高二数学期末测试卷
浙江宁波市2024年高二下学期期末考试数学试题+答案 (1)

宁波市2023学年第二学期期末考试高二数学试题卷本试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、学校、准考证号填涂在答题卡上。
将条形码横贴在答题卡的“贴条形码区”。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
所有答案必须写在答题卡上,写在试卷上无效。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,不要折叠、不要弄破。
选择题部分(共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合U ={1,2,3,4,5},A ={1,2,4},B ={1,5},则∁U A ∩B =()A.⌀B.{1}C.{5}D.{1,5}2.已知复数z =1+2i ,则1z 的虚部为()A.25B.25iC.-25i D.-253.已知角α的终边过点-4,3 ,则sin α+cos αsin α=()A.-12B.-13C.14D.734.已知a ,b 为单位向量,则“a ⊥b ”是“a -2b =2a +b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.对于直线m ,n 和平面α,β,下列说法错误的是()A.若m ⎳α,n ⎳α,m ,n 共面,则m ⎳nB.若m ⊂α,n ⎳α,m ,n 共面,则m ⎳nC.若m ⊥β,且α⎳β,则m ⊥αD.若m ⊥α,且m ⎳β,则α⊥β6.若ln x -ln y >y 2-x 2,则()A.ex -y>1 B.e x -y<1 C.ln x -y >0 D.ln x -y <07.袋子中有n 个大小质地完全相同的球,其中4个为红球,其余均为黄球,从中不放回地依次随机摸出2个球,已知摸出的2个球都是红球的概率为16,则两次摸到的球颜色不相同的概率为()\A.518B.49C.59D.13188.颐和园的十七孔桥,初建于清乾隆年间;永定河上的卢沟桥,始建于宋代;四川达州的大风高拱桥,修建于清同治7年.这些桥梁屹立百年而不倒,观察它们的桥梁结构,有一个共同的特点,那就是拱形结构,这是悬链线在建筑领域的应用.悬链线出现在建筑领域,最早是由十七世纪英国杰出的科学家罗伯特.胡克提出的,他认为当悬链线自然下垂时,处于最稳定的状态,反之如果把悬链线反方向放置,它也是一种稳定的状态,后来由此演变出了悬链线拱门,其中双曲余弦函数就是一种特殊的悬链线函数,其函数表达式为cosh x =e x +e -x 2,相应的双曲正弦函数的表达式为sinh x =e x -e -x2.若关于x 的不等式4m cosh 2x -4sinh 2x -1>0对任意的x >0恒成立,则实数m 的取值范围为()A.2,+∞B.[2,+∞)C.14,+∞ D.14,+∞ 二、选择题:本题共3小题,每小题6分,共18分。
2023-2024学年重庆市高二(下)期末数学试卷(含答案)

2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。
2023-2024学年北京市海淀区高二(上)期末数学试卷【答案版】

2023-2024学年北京市海淀区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.椭圆y 22+x 2=1的焦点坐标为( ) A .(﹣1,0),(1,0)B .(0,﹣1),(0,1)C .(−√3,0),(√3,0)D .(0,−√3),(0,√3) 2.抛物线y 2=x 的准线方程是( )A .x =−12B .x =−14C .y =−12D .y =−143.直线3x +√3y +1=0的倾斜角为( )A .150°B .120°C .60°D .30°4.已知点P 与A (0,2),B (﹣1,0)共线,则点P 的坐标可以为( )A .(1,﹣1)B .(1,4)C .(−12,−1)D .(﹣2,1) 5.已知P 为椭圆C :x 24+y 2b 2=1上的动点,A (﹣1,0),B (1,0),且|P A |+|PB |=4,则b 2=( ) A .1 B .2 C .3 D .46.已知三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1⊥底面ABC ,则“CB ⊥BB 1”是“CB ⊥AB “的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.在空间直角坐标系O ﹣xyz 中,点P (﹣2,3,1)到x 轴的距离为( )A .2B .3C .√5D .√10 8.已知双曲线C :x 2−y 2b 2=1的左右顶点分别为A 1,A 2,右焦点为F ,以A 1F 为直径作圆,与双曲线C 的右支交于两点P ,Q .若线段PF 的垂直平分线过A 2,则b 2的数值为( )A .3B .4C .8D .910.如图,已知菱形ABCD 的边长为2,且∠A =60°,E ,F 分别为棱AB ,DC 中点.将△BCF 和△ADE 分别沿BF ,DE 折叠,若满足AC ∥平面DEBF ,则线段AC 的取值范围为( )A .[√3,2√3)B .[√3,2√3]C .[2,2√3)D .[2,2√3]二、填空题共5小题,每小题4分,共20分。
北京市海淀区2023-2024学年高二上学期期末练习数学试卷含答案

海淀区高二年级练习数学(答案在最后)2024.01考生须知1.本试卷共7页,共3道大题,19道小题.满分100分.考试时间90分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.椭圆C :2222x y +=的焦点坐标为()A.(1,0)-,(1,0) B.(0,1)-,(0,1)C.(),)D.(0,,(【答案】B 【解析】【分析】先化为标准方程2212y x +=,求得222,1,1a b c ====,判断焦点位置,写焦点坐标.【详解】因为椭圆C :2222x y +=,所以标准方程为2212y x +=,解得222,1,1a b c ===,因为焦点在y 轴上,所以焦点坐标为(0,1)-,(0,1).故选:B【点睛】本题主要考查椭圆的几何性质,还考查了理解辨析的能力,属于基础题.2.抛物线2y x =的准线方程是()A.12x =-B.14x =-C.12y =-D.14y =-【答案】B 【解析】【分析】由抛物线的标准方程及性质,直接求解.【详解】由抛物线方程2y x =可知1212p p ==,,故准线方程为:124p x =-=-.故选:B.3.直线310x ++=的倾斜角是()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】先求解出直线的斜率,然后根据倾斜角与斜率的关系求解出倾斜角的大小.【详解】因为直线方程为310x +=,所以斜率k ==设倾斜角为θ,所以tan θ=,所以120θ=°,故选:C.4.已知点P 与(0,2),(1,0)A B -共线,则点P 的坐标可以为()A.(1,1)- B.(1,4)C.1,12⎛⎫-- ⎪⎝⎭D.(2,1)-【答案】B 【解析】【分析】三点共线转化为向量共线,利用共线条件逐个判断即可.【详解】设(,)P x y ,则(,2),(1,2)AP x y AB =-=--,由,,P A B 三点共线,则//AP AB,所以2(2)0x y -+-=,则220x y -+=.选项A ,21(1)250⨯--+=≠,不满足220x y -+=,故A 错误;选项B ,21420⨯-+=,满足220x y -+=,故B 正确;选项C ,12(1)2202⎛⎫⨯---+=≠ ⎪⎝⎭,不满足220x y -+=,故C 错误;选项D ,2(2)1230⨯--+=-≠,不满足220x y -+=,故D 错误.故选:B.5.已知P 为椭圆222:14x y C b+=上的动点.(1,0),(1,0)A B -,且||||4PA PB +=,则2b =()A.1B.2C.3D.4【答案】C 【解析】【分析】根据题意,结合椭圆的定义,得到点P 的轨迹表示以,A B 为焦点的椭圆,进而求得2b 的值.【详解】因为(1,0),(1,0)A B -,可得2AB =,则||||42A PA PB B +>==,由椭圆的定义,可得点P 的轨迹表示以,A B 为焦点的椭圆,其中24,21a c ==,可得2,1a c ==,所以2223b a c =-=,又因为点P 在椭圆222:14x y C b+=,所以23b =.故选:C.6.已知三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,则“1CB BB ⊥”是“CB AB ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由面面垂直的性质定理可证明“1CB BB ⊥”是“CB AB ⊥”的必要条件,由底面为正三角形的直三棱柱模型,可知“1CB BB ⊥”不是“CB AB ⊥”的充分条件.【详解】①已知侧面11ABB A ⊥底面ABC ,且侧面11ABB A 底面ABC AB =,又BC ⊂平面ABC ,若BC AB ⊥,则由面面垂直的性质定理可得BC ⊥平面11ABB A ,1BB ⊂平面11ABB A ,则1CB BB ⊥,所以则“1CB BB ⊥”是“CB AB ⊥”的必要条件;②若三棱柱111ABC A B C -是直三棱柱,底面ABC 是正三角形,则1BB ⊥底面ABC ,1BB ⊂平面11ABB A ,则满足条件侧面11ABB A ⊥底面ABC .又BC ⊂平面ABC ,则1CB BB ⊥,但BC 与AB 不垂直.所以“1CB BB ⊥”不是“CB AB ⊥”的充分条件.综上所述,“1CB BB ⊥”是“CB AB ⊥”的必要不充分条件.故选:B.7.在空间直角坐标系O xyz -中,点(2,3,1)-P 到x 轴的距离为()A.2B.3C.D.【答案】D 【解析】【分析】结合空间直角坐标系,数形结合利用勾股定理求解点(2,3,1)-P 到x 轴的距离.【详解】在空间直角坐标系O xyz -中,过P 作PH ⊥平面xOy ,垂足为H ,则PH x ⊥轴,在坐标平面xOy 内,过H 作1HP x ⊥轴,与x 轴交于1P ,由(2,3,1)-P ,则1(2,0,0)P -,(2,3,0)H -,由1PH HP H = ,PH ⊂平面1PHP ,1HP ⊂平面1PHP ,则x 轴⊥平面1PHP ,1PP ⊂平面1PHP ,则x 轴1PP ⊥,故1PP即点(2,3,1)-P 到x 轴的距离,则1PP ==故选:D.8.已知双曲线222:1y C x b-=的左右顶点分别为12,A A ,右焦点为F ,以1A F 为直径作圆,与双曲线C 的右支交于两点,P Q .若线段PF 的垂直平分线过2A ,则2b 的数值为()A.3B.4C.8D.9【答案】C 【解析】【分析】由双曲线方程得1a =,结合圆的性质及线段垂直平分线的性质得2A 是1A F 的中点,得到,a c 关系求c ,进而求出2b .【详解】由双曲线222:1y C x b-=,得1a =,12(1,0),(1,0),(,0)A A F c -,由题意,点P 在以1A F 为直径的圆上,则1A P PF ⊥,取PF 的中点M ,由线段PF 的垂直平分线过2A ,则2A M PF ⊥,则12//A P A M ,故2A 是1A F 的中点,122A A A F=且12222,1A A a A F c a c ===-=-,所以12c -=,解得3c =,故222918b c a =-=-=.故选:C.9.设动直线l 与()22:15C x y ++= 交于,A B 两点.若弦长AB 既存在最大值又存在最小值,则在下列所给的方程中,直线l 的方程可以是()A.2x y a +=B.2ax y a +=C.2ax y +=D.x ay a+=【答案】D 【解析】【分析】由动直线恒与圆相交得直线过圆内一定点,再验证弦长取最值即可.【详解】()22:15C x y ++= ,圆心(1,0)C -,半径5r =,选项A ,由直线2x y a +=斜率为12-,可得动直线为为平行直线系,圆心(1,0)C -到直线20x y a +-=的距离15a d --=当6a ≤-或4a ≥时,5d ≥A 错误;选项B ,由直线2ax y a +=可化为(2)0a x y -+=,则直线恒过(2,0),因为()2215+>,点(2,0)在圆外,故直线不一定与圆相交,故B 错误;选项C ,由直线2ax y +=恒过(0,2),点(0,2)在圆上,当12a =时,直线方程可化为240x y +-=,此时圆心(1,0)C -到直线240x y +-=的距离1455d r --===,圆与直线相切,不满足题意,故C 错误;选项D ,由直线方程x ay a +=可化为(1)0x a y +-=,则直线恒过(0,1)M ,且点M 在圆C 内,故直线恒与圆C 相交,当直线过圆心C 时,弦长最长,由(1,0)-在直线(1)0x a y +-=上,可得1a =-,AB 取到最大值;如图,取AB 中点T ,则CT AB ⊥,圆心到直线的距离d CT CM=≤AB ==,当d 取最大值CM 时,弦长最短,即当直线与CM 垂直时,弦长最短,由CM 的斜率为01110CM k -==--此时直线斜率为11k a==,即当1a =时,AB 取到最小值.故D 正确.故选:D.10.如图,已知菱形ABCD 的边长为2,且60,,A E F ∠=︒分别为棱,AB DC 中点.将BCF △和ADE V 分别沿,BF DE 折叠,若满足//AC 平面DEBF ,则线段AC 的取值范围为()A. B. C.2,⎡⎣ D.2,⎡⎣【答案】A 【解析】【分析】借助空间直观想象,折叠前在平面图形中求出AC 的长度,折叠过程中证明平面//EAB 平面FDC ,面面距离即为AC 的最小值,由此得到AC 的范围.【详解】折叠前,连接,AC BD .由题意,在菱形ABCD 中,2AB BC ==,18060120ABC ∠=-= ,则由余弦定理得,22212cos 44222122AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯⨯⨯-= ⎪⎝⎭,所以,AC =,故在折叠过程中,AC ≤.折叠后,若//AC 平面DEBF ,则AC ⊄平面DEBF ,则AC <BD 项错误;折叠前,在菱形ABCD 中,2BA BD ==,60DAB ∠= ,则ABD △是正三角形,由,E F 分别为棱,AB DC 中点,则,,//DE AB BF DC AB DC ⊥⊥,所以//DE BF .折叠后,,,DE AE DE EB AE EB E ⊥⊥= ,又AE ⊂平面EAB ,且EB ⊂平面EAB ,则DE ⊥平面EAB ,同理BF ⊥平面FDC ,所以平面//EAB 平面FDC ,则平面EAB 与平面FDC 的距离即为22DE =⨯=,由点A ∈平面EAB ,点C ∈平面FDC ,则AC ≥.在折叠过程中,当60DFC AEB ∠=∠= 时,由,AE EB DF FC ==,则,EBA DFC 均为正三角形,可构成如图所示的正三棱柱DFC EBA -,满足//AC 平面DEBF ,此时AC DE ==.所以AC A 正确,C 项错误.故选:A.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.双曲线22:14y C x -=的渐近线方程为_________.【答案】2y x =±【解析】【分析】利用双曲线的性质即可求得渐近线方程.【详解】由双曲线的相关知识可知:1a =,2b =所以焦点在x 轴双曲线的渐近线方程为:2by x x a=±=±故答案为:2y x=±12.如图,已知E ,F 分别为三棱锥D ABC -的棱,AB DC 的中点,则直线DE 与BF 的位置关系是__________(填“平行”,“异面”,“相交”).【答案】异面【解析】【分析】假设共面推出矛盾.【详解】假设直线,DE BF 共面,EB ⊂平面DEBF ,由A EB ∈,则AB ⊂平面DEBF ,同理,DC ⊂平面DEBF ,故,AB CD 共面,这与D ABC -是三棱锥矛盾,故假设错误,故直线,DE BF 异面.故答案为:异面.13.经过点(0,1)A 且与直线:210l x y +-=垂直的直线方程为_______________.【答案】210x y -+=【解析】【分析】求出所求直线的斜率,利用点斜式方程可得出所求直线的方程.【详解】直线:210l x y +-=的斜率为12-,则与直线:210l x y +-=垂直的直线的斜率为2,则直线方程为12(0)y x -=-,即210x y -+=.故答案为:210x y -+=14.作为我国古代称量粮食的量器,米斗有着吉祥的寓意,是丰饶富足的象征,带有浓郁的民间文化韵味.右图是一件清代老木米斗,可以近似看作正四棱台,测量得其内高为12cm ,两个底面内棱长分别为18cm 和9cm ,则估计该米斗的容积为__________3cm .【答案】2268【解析】【分析】先画出正四棱台的直观图,再利用台体的体积公式即可求解.【详解】根据题意,正四棱台的直观图如下:由题意可知,高112cm OO h ==,下底面正方形的变长9cm AB =,其面积()219981cmS =⨯=,上底面正方形的变长18cm AB =,其面积()221818324cm S =⨯=,由台体的体积公式可得,该正四面体的体积:()()()3121181324122268cm 33V S S h =++=⨯++⨯=.故该米斗的容积为32268cm .故答案为:2268.15.已知四边形ABCD 是椭圆22:12x M y +=的内接四边形,其对角线AC 和BD 交于原点O ,且斜率之积为13-.给出下列四个结论:①四边形ABCD 是平行四边形;②存在四边形ABCD 是菱形;③存在四边形ABCD 使得91AOD ∠=︒;④存在四边形ABCD 使得2264||||5AC BD +=.其中所有正确结论的序号为__________.【答案】①③④【解析】【分析】利用椭圆的对称性判断①;利用菱形的对角线互相垂直可判断②;利用正切函数的和差公式与性质判断③;利用斜率关系得到22||||OA OB +的表达式,然后利用基本不等式求22||||AC BD +的最大值,可判断④.【详解】因为四边形ABCD 是椭圆22:12x M y +=的内接四边形,AC 和BD 交于原点O ,由椭圆的对称性可知OA OC =且OB OD =,所以四边形ABCD 是平行四边形,故①正确;假设对角线AC 和BD 的斜率分别为12,k k ,若四边形ABCD 是菱形,则其对角线互相垂直,即121k k ×=-,而这与1213k k ⋅=-矛盾,所以不存在四边形ABCD 是菱形,故②错误;不妨设直线AC 的倾斜角为α,直线BD 的倾斜角为β,且αβ>,则12tan ,tan 0k k αβ==>,又1213k k ⋅=-,则1213k k =-,则()122122tan tan 31tan tan 1tan tan 123k k AOD k k k k αβαβαβ⎛⎫--∠=-===-- ⎪++⎝⎭3tan1202≤-⨯=︒,又0180AOD ︒<∠<︒,则90120AOD ︒<∠<︒,所以存在四边形ABCD 使得91AOD ∠=︒,故③正确;直线AC 的方程1y k x =,直线BD 的方程2y k x =,由12212y k xx y =⎧⎪⎨+=⎪⎩,得()22122x k x +=,即122122k x =+,可得1222212A C x k x =+=,同理可得2222212B D x k x =+=,则()()22122222221212212111||221212121k kOA OB k k k k +++=+=++++++,由1213k k ⋅=-,得222119k k =,令()22121,09k t k t t==>,则22211119||||222221199t t t ttOA OB +=+++++=+++()()()92221123321922192t t t t t t +-+-=++=+++++2552181321813116333355t t t t t ++++=+=+≤++=,当且仅当218t t =,即221211,33t k k ===时,等号成立;于是()()()22222264||224||5AC BD OA OB OA OB +=+=+≤,当且仅当221213k k ==,即四边形ABCD 矩形时,等号成立,所以存在四边形ABCD 使得2264||||5AC BD +=,故④正确.故答案为:①③④.【点睛】关键点睛:本题结论④的解决关键是利用弦长公式得到22||||AC BD +关于t 的表达式,从而利用基本不等式即可得解.三、解答题共4小题,共40分.解答应写出文字说明、演算步骤或证明过程.16.已知圆222:(2)(0)C x y r r -+=>与y 轴相切.(1)直接写出圆心C 的坐标及r 的值;(2)直线:3410l x y --=与圆C 交于两点,A B ,求||AB .【答案】(1)圆心(2,0)C ,2r =(2)【解析】【分析】(1)由圆的方程得圆心坐标,结合图形,圆与y 轴相切得半径;(2)法一由弦长公式求解;法二利用几何法勾股定理求解.【小问1详解】圆222:(2)(0)C x y r r -+=>,则圆心(2,0)C ,因为圆222:(2)(0)C x y r r -+=>与y 轴相切,则半径2r =.【小问2详解】由(1)知,圆的方程为22:(2)4C x y -+=,圆心(2,0)C ,半径为2.法一:设()()1122,,,A x y B x y ,联立()22341024x y x y --=⎧⎪⎨-+=⎪⎩,得2257010x x -+=,2(70)42548000∆=--⨯=>,则1212141,525x x x x +==,所以12AB x=-===法二:圆心(2,0)C到直线:3410l x y--=的距离12d==<,则AB===故AB=.17.已知直线:1l y kx=+经过抛物线2:2C x py=的焦点F,且与C的两个交点为P,Q.(1)求C的方程;(2)将l向上平移5个单位得到,l l''与C交于两点M,N.若24MN=,求k值.【答案】(1)24x y=(2)k=【解析】【分析】(1)由直线l与y轴交点得焦点F,待定p可得方程;(2)联立直线l'与抛物线C的方程,由已知弦长利用弦长公式建立关于k的方程,求解可得.【小问1详解】抛物线2:2C x py=的焦点F在y轴上,直线:1l y kx=+,令0x=,得1y=,则焦点(1,0)F,所以12p=,即2p=,所以抛物线C的方程为24x y=;【小问2详解】直线:1l y kx=+向上平移5个单位得到:6l y kx'=+,由246x y y kx ⎧=⎨=+⎩,消y 得24240x kx --=,设直线l '与C 交于两点1122(,),(,)M x y N x y ,则216960k ∆=+>,且12124,24x x k x x +==-,MN =====,由24MN =,化简整理得427300k k +-=,解得210k =-(舍)或23k =,所以k =.18.如图,四棱锥E ABCD -中,⊥AE 平面,,,2,1ABCD AD AB AD BC AE AB BC AD ⊥====∥,过AD 的平面分别与棱,EB EC 交于点M ,N .(1)求证:AD MN ∥;(2)记二面角A DN E --的大小为θ,求cos θ的最大值.【答案】(1)证明见解析(2)33【解析】【分析】(1)由线面平行判定定理与性质定理可证;(2)建立空间直角坐标系,设[],0,1BM BE λλ=∈,利用法向量方法,用λ表示两平面法向量夹角的余弦,再由向量夹角与二面角大小关系求cos θ最大值.【小问1详解】因为//AD BC ,AD ⊄平面BCE ,BC ⊂平面BCE ,所以//AD 平面BCE .因为过AD 的平面分别与棱,EB EC 交于,M N ,所以//AD MN ;【小问2详解】因为⊥AE 平面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以,AE AB AE AD ⊥⊥,又因为AB AD ⊥,如图,建立空间直角坐标系A xyz -,则(2,0,0),(2,0,2),(0,2,0),(0,0,1)B C E D ,所以(0,2,1),(2,2,2),(2,2,0),(0,0,1)ED EC BE AD =-=-=-=,设[],0,1BM BE λλ=∈,则(2,0,0)(2,2,0)(22,2,0)AM AB BM λλλ=+=+-=-,设平面AND 即平面AMND 的法向量为111(,,)m x y z =,则1110(22)20m AD z m AM x y λλ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1x λ=,则11y λ=-,于是(,1,0)m λλ=-;设平面END 即平面ECD 的法向量为222(,,)n x y z =,则22222202220n ED y z n EC x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21y =,则222,1z x ==-,于是(1,1,2)n =-,所以cos ,m nm n m n ⋅===⋅,因为[]0,1λ∈,所以cos ,,36m n ⎡∈--⎢⎣⎦,由二面角A DN E --的大小为θ,根据(,1,0),(1,1,2)m n λλ=-=- 的方向判断可得π,m n θ=-,所以,当12λ=时,cos θ的最大值为33.19.已知椭圆2222:1(0)x y E a b a b +=>>的两个顶点分别为(2,0),(2,0)A B -,离心率()()0001,,02e P x y y =≠为椭圆上的动点,直线,PA PB 分别交动直线x t =于点C ,D ,过点C 作PB 的垂线交x 轴于点H .(1)求椭圆E 的方程;(2)HC HD ⋅是否存在最大值?若存在,求出最大值;若不存在,说明理由.【答案】19.22143x y +=20.存在;12【解析】【分析】(1)由离心率及顶点坐标结合222b c a +=即可求解;(2)结合两点式得直线,PA PB 方程,进而得到点,C D 坐标,由直线CH 与直线PB 垂直得到直线CH 的斜率,结合点斜式得直线CH 的方程,进而的到点H 坐标,结合数量积的坐标运算及二次函数的最值即可求解.【小问1详解】由12ce a==,又两个顶点分别为(2,0),(2,0)A B -,则2,1a c ==,2223b a c =-=,故椭圆E 的方程为22143x y +=;【小问2详解】()()000,0P x y y ≠为椭圆上的动点,则02x ≠±,故直线,PA PB 的斜率存在且不为0,则直线PA :0022y x y x +=+,即00(2)2y y x x =++,则点00(,(2))2y C t t x ++,则直线PB :0022y x y x -=-,即00(2)2y y x x =--,则点00(,(2))2y D t t x --,则直线CH 的斜率为002x y -,故直线CH :00002(2)()2y x y t x t x y --+=-+,令0y =,得2020(2)4H t y x t x +=+-,又()00,P x y 在椭圆上,则2200143x y +=,整理得()2020344x y -=,所以36(2)44H t x t t -=-+=,则6,04t H -⎛⎫⎪⎝⎭,所以()22200020004(2)(2)3636(36),,4242164t y t y t y t t t HC HD x x x -⎛⎫⎛⎫+-+++⋅=⋅=+ ⎪ ⎪+--⎝⎭⎝⎭ ()22234(36)3(6)1216416t t t -+-=-=-+综上,存在6t =,使得HC HD ⋅有最大值12.确,运算要细心,是中档题.。
高二下学期期末数学考试试卷含答案(共5套)

i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
2023-2024学年北京市西城区高二(上)期末数学试卷【答案版】

2023-2024学年北京市西城区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.直线3x﹣4y+1=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线x2=6y的焦点到准线的距离为()A.12B.1C.2D.33.在空间直角坐标系O﹣xyz中,点A(4,﹣2,8)到平面xOz的距离与其到平面yOz的距离的比值等于()A.14B.12C.2D.44.在(2x+1x)3的展开式中,x的系数为()A.3B.6C.9D.12 5.正四面体ABCD中,AB与平面BCD所成角的正弦值为()A.√63B.√36C.√24D.√336.已知直线a,b和平面α,其中a⊄α,b⊂α,则“a∥b”是“a∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设A,B为双曲线E:x 2a2−y2b2=1(a>0,b>0)的左、右顶点,M为双曲线E上一点,且△AMB为等腰三角形,顶角为120°,则双曲线E的一条渐近线方程是()A.y=x B.y=2x C.y=√2x D.y=√3x8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有()A.12种B.24种C.32种D.36种9.如图,在长方体ABCD﹣A1B1C1D1中,AB=3,BC=CC1=4,E为棱B1C1的中点,P为四边形BCC1B1内(含边界)的一个动点.且DP⊥BE,则动点P的轨迹长度为()A.5B.2√5C.4√2D.√1310.在直角坐标系xOy 内,圆C :(x ﹣2)2+(y ﹣2)2=1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,则实数m 的取值范围是( ) A .[−√2,√2]B .[−4−√2,−4+√2]C .[−2−√2,−2+√2]D .[−2+√2,2+√2]二、填空题共5小题,每小题5分,共25分.11.过点A (2,﹣3)且与直线x +y +3=0平行的直线方程为 . 12.在(2x +1)4的展开式中,所有项的系数和等于 .(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于 .14.若方程x 2m+2+y 24−m =1表示的曲线为双曲线,则实数m 的取值范围是 ;若此方程表示的曲线为椭圆,则实数m 的取值范围是 .15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AB =2,E 为棱BB 1的中点,F 为棱CC 1(含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得B 1F ∥平面A 1ED ; ②不存在符合条件的点F ,使得BF ⊥DE ; ③异面直线A 1D 与EC 1所成角的余弦值为√55; ④三棱锥F ﹣A 1DE 的体积的取值范围是[23,2].其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(10分)从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(15分)如图,在直三棱柱ABC﹣A1B1C1中,BA⊥BC,BC=3,AB=AA1=4.(1)证明:直线AB1⊥平面A1BC;(2)求二面角B﹣CA1﹣A的余弦值.18.(15分)已知⊙C经过点A(1,3)和B(5,1),且圆心C在直线x﹣y+1=0上.(1)求⊙C的方程;(2)设动直线l与⊙C相切于点M,点N(8,0).若点P在直线l上,且|PM|=|PN|,求动点P的轨迹方程.19.(15分)已知椭圆C:x 2a2+y2b2=1(a>b>0)的一个焦点为(√5,0),四个顶点构成的四边形面积等于12.设圆(x﹣1)2+y2=25的圆心为M,P为此圆上一点.(1)求椭圆C的离心率;(2)记线段MP与椭圆C的交点为Q,求|PQ|的取值范围.20.(15分)如图,在四棱锥P﹣ABCD中,AD⊥平面P AB,AB∥DC,E为棱PB的中点,平面DCE与棱P A相交于点F,且P A=AB=AD=2CD=2,再从下列两个条件中选择一个作为已知.条件①:PB=BD;条件②:P A⊥BC.(1)求证:AB∥EF;(2)求点P到平面DCEF的距离;(3)已知点M在棱PC上,直线BM与平面DCEF所成角的正弦值为23,求PMPC的值.21.(15分)设椭圆C:x 2a2+y2b2=1(a>b>0)左、右焦点分别为F1,F2,过F1的直线与椭圆C相交于A,B两点.已知椭圆C的离心率为12,△ABF2的周长为8.(1)求椭圆C的方程;(2)判断x轴上是否存在一点M,对于任一条与两坐标轴都不垂直的弦AB,使得MF1为△AMB的一条内角平分线?若存在,求点M的坐标;若不存在,说明理由.2023-2024学年北京市西城区高二(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分。
高二数学下学期期末考试试卷含答案(共3套)

B .C .D .8.若 S = ⎰ 2 x 2dx , S = ⎰ 2 dx, S = ⎰ 2 e x d x ,则 S , S , S 的大小关系为( )1 x 1 1高二年级下学期期末考试数学试卷(考试时间:120 分钟;满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 Z = 10i3 + i,则 Z 的共轭复数为( )A . -1 + 3iB . -1 - 3iC .1+ 3iD .1- 3i2.6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24v v v v3.已知 a = (1- t,2 t - 1,0), b = (2, t, t ), 则 b - a 的 最小值是( )A . 5B . 6C . 2D . 3uuuv uuuv uuuv v4.已知正三棱锥 P - ABC 的外接球 O 的半径为1 ,且满足OA + OB + OC = 0, 则正三棱锥的体积为()A .344 2 45.已知函数 f ( x ) = - x, 且a < b < 1,则 ( )e x A .f (a) = f (b )B . f (a) < f (b )C . f (a) > f (b )D . f (a),f (b )大小关系不能确定6.若随机变量 X ~ B(n, p ), 且 E( X ) = 6, D( X ) = 3,则P( X = 1) 的值为()A . 3 2-2B . 2-4C . 3 2-10D . 2-8作检验的产品件数为()A.6B.7C.8D.91123123A.S<S<S123B.S<S<S213C.S<S<S231D.S<S<S3211A . n + 1B . 2nC .D . n 2 + n + 112.设点 P 在曲线 y = e x 上,点 Q 在曲线 y = ln(2 x) 上,则 PQ 的最小值为()13.已知复数 z = (i 是虚数单位) ,则 z = __________;15.二项式 (x- )8的展开式中,x 2 y 2的系数为 __________; 16.已知 f (n ) = 1 + + + … + (n ∈ N * ), 经计算得f (4) > 2, f (8) > , f (16) > 3 ,f (32) > , 则有__________(填上合情推理得到的式子).17.已知曲线 C 的极坐标方程是 ρ = 2cos(θ + ) ,以极点为平面直角坐标系的原点,极轴为 x,9.平面内有 n 条直线,最多可将平面分成 f (n) 个区域,则 f (n) 的表达式为()n 2 + n + 2 210.设m 为正整数,( x + y)2m 展开式的二项式系数的最大值为 a ,( x + y)2m +1 展开式的二项式系数的最大值为 b .若13a = 7b ,则 m = ( )A .5B .6C .7D .811.已知一系列样本点 ( x , y ) (i = 1,2,3, … , n) 的回归直线方程为 y = 2 x + a, 若样本点 (r,1)与(1,s) ii的残差相同,则有( ) A . r = s B . s = 2r C . s = -2r + 3 D . s = 2r + 112A .1- ln2B . 2(1 - ln 2)C .1+ ln2D . 2(1 + ln2)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)5i1 + 2i14.直线 2 ρcos θ = 1 与圆 ρ = 2cos θ 相交的弦长为__________;y y x1 1 1 52 3 n 272三、解答题(本大题共 6 小题,17 小题 10 分, 18-22 题每小题 12 分,共 70 分;解答应写出文字说明、证明过程或演算步骤)π 3轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线 l 的参数方程是⎧⎪ x = -1 - t, ⎨⎪⎩ y = 2 + 3t(t 是参数) 设点 P(-1,2) .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程,将直线 l 的参数方程化为普通方程;(Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,求 PM PN 的值.已知从该班随机抽取1人为喜欢的概率是.(参考公式:K2=,其中n=a+b+c+d)20.已知数列{x}满足x=,xn+1=18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的2⨯2列联表:喜欢不喜欢合计男生18女生6合计6013(Ⅰ)请完成上面的2⨯2列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.072 2.7063.841 5.024 6.6357.87910.828n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设a,a,a分别表123示甲,乙,丙3个盒中的球数.(Ⅰ)求a=2,a=1,a=0的概率;123(Ⅱ)记ξ=a+a,求随机变量ξ的概率分布列和数学期望.1211n121+xn,其中n∈N*.(Ⅰ)写出数列{x}的前6项;n(Ⅱ)猜想数列{x}的单调性,并证明你的结论.2na21 .如图,四棱锥 P - ABCD 中,底面 ABCD 是梯形, AD / / B C , AD > BC , ∠BAD = 900 ,P A ⊥ 底面ABCD, P A = AB, 点 E 是PB 的中点 .(Ⅰ)证明: PC ⊥ AE ;(Ⅱ)若 AB = 1, AD = 3, 且P A 与平面 PCD 所成角的大小为 450 ,求二面角 A - PD - C 的正弦值.22.已知函数 g ( x ) =x, f ( x ) = g ( x ) - ax .ln x(Ⅰ)求函数 g ( x ) 的单调区间;(Ⅱ)若函数 f ( x ) 在 (1, +∞)上是减函数,求实数 的最小值;(Ⅲ)若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a(a > 0) 成立,求实数 a 的取值范围.12 1 2( x - )2 + ( y + )2 = 1 ;⎪⎪ (Ⅱ) 直线 l 的参数方程化为标准形式为 ⎨ (m 是参数) ,①19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为 , , .下学期高二年级期末考试数学参考答案一、选择题题号答案1D 2D 3C 4A 5C 6C 7C 8B9C10B 11C 12B二、填空题13.514.315.7016. f (2n) >n + 22(n ≥ 2, n ∈ N * )三、解答题17 . 解 : ( Ⅰ ) 曲 线 C 的 极 坐 标 方 程 化 为 直 角 坐 标 方 程 为 : x 2 + y 2 = x - 3 y,即1 32 2直线 l 的参数方程化为普通方程为: 3x + y + 3 - 2 = 0 .⎧1 x = -1 - m ,2 ⎪ y = 2 +3 m ⎪⎩ 2将①式代入 x 2 + y 2 = x - 3 y ,得: m 2 + (2 3 + 3)m + 6 + 2 3 = 0 ,②由题意得方程②有两个不同的根,设 m , m 是方程②的两个根,由直线参数方程的几何意义知:1 2PM PN = m m = 6 + 2 3 .1218.解:(Ⅰ)列联表如下;喜欢 男生 14 女生 6 合计20 不喜欢18 22 40 合计 32 28 60(Ⅱ)根据列联表数据,得到 K 2 = 60(14⨯ 22 - 6 ⨯18)2 32 ⨯ 28 ⨯ 20 ⨯ 40≈ 3.348 > 2.706,所以有 90%的可靠性认为“喜欢与否和学生性别有关”.1 1 16 3 2p=p(a=2,a=1,a=0)=C1()2()=.3633683323628 3626323328p(a=3,a=0,a=0)=.8期望E(ξ)=0⨯+1⨯+2⨯+3⨯=.20.解:(Ⅰ)由x=,得x==;21+x3由x=,得x==;31+x5由x=,得x==;51+x8由x=,得x==;81+x13由x=8,得x==;131+x21(Ⅰ)由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,111123(Ⅱ)由题意知,ξ可能的取值是0,1,2,3.1p(ξ=0)=p(a=0,a=0,a=3)=,12311113 p(ξ=1)=p(a=0,a=1,a=2)+p(a=1,a=0,a=2)=C1()()2+C1()()2= 123123p(ξ=2)=p(a=2,a=0,a=1)+p(a=1,a=1,a=1)+p(a=0,a=2,a=1)123123123 11111113=C1()2()+A3()()()+C1()2()=3p(ξ=3)=p(a=0,a=3,a=0)+p(a=1,a=2,a=0)+p(a=2,a=1,a=0)+ 1231231231123故ξ的分布列为:ξ0123P13883818 1331388882112121213232315343518454113565(Ⅱ)由(Ⅰ)知x>x>x,猜想:数列{x}是递减数列.2462n下面用数学归纳法证明:①当n=1时,已证命题成立;(Ⅰ)证明: AE = ⎛ 0, b , b ⎫⎪ , PC = (c, b , - b ) , 所以 AE ⋅ PC = 0 ⨯ c + b ⋅ b + b ⋅ (-b ) = 0 , r 由 ⎪⎨ur uuur即 ⎪⎨ 令 z = 1 ,得 m = ⎛ 1 , 1 - c , 1⎫⎪ . ⎩ ⎩ 1 ⎛ c ⎫2 3 ⎝ 3 ⎭ ur AP r |②假设当 n = k 时命题成立,即 x > x2k 2k +2易知 x > 0 ,当 n = k + 1时,2k.x2k +2- x 2k +4=11 + x2k +1-11 + x2k +3==x- x2k +32k +1(1+ x)(1+ x)2k +12k +3x - x2k 2k +2(1+ x )(1+ x )(1+ x2k 2k +1 2k +2)(1+ x2k +3)> 0即 x2( k +1)> x2( k +1)+ 2.也就是说,当 n = k + 1时命题也成立.根据①②可知,猜想对任何正整数 n 都成立.21. 解:解法一(向量法):建立空间直角坐标系 A - xyz ,如图所示.根据题设,可设 D(a, 0, 0), B(0, b , 0), P(0, 0, b ), C (c, b , 0) ,uuuruuu⎝2 2 ⎭ uuur uuur22uuur uuur所以 AE ⊥ PC ,所以 PC ⊥ AE .uuur(Ⅱ)解:由已知,平面 P AD 的一个法向量为 AB = (0, 1, 0) .ur设平面 PCD 的法向量为 m = ( x , y , z) ,ur uuur⎧m ⋅ PC = 0,⎪m ⋅ PD = 0,⎧cx + y - z = 0,⎪ 3x + 0 ⋅ y - z = 0,ur⎝ 3 3 ⎭uuur而 AP = (0, 0, 1) ,依题意 P A 与平面 PCD 所成角的大小为 45︒ ,ur uuur所以 sin 45︒ = 2 = | m ⋅ uuuu ,即 2 | m || AP | 1 1 = 2+ 1 - ⎪ + 17,, 1⎪⎪ . 3 cos θ = ur uuur = PG ⋅ DF 3解得 BC = c = 3 - 2 ( BC = c = 3 + 2 舍去),所以ur ⎛ 1m = 3 ,⎝2 ⎫⎭设二面角 A - PD - C 的大小为 θ ,则ur uuur m ⋅ AB | m || AB | 2 31 2+ + 1 3 3= 3 , 3所以 sin θ = 6 ,所以二面角 A - PD - C 的正 3弦值为6 3 . 解法二(几何法): Ⅰ)证明:因为 P A ⊥ 平面 ABCD ,BC ⊂ 平面 ABCD ,所以 BC ⊥ P A .又由 ABCD 是梯形, AD ∥ BC , ∠BAD = 90︒ ,知 BC ⊥ AB ,而 AB I AP = A , AB ⊂ 平面 P AB , AP ⊂ 平面 P AB ,所以 BC ⊥ 平面 P AB .因为 AE ⊂ 平面 P AB ,所以 AE ⊥ BC .又 P A = AB ,点 E 是 PB 的中点,所以 AE ⊥ PB .因为 PB I BC = B , PB ⊂ 平面 PBC , BC ⊂ 平面 PBC ,所以 AE ⊥ 平面 PBC .因为 PC ⊂ 平面 PBC ,所以 AE ⊥ PC .(Ⅱ)解:如图 4 所示,过 A 作 AF ⊥ CD 于 F ,连接 PF ,因为 P A ⊥ 平面 ABCD , CD ⊂ 平面 ABCD ,所以 CD ⊥ P A ,则 CD ⊥ 平面 PAF ,于是平面 PAF ⊥ 平面 PCD ,它们的交线是 PF .过 A 作 AG ⊥ PF 于 G ,则 AG ⊥ 平面 PCD ,即 P A 在平面 PCD 上的射影是 PG ,所以 P A 与平面 PCD 所成的角是 ∠APF .由题意, ∠APF = 45︒ .在直角三角形 APF 中, P A = AF = 1 ,于是 AG = PG = FG = 2 .2在直角三角形 ADF 中, AD = 3 ,所以 DF = 2 .方法一:设二面角 A - PD - C 的大小为 θ ,则 cos θ = △S PDG △SAPD 2 = = 2=P A ⋅ AD 1⨯ 3 3⨯ 2,8x = ln x - 1,+ 2 = , 即 x = e 2时, f '( x ) max = - a .所以 - a ≤ 0, 于是a ≥, 故a 的最小值为 .=1+ a = . 4 4所以 sin θ = 6 ,所以二面角 A - PD - C 的正弦值为 6 .33方法二:过 G 作 GH ⊥ PD 于 H ,连接 AH ,由三垂线定理,得 AH ⊥ PD ,所以 ∠AHG 为二面角 A - PD - C 的平面角,在直角三角形 APD 中, PD = P A 2 + AD 2 = 2 , AH = P A ⋅ AD = 1⨯ 3 = 3 .PD2 22在直角三角形 AGH 中, sin ∠AHG = AG = 2 = 6 ,AH 33 2所以二面角 A - PD - C 的正弦值为 6 .322.解:由已知,函数 g ( x ) , f ( x ) 的定义域为 (0,1) U (1,+∞),且 f ( x ) =x- ax .ln x(Ⅰ)函数 g '( x ) = 1ln x - x ⋅(ln x)2 (ln x)2当 0 < x < e 且x ≠ 1时,g '( x ) < 0 ;当 x > e 时,g '( x ) > 0 .所以函数 g ( x ) 的单调减区间是 (0,1),(1,e), 增区间是(e , ∞) .(Ⅱ)因 f ( x ) 在 (1, +∞) 上为减函数,故 f '( x ) =所以当 x ∈ (1,+∞) 时, f '( x )max ≤ 0 .ln x - 1 (ln x)2- a ≤ 0 在 (1, +∞) 上恒成立.又 f '( x ) = ln x - 1 1 1 1 1 1- a = -( )2 + - a = -( - )2 + - a,(ln x) ln x ln x ln x 2 4故当1 1 1ln x 2 4 1 1 1 4 4 4(Ⅲ)命题“若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a 成立 ”等价于1212“当 x ∈ [e , e 2 ]时, 有f ( x ) min≤ f '( x )max + a ” .由(Ⅱ)知,当 x ∈ [e , e 2 ]时, 有f '( x )- a,∴ f '( x )max1min≤”.①当a≥时,由(Ⅱ)知,f(x)在[e,e2]上为减函数,=f(e)=-ae2≤,故a≥-②当0<a<时,由于f'(x)=-(-)2+-a在[e,e2]上为增函数,故f'(x)的值域为[f'(e),f'(e2)],即[-a,-a].,ln x -ax≤,x∈(e,e2).4->->-=,与0<a<综上,得a≥1问题等价于:“当x∈[e,e2]时,有f(x)1 41 4则f(x)min2e21112424e2. 1111 4ln x2414由f'(x)的单调性和值域知,∃唯一x∈(e,e2)使f'(x)=0,且满足:00当x∈(e,x)时,f'(x)<0,f(x)为减函数;当x∈(x,e2)时,f'(x)>0,f(x)为增函数;所以,f(x)min =f(x)=x001所以,a≥1ln x11111114x ln e24e2444矛盾,不合题意.1-24e2.1.已知集合 M = x x 2 < 2x + 3 , N = x x < 2 ,则 M ⋂ N = (){}3⎩- log 2 ( x + 1) f ( x ) = ⎨ “ 12 ,则可以利用方程 x = 求得 x ,高二年级第二学期期末考试数学试题一、选择题(每小题 5 分,共 50 分){ }A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式 e i x = cos x + i sin x ( i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)

石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。