()
A.12B.9C.8D.2
7.(5分)已知A为△ABC的一个内角,且,则△ABC的形状是
()
A.锐角三角形B.钝角三角形C.直角三角形D.不确定8.(5分)设a+b<0,且b>0,则下列不等式正确的是()A.b2>﹣ab B.a2<﹣ab C.a2<b2D.a2>b2 9.(5分)已知x+y=3,则Z=2x+2y的最小值是()
A.8B.6C.D.
10.(5分)如图,空间四边形OABC中,=,=,=,点M在线段OA 上,且OM=2MA,点N为BC的中点,则=()
A.﹣++B.﹣+
C.+﹣D.+﹣
11.(5分)命题p:函数f(x)=x3﹣3x在区间(﹣1,1)内单调递减,命题q:∀a>0,曲线x2+ay2=1为椭圆,则下列命题为真命题的是()
A.p∧q B.(¬p)∨q C.p∨q D.(¬p)∧(¬q)12.(5分)若双曲线的顶点为椭圆2x2+y2=2长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是()
A.x2﹣y2=1B.y2﹣x2=1C.y2﹣x2=2D.x2﹣y2=2
二、填空题(本大题共4小题,每小题5分,共20分)
13.(5分)已知实数x,y满足,则x+2y的最大值为.
14.(5分)空间向量=(2,3,﹣2),=(2,﹣m,﹣1),且⊥,则||=.
15.(5分)设F为抛物线C:y=x2的焦点,曲线y=(k>0)与C交于点P,PF⊥y轴,则k=.
16.(5分)F1,F2为椭圆C:+=1左右焦点,A为椭圆上一点,AF2垂直
于x轴,且三角形AF1F2为等腰直角三角形,则椭圆的离心率为.
三、解答题(本大题共6小题,共70分)
17.(10分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,且2a sin B =b.
(1)求A的大小;
(2)若a=3,b+c=4,求△ABC的面积.
18.(12分)已知抛物线的标准方程是y2=6x.
(Ⅰ)求抛物线的焦点坐标和准线方程;
(Ⅱ)直线l过已知抛物线的焦点且倾斜角为45°,与抛物线相交于不同的两点
A、B,求线段AB的长度.
19.(12分)已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;
(2)设c n=a n+b n,求数列{c n}的前n项和.
20.(12分)设p:实数x满足x2﹣4ax+3a2<0,其中a>0;q:实数x满足.
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若q是p的充分不必要条件,求实数a的取值范围.
21.(12分)如图,三棱锥P﹣ABC中,PC⊥平面
分别为线段AB,BC上的点,且.
(1)证明:DE⊥平面PCD
(2)求二面角A﹣PD﹣C的余弦值.
22.(12分)已知椭圆C:+=1(a>b>0)经过点P(0,1),离心率e=.
(1)求C的方程;
(2)设直线l经过点Q(2,﹣1)且与C相交于A,B两点(异于点P),记直线P A的斜率为k1,直线PB的斜率为k2,证明:k1+k2为定值.。