数学文化――数列(27题)
高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。
(完整版)数学经典例题集锦:数列(含答案)

数列题目精选精编【典型例题】(一)研究等差等比数列的有关性质 1. 研究通项的性质例题1. 已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥. (1)求32,a a ;(2)证明:312n n a -=. 解:(1)21231,314,3413a a a =∴=+==+=Q .(2)证明:由已知113--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ1213133312n n n a ---+=++++=L , 所以证得312n n a -=.例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥(Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥,两式相减得:112,3(2)n n n n n a a a a a n ++-==≥,又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列∴13n n a -=(Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===,由题意可得2(51)(59)(53)d d -+++=+,解得122,10d d ==∵等差数列{}n b 的各项为正,∴0d > ∴2d =∴2(1)3222n n n T n n n -=+⨯=+例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++128n n a n -+=对任意的*N n ∈都成立,数列{}n n b b -+1是等差数列.⑴求数列{}n a 与{}n b 的通项公式;⑵是否存在N k *∈,使得(0,1)k k b a -∈,请说明理由.点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.(2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.解:(1)已知212322a a a +++…12n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2)128(1)n n a n --+=-(n ∈*N )②①-②得,128n n a -=,求得42n n a -=,在①中令1n =,可得得41182a -==,所以42nn a -=(n ∈N*). 由题意18b =,24b =,32b =,所以214b b -=-,322b b -=-,∴数列}{1n n b b -+的公差为2)4(2=---, ∴1n nb b +-=2)1(4⨯-+-n 26n =-,121321()()()n n n b b b b b b b b -=+-+-++-L(4)(2)(28)n =-+-++-L 2714n n =-+(n ∈*N ).(2)k k b a -=2714k k -+-42k-,当4k ≥时,277()()24f k k =-+-42k-单调递增,且(4)1f =, 所以4k ≥时,2()714f k k k =-+-421k-≥, 又(1)(2)(3)0f f f ===,所以,不存在k ∈*N ,使得(0,1)k k b a -∈.例题4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解: 依题意得:2b n+1 = a n+1 + a n+2 ① a 2n+1 = b n b n+1 ②∵ a n 、b n 为正数, 由②得21211,+++++==n n n n n n b b a b b a , 代入①并同除以1+n b 得:212+++=n n n b b b , ∴}{n b 为等差数列∵ b 1 = 2 , a 2 = 3 ,29,22122==b b b a 则 ,∴ 2)1(),1(22)229)(1(22+=∴+=--+=n b n n b n n ,∴当n ≥2时,2)1(1+==-n n b b a n n n , 又a 1 = 1,当n = 1时成立, ∴2)1(+=n n a n2. 研究前n 项和的性质例题5. 已知等比数列}{n a 的前n 项和为2nn S a b =⋅+,且13a =.(1)求a 、b 的值及数列}{n a 的通项公式;(2)设n n n b a =,求数列}{n b 的前n 项和n T . 解:(1)2≥n 时,a S S a n n n n ⋅=-=--112.而}{n a 为等比数列,得a a a =⋅=-1112, 又31=a ,得3=a ,从而123-⋅=n n a .又123,3a a b b =+=∴=-Q .(2)132n n n n n b a -==⋅, 21123(1)3222n n n T -=++++L231111231(2322222n n n n n T --=+++++L ) ,得2111111(1)232222n n n nT -=++++-L , 111(1)2412[](1)13232212n n n n n n n T +⋅-=-=---.例题6. 数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k =+++L*()N k ∈, (1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '.解:(1)由题意:410nn a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-L ,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==.(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,∴当7n ≤时,212731132()244n n n S b b b n n n -+'=+++==-+L当7n >时,12789n n S b b b b b b '=+++----L L 27121132()2144n S b b b n n =-+++=-+L∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例题7. 已知递增的等比数列{n a }满足23428a a a ++=,且32a +是2a ,4a 的等差中项. (1)求{n a }的通项公式n a ;(2)若12log n n nb a a =,12n n S b b b =+++L 求使1230n n S n ++⋅>成立的n 的最小值.解:(1)设等比数列的公比为q (q >1),由a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2或a 1=32,q =12(舍)∴a n =2·2(n -1)=2n(2) ∵12log 2nn n n b a a n ==-⋅,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2, 若S n +n ·2n +1>30成立,则2n +1>32,故n >4,∴n 的最小值为5.例题8. 已知数列}{n a 的前n 项和为S n ,且11,,n n S a +-成等差数列,*1,1N n a ∈=. 函数3()log f x x =.(I )求数列}{n a 的通项公式; (II )设数列{}n b 满足1(3)[()2]n n b n f a =++,记数列{}n b 的前n 项和为T n ,试比较52512312n n T +-与的大小. 解:(I )11,,n n S a +-Q 成等差数列,121n n S a +∴=-① 当2n ≥时,121n n S a -=-②. ①-②得:112()n n n n S S a a -+-=-,13+=∴n n a a ,13.n na a +∴=当n =1时,由①得112221S a a ∴==-, 又11,a =2213,3,a a a ∴=∴={}n a ∴是以1为首项3为公比的等比数列,13.n n a -∴=(II )∵()x log x f 3=,133()log log 31n n n f a a n -∴===-, 11111()(3)[()2](1)(3)213n n b n f a n n n n ===-++++++,1111111111111()224354657213n T n n n n ∴=-+-+-+-++-+-+++L11111()22323n n =+--++525,122(2)(3)n n n +=-++比较52512312n n T +-与的大小,只需比较2(2)(3)n n ++与312 的大小即可. 222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-∵*,N n ∈∴当*19N n n ≤≤∈且时,5252(2)(3)312,;12312nn n n T +++<<-即当10n =时,5252(2)(3)312,;12312n n n n T +++==-即当*10N n n >∈且时,5252(2)(3)312,12312n n n n T +++>>-即.3. 研究生成数列的性质例题9. (I ) 已知数列{}n c ,其中nn n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;(II ) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],整理得61(2-p )(3-p )·2n ·3n =0,解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n . 为证{c n }不是等比数列只需证22c ≠c 1·c 3.事实上,22c =(a 1p +b 1q )2=21a p 2+21b q 2+2a 1b 1pq , c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)=21a p 2+21b q 2+a 1b 1(p 2+q 2).由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列.例题10. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a 24=1,163,814342==a a 求S=a 11 + a 22 + a 33 + … + a nn解: 设数列{1k a }的公差为d , 数列{ik a }(i=1,2,3,…,n )的公比为q则1k a = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -1依题意得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+==+=163)2(81)(1)3(31143311421124q d a a q d a a q d a a ,解得:a 11 = d = q = ±21 又n 2个数都是正数,∴a 11 = d = q = 21 , ∴a kk = kk2nn S 212132122132⨯++⨯+⨯+=Λ,1432212132122121+⨯++⨯+⨯+=n n S Λ,两式相减得:n n n S 22121--=-例题11. 已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n n a n N =∈(1)求数列}{n a 的通项公式;(2)设n n n nn b b b T a b +++==Λ21,2,若)(Z m m T n ∈<,求m 的最小值;(3)求使不等式12)11()11)(11(21+≥+++n p a a a nΛ对一切*N n ∈均成立的最大实数p .解:(1)由题意得⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ,解得⎩⎨⎧-==12b a ,)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==- (2)由(1)得n n n b 212-=, nn n n n T 2122322523211321-+-++++=∴-Λ ① 1132212232252232121+--+-+-+++=n n n n n n n T Λ ② ①-②得)21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++=ΛΛ1n 1n 1n 21n 2212321n 2+-+---=--.n n 2n n 23n 2321n 2213T +-=---=∴-, 设*,232)(N n n n f n ∈+=,则由 1512132121)32(252232252)()1(1<+≤++=++=++=++n n n n n n f n f n n 得*,232)(Nn n n f n ∈+=随n 的增大而减小 +∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m(3)由题意得*21)11()11)(11(121N n a a a n p n ∈++++≤对Λ恒成立记)11()11)(11(121)(21n a a a n n F ++++=Λ,则()()11n 21n 2)1n ()1n (4)1n (2)3n 2)(1n 2(2n 2)a 11()a 11)(a 11(1n 21)a 11)(a 11()a 11)(a 11(3n 21)n (F )1n (F 2n 211n n 21=++>+-++=+++=+++++++++=++ΛΛ)(),()1(,0)(n F n F n F n F 即>+∴>Θ是随n 的增大而增大)(n F 的最小值为332)1(=F ,332≤∴p ,即332max =p .(二)证明等差与等比数列 1. 转化为等差等比数列.例题12. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122,*N n ∈. ⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;⑶设n b =1(12)n n a -**12(),()N N n n n T b b b n ∈=+++∈L ,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2832d d =+⇒=-,82(1)102n a n n ∴=--=-. (2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤Λ时21281029,2n na a a n n n +-=+++=⨯=-L6n ≥时,n n a a a a a a S ---+++=ΛΛ765212555()2940n n S S S S S n n =--=-=-+故⎪⎩⎪⎨⎧+--=40n 9n n n 9S 22n 56n n ≤≥ (3)11111()(12)2(1)21n n b n a n n n n ===--++Q , ∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+L .2(1)n n =+ 若32n m T >对任意*N n ∈成立,即116n m n >+对任意*N n ∈成立, *()1N n n n ∈+Q 的最小值是21,1,162m ∴<m ∴的最大整数值是7.即存在最大整数,7=m 使对任意*N n ∈,均有.32n m T >例题13. 已知等比数列{}n b 与数列{}n a 满足3,n an b n =∈N *.(1)判断{}n a 是何种数列,并给出证明; (2)若8131220,a a m b b b +=L 求.解:(1)设{}n b 的公比为q ,∵3n an b =,∴()q log 1n a a 3q 331n a 1n a n 1-+=⇒=⋅-。
数学文化――数列(27题)

数学文化——数列(27题)1、“竹九节”问题【编号第1题】1.【2015秋•九江校级期末】《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共5升,下面3节的容积共4升,则第5节的容积为()A.B.C.D.【考点】等差数列的前n项和;等差数列的通项公式.【分析】由题意可得等差数列的首项和公差,由通项公式可得.【解析】:由题意可得每节的容积自上而下构成9项等差数列,且a1+a2+a3+a4=5,a9+a8+a7=4,设公差为d,则a1+a2+a3+a4=4a1+6d=5,a9+a8+a7=3a1+21d=4,两式联立可得a1=,d=,所以第5节的容积a5=a1+4d=.故选:B【点评】本题考查等差数列的通项公式和求和公式,属基础题.【编号第2题】2.【2011•湖北】《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为()A.1升B.升C.升D.升【考点】等差数列的性质.【分析】设出竹子自上而下各节的容积且为等差数列,根据上面4节的容积共3升,下面3节的容积共4升列出关于首项和公差的方程,联立即可求出首项和公差,根据求出的首项和公差,利用等差数列的通项公式即可求出第5节的容积.【解析】:设竹子自上而下各节的容积分别为:a1,a2,…,a9,且为等差数列,根据题意得:a1+a2+a3+a4=3,a7+a8+a9=4,即4a1+6d=3①,3a1+21d=4②,②×4﹣①×3得:66d=7,解得d=,把d=代入①得:a1=,则a5=+(5﹣1)=.故选B【点评】此题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,是一道中档题.2、“女子织布”问题【编号第3题】3.【2016•江西校级模拟】《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第十日所织尺数为()A.8 B.9 C.10 D.11【考点】数列的应用.【分析】由已知条件利用等差数列的前n项和公式和通项公式列出方程组,求出首项和公差,由此能求出第十日所织尺数.【解析】:设第一天织a1尺,从第二天起每天比第一天多织d尺,由已知得,解得a1=1,d=1,所以第十日所织尺数为a10=a1+9d=1+9×1=10.故选:C.【点评】本题考查等差数列的性质,考查了等差数列的前n项和,是基础的计算题.【编号第4题】4.【2015秋•日喀则市校级期末】古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30尺,该女子所需的天数至少为()A.7 B.8 C.9 D.10【考点】等比数列的前n项和.【分析】由等比数列前n项和公式求出这女子每天分别织布尺,由此利用等比数列前n 项和公式能求出要使织布的总尺数不少于30尺,该女子所需的天数至少为多少天.【解析】:设该女五第一天织布x尺,则=5,解得x=,所以前n天织布的尺数为:,由30,得2n≥187,解得n的最小值为8.故选:B.【点评】本题考查等比数列在生产生活中的实际应用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.【编号第5题】5.【2016春•东城区期末】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为()A.尺 B.尺C.尺D.尺【考点】等差数列的前n项和.【分析】利用等差数列的求和公式即可得出.【解析】:由题意可得:每天织布的量组成了等差数列{a n},a1=5(尺),S30=9×40+30=390(尺),设公差为d(尺),则30×5+=390,解得d=.故选:C.【点评】本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于基础题.【编号第6题】6.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织布的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,可求得该女子第3天所织布的尺数为.【考点】等比数列的前n项和.【分析】设这女子每天分别织布形成数列{a n}尺.则该数列{a n}为等比数列,公比q=2,其前5项和S5=5.利用等比数列的通项公式及其前n项和公式即可得出.【解析】:设这女子每天分别织布形成数列{a n}尺.则该数列{a n}为等比数列,公比q=2,其前5项和S5=5.所以,解得a1=.所以a3==.故答案为:.【点评】本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.3、“走步”问题【编号第7题】7.(2016•重庆校级模拟)《九章算术》有这样一个问题:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和为三百九十里,问第六日所走时数为()A.140 B.150 C.160 D.170【考点】等差数列的通项公式.【分析】由题意设比人从第二日起每日此前一日多走d里,第一日走a1里,由等差数列通项公式和前n项和公式求出首项和公差,由此能求出第六日所走里数.【解析】:由题意设比人从第二日起每日此前一日多走d里,第一日走a1里,则,解得a1=100,d=10,所以第六日所走里数为a6=100+50=150.故选:B.【点评】本题考查第差数列在生产生活中的实际运用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.【编号第8题】8.(2016春•普宁市校级期中)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.9日B.8日C.16日D.12日【考点】等比数列的前n项和.【分析】良马每日行的距离成等差数列,记为{a n},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5.求和即可得到答案.【解析】:由题意知,良马每日行的距离成等差数列,记为{a n},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5;设第m天相逢,则a1+a2+…+a m+b1+b2+…+b m=103m++97m+=2×1125,解得:m=9.故选:A.【点评】本题考查了等差数列在实际问题中的应用,属于基础题.【编号第9题】9.(2016•安庆二模)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为()A.24里B.12里C.6里D.3里【考点】等比数列的前n项和.【分析】由题意可知,每天走的路程里数构成以为公比的等比数列,由S6=378求得首项,再由等比数列的通项公式求得该人最后一天走的路程.【解析】:记每天走的路程里数为{a n},可知{a n}是公比的等比数列,由S6=378,得,解得:a1=192,所以,故选:C.【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.4、“分钱”问题【编号第10题】10.(2016•晋中模拟)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱C.钱D.钱【考点】等差数列的通项公式.【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a=﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=5求得a=1,则答案可求.【解析】:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,所以a=1,则a﹣2d=a﹣2×=.故选:B.【点评】本题考查等差数列的通项公式,是基础的计算题.5、两鼠穿墙题问题【编号第11题】11.(2016•松山区校级模拟)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n为前n天两只老鼠打洞长度之和,则S n=尺.【考点】数列的求和.【分析】根据题意可知,大老鼠和小老鼠打洞的距离为等比数列,根据等比数列的前n项和公式,求得S n.【解析】:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前n天打洞之和为=2n﹣1,同理,小老鼠每天打洞的距离=2﹣,所以Sn=2n﹣1+2﹣=,故答案为:=.【点评】本题考查求等比数列的前n项和公式,要认真审题,属于基础题.6、杨辉三角问题【编号第12题】12.【2010•黄州区校级二模】如图,在杨辉三角中,斜线l的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10,…,则这个数列的第21项的值为()A.66 B.220 C.78 D.286【考点】数列的应用.【分析】先对“锯齿形”的数列的奇数项找规律,求出通项公式,然后利用“锯齿形”数列的第21项即为新数列的第11项即可求出结论.【解析】:设“锯齿形”数列的奇数项构成数列{b n},由b2﹣b1=3﹣1=2,b3﹣b2=6﹣3=3,b4﹣b3=10﹣6=4,b5﹣b4=15﹣10=5,⇒b n﹣b n﹣1=n,所以可得,即,又因为“锯齿形”数列的第21项即为数列{b n}的第11项,,故选A.【点评】本题借助于杨辉三角对数列的综合应用进行考查,是道基础题,但也是易错题,当发现不了规律时就变成了难题.所以在做数列题时,要认真审题,仔细解答,避免错误.【编号第13题】13.【2011秋•青羊区校级月考】如图,在杨辉三角中,斜线l的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其n项和为S n,则S21等于()A.229 B.283 C.361 D.374【考点】归纳推理.【分析】由图中锯齿形数列排列,发现规律:奇数项的第n项可以表示成正整数的前n项和的形式,偶数项构成以3为首项,公差是1的等差数列.由此再结合等差数列的通项与求和公式,即可得到S21的值.【解析】:根据图中锯齿形数列的排列,发现a1=1,a3=3=1+2,a5=6=1+2+3,…a21=1+2+3+…+11而a2=3,a4=4,a6=5,…,a20=12所以前21项的和S21=[1+(1+2)+(1+2+3)+…+(1+2+…+11)]+(3+4+5+…+12)=(1×11+2×10+3×9+…+10×2+11)+,因此,S21=286+75=361故选C【点评】本题以杨辉三角为例,求锯齿形数列的前n项和,着重考查了等差数列的通项与求和公式和归纳推理的一般方法等知识点,属于基础题.【编号第14题】14.【2015春•黄石校级期中】如图,在杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,则数列的第10项为()A.55 B.89 C.120 D.144【考点】归纳推理.【分析】根据杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,找出规律,即可求出数列的第10项.【解析】:由题意,a1=1,a2=1,a3=2,a4=1+2=3,a5=2+3=5,a6=3+5=8,a7=5+8=13,a8=8+13=21,a9=13+21=34,a9=21+34=55.故选:A.【点评】本题是规律的归纳题,解决本题的关键是读懂题意,理清前后项的关系,比较基础.【编号第15题】15.【2009秋•浦东新区校级月考】观察如图类似杨辉三角的数表,则此表最后一个数是101×298.【考点】归纳推理;数列的应用.【分析】由第一行第一个数为1,第二行第一个数是1+2,第三行第一个数是1+2•2+3,第四行第一个数是1+3•2+3•3+4,然后猜想第n行第一数是c n﹣10•1+c n﹣11•2+c n﹣112•3+…+c n﹣1n n﹣1•n,利用倒序相加法和二项式定理的性质,即可求得结果.﹣2(n﹣1)+c n﹣1【解析】:令a n,1表示第n行的第一个数,则a1,1=1,a2,1=1+2,a3,1=1+2+2+3=1+2•2+3,a4,1=1+2+2+3+2+3+3+4=1+3•2+3•3+4,…所以a n,1=c n﹣10•1+c n﹣11•2+c n﹣112•3+…+c n﹣1n﹣2(n﹣1)+c n﹣1n﹣1•n,所以a100,1=c990•1+c991•2+c993•3+…+c9999•100,a100,1=c9999•100+c9998•99+c9997•98+…+c990•1,∵2a100,1=101(c990+c991+c992+…+c9999)=101•298,故答案为101•298.【点评】此题是个中档题.本题是一道找规律的题目,要求学生的通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.此题要根据已知的数据发现各行的第一个数和第二个数的规律.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.【编号第16题】16.【2011•江苏模拟】如图,在杨辉三角形中,斜线l的上方从1按箭头方向可以构成一个“锯齿形”的数列{a n}:1,3,3,4,6,5,10,…,记其前n项和为S n,则S19的值为283.【考点】数列的求和.【分析】从杨辉三角的生成过程,C n m﹣1+C n m=C n m,对该数列分奇偶讨论,求出数列的通项公式,解决S19的值【解析】:从杨辉三角形的生成过程,可以得到这个数列的通项公式a n;当n为偶数时,a n+2=a n+1,所以a n是以3为首项,1为公差的等差数列,所以,n为奇数时,a n+2=a n+a n﹣1(n≥3),即所以a5﹣a3=3,a7﹣a5=4…,所以而a1=1满足上式故n为奇数是,所以S19=(a1+a3+…a19)+(a2+a4+…+a18)==220+63=283故答案为:283.【点评】从杨辉三角形成的过程,得出数列的通项公式是难点和关键,题目比较新,属中档题.【编号第17题】17.古希腊毕达哥拉斯学派研究了“多边形数”,人们把多边形数推广到空间,研究了“四面体数”图①是第一至第五个四面体数.这些数可在杨辉三角形(图②)找到由此推出第6个四面体数为56(用数字作答);第n个四面体数为n(n+1)(n+2).【考点】归纳推理.【分析】通过观察前几个图形中顶点的个数得,每一个四面体中每层图形的顶点的个数都可以看成是一个等差数列的前几项的和,再利用等差数列的求和公式即可解决问题.【解析】:第一个四面体数为:1,第二个四面体数为:1+(1+2),第三个四面体数为:1+(1+2)+(1+2+3),第四个四面体数为:1+(1+2)+(1+2+3)+(1+2+3+4),…由此归纳可得:第n个三角形数为:1+(1+2)+(1+2+3)+…+(1+2+3+…+n)=n(n+1)(n+2),当n=6时,n(n+1)(n+2)=56,故答案为:56,n(n+1)(n+2)【点评】本题主要考查了归纳推理,以及数列递推式,属于基础题.所谓归纳推理,就是从个别性知识推出一般性结论的推理.【编号第18题】18.(2010•黄陂区校级自主招生)中国古代数学史曾经有自己光辉灿烂的篇章,其中“杨辉三角”的发现就是十分精彩的一页.而同杨辉三角齐名的世界著名的“莱布尼茨三角形”如图所示,从莱布尼茨三角形可以看出:排在第10行从左边数第3个位置上的数值是()A. B. C. D.【考点】规律型:数字的变化类.【分析】观察发现:分子总是1,第n行的第一个数的分母就是n,第二个数的分母是第一个数的(n﹣1)倍,第三个数的分母是第二个数的分母的(3n﹣1)倍,根据这规律即可求出答案.【解答】解:根据图表的规律,则第10行从左边数第3个位置上的数是=.故选B.【点评】此题考查了数字的变化类;解题的关键是根据所给的特殊数据发现规律.【编号第19题】19.【2010春•苏州校级期中】将杨辉三角(如图(1))中的每一个数C n r都换成分数,就得到一个如图(2)所示的分数三角形,称为莱布尼茨三角形.从莱布尼茨三角形可以看出:,其中x=r+1.【考点】进行简单的合情推理.【分析】这是一个考查归纳推理的题目,解题的关键是仔细观察图中给出的莱布尼茨三角形,并从三解数阵中,找出行与行之间数的关系,探究规律并其表示出来.【解析】:观察图中给出的莱布尼茨三角形,及给定的关系式:,我们可以知道,在上述关系式中:第一项是第n行的第r个数;第二项是第n行的第x个数第二项是第n﹣1行的第x个数分析第一项与第三项的关系,易得第二项是第n行的第r+1个数故x=r+1,故答案为:r+1【点评】这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果.【编号第20题】20.(2010•黄陂区校级自主招生)中国古代数学史曾经有自己光辉灿烂的篇章,其中“杨辉三角”的发现就是十分精彩的一页.而同杨辉三角齐名的世界著名的“莱布尼茨三角形”如图所示,从莱布尼茨三角形可以看出:排在第10行从左边数第3个位置上的数值是()A. B. C. D.【考点】规律型:数字的变化类.【分析】观察发现:分子总是1,第n行的第一个数的分母就是n,第二个数的分母是第一个数的(n﹣1)倍,第三个数的分母是第二个数的分母的(3n﹣1)倍,根据这规律即可求出答案.【解析】解根据图表的规律,则第10行从左边数第3个位置上的数是=.故选B.【点评】此题考查了数字的变化类;解题的关键是根据所给的特殊数据发现规律.【编号第21题】21.【2016•广州一模】以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×22014【考点】归纳推理.【分析】数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论【解析】:由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,…第n行的第一个数为:(n+1)×2n﹣2,第2016行只有M,则M=(1+2016)•22014=2017×22014故选:B.【点评】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.【编号第22题】20.【2016•怀化二模】以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.该表由若干行数字组成,第一行共有2016个数字,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2016×22015B.2016×22014C.2017×22015D.2017×22014【考点】数列递推式.【分析】由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,可得:第n行的第一个数为:(n+1)×2n﹣2,即可得出.【解析】:由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,…第n行的第一个数为:(n+1)×2n﹣2,第2016行只有M,则M=(1+2016)•22014=2017×22014,故选:D.【点评】本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.【编号第23题】21.【2016春•宁波期末】以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.1 2 3 4 5 …2013 2014 2015 20163 5 7 9 …4027 4029 40318 12 16 …8056 806020 28 (16116)该表由若干数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×22014【考点】归纳推理.【分析】由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,可得:第n行的第一个数为:(n+1)×2n﹣2,即可得出.【解析】:由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,…第n行的第一个数为:(n+1)×2n﹣2,第2016行只有M,则M=(1+2016)•22014=2017×22014,故选:B【点评】本题考查了等差和等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.7、宝塔问题【编号第24题】22.【2016•上海校级模拟】明代程大位《算法统宗》卷10中有题:“远望巍巍塔七层,红灯点点倍加增,共灯三百八十一,请问尖头儿盏灯?”你的答案是()A.2盏B.3盏C.4盏D.7盏【考点】等比数列的前n项和.【分析】利用等比数列的求和公式即可得出.【解析】:设每层塔的灯盏数为a n,数列{a n}是公比为2的等比数列.由题意可得:,解得a1=3,故选:B.【点评】本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题.【编号第25题】23.【2016•河南二模】在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.6【考点】等比数列的前n项和.【分析】由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得.【解析】:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,所以由等比数列的求和公式可得=381,解得a=3,所以顶层有3盏灯,故选:B.【点评】本题考查等比数列的求和公式,由题意构造等比数列是解决问题的关键,属基础题.【编号第26题】24.【2015秋•江西校级月考】《算法统宗》是中国古代数学名著,由明代数学家程大位编著.《算法统宗》对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有九節竹一莖,為因盛米不均平;下頭三節三升九,上梢四節貯三升;唯有中間二節竹,要將米數次第盛;若是先生能算法,也教算得到天明!大意是:用一根9节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端4节可盛米3升.要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出中间两节的容积为()A.2.1升B.2.2升C.2.3升D.2.4升【考点】等差数列的通项公式.【分析】要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d升,下端第一节盛米a1升,由等差数列通项公式及前n项和公式列出方程组求出a1,d,由此能求出中间两节可盛米的容积.【解析】:要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d升,下端第一节盛米a1升,由题意得,解得a1=1.4,d=﹣0.1,所以中间两节可盛米的容积为:a4+a5=(a1+3d)+(a1+4d)=2a1+7d=2.8﹣0.7=2.1(升).故选:A.【点评】本题考查等差数列在生产生活中的实际应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.【编号第27题】25.我国数学史上有一部堪与欧几里得《几何原本》媲美的书,这就是历来被尊为算经之首的《九章算术》,其中卷第七《盈不足》有一道关于等比数列求和试题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”其意思是:今有蒲生1日,长3尺.莞生1日,长1尺.蒲的生长逐日减其一半,莞的生长逐日增加1倍,问几日蒲(水生植物名)、莞(植物名)长度相等.试估计3日蒲、莞长度相等(结果采取“只入不舍”原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)【考点】等比数列的前n项和;对数的运算性质.【分析】设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.利用等比数列的前n项和公式及其对数的运算性质即可得出.【解析】:设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则A n=,B n=,令=,化为:2n+=7,解得2n=6,2n=1(舍去).所以n==1+≈2.6.取n=3.所以估计3日蒲、莞长度相等,故答案为:3.【点评】本题考查了等比数列的通项公式及其前n项和公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.。
数列的概念专题(有答案)百度文库

一、数列的概念选择题1.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,1112()nnn S S S S 恒成立,则15S 等于( )A .210B .211C .224D .2252.已知数列{}n a 满足12a =,111n na a +=-,则2018a =( ). A .2B .12 C .1-D .12-3.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯B .20191010⨯C .20202020⨯D .20192019⨯4.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+5.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .56.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-7.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a = C .1024是三角形数 D .123111121n n a a a a n +++⋯+=+ 8.已知数列{}n a 满足()()*622,6,6n n p n n a n pn -⎧--≤=∈⎨>⎩N ,且对任意的*n ∈N 都有1n n a a +>,则实数p 的取值范围是( )A .71,4⎛⎫⎪⎝⎭B .101,7⎛⎫⎪⎝⎭C .()1,2D .10,27⎛⎫⎪⎝⎭9.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1B .3C .2D .3-10.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( )A .1-B .12C .1D .211.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23 D .21112.已知数列{}n a 的首项为2,且数列{}n a 满足111n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( ) A .504B .294C .294-D .504-13.数列{}n a 满足12a =,1111n n n a a a ++-=+,则2019a =( ) A .3-B .12-C .13D .214.已知数列{}n a 的前n 项和为n S ,若*1n S n N n =∈,,则2a =( ) A .12-B .16-C .16 D .1215.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .85233n⨯- B .185233n -⨯- C .85433n⨯-D .185433n -⨯- 16.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则645a ,等于( )12345678910A .2019B .2020C .2021D .202217.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648B .722C .800D .88218.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),()*3n n N≥∈,,此数列在现代物理及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3B .2C .1D .019.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-20.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .11二、多选题21.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 22.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6523.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T24.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}n a 是等方差数列B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列25.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列26.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12d =B .12d =-C .918S =D .936S =27.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值28.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥29.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =30.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <31.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列32.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d < C .80a = D .n S 的最大值是8S 或者9S33.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+34.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项35.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.D 解析:D 【分析】利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】 解:结合1112()nnn S S S S 可知,11122n n n S S S a +-+-=,得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,所以11515()15(291)1522522a a S ++===, 故选:D . 【点睛】本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.2.B解析:B 【分析】利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,111n na a +=-,且12a =, 211112a a ∴=-=, 3211121a a =-=-=- , ()41311112a a a =-=--== ∴数列{}n a 是以3为周期的周期数列,201867232=⨯+,2018212a a ∴==.故选:B 【点睛】本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.3.B解析:B 【分析】由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()20201201912019123 (2019201910102)a a +-=++++==⨯.故选:B.【点睛】本题考查累加法,重点考查计算能力,属于基础题型.4.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅,23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.5.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a5435a a a故选:B 【点睛】本题考查了利用数列的递推关系求项,属于简单题6.C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.7.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确;令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.D解析:D 【分析】根据题意,得到数列是增数列,结合通项公式,列出不等式组求解,即可得出结果. 【详解】因为对任意的*n ∈N 都有1n n a a +>, 则数列{}n a 单调递增; 又()()*622,6,6n n p n n a n pn -⎧--≤=∈⎨>⎩N ,所以只需67201p p a a ->⎧⎪>⎨⎪<⎩,即21106p p p p<⎧⎪>⎨⎪-<⎩,解得1027p <<. 故选:D. 【点睛】本题主要考查由数列的单调性求参数,属于基础题型.9.C解析:C 【分析】根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得2019a 的值.【详解】数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=-当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a == 故选:C 【点睛】本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.10.B解析:B 【分析】通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =--,3211121a a =-=-=-,4311112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥85212a a a ∴===, 故选:B. 【点睛】本题考查数列的周期性,考查递推公式的应用,是基础题.11.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.12.C解析:C 【分析】根据递推公式,算出数列前4项,确定数列周期,即可求出结果. 【详解】∵12a =,111n n n a a a +-=+,∴213a =,311131213a -==-+,41123112a --==--+, 又121111111111n n n n n n nn a a a a a a a a +++---+===--+++,所以421n n n a a a ++=-=, ∴数列{}n a 的周期为4,且123476a a a a +++=-, ∵10084252÷=,∴100872522946S ⎛⎫=⨯-=- ⎪⎝⎭. 故选:C.【点睛】 本题主要考查数列周期性的应用,属于常考题型.13.B解析:B【分析】由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可.【详解】 由1111n n n a a a ++-=+,可得111n n n a a a ++=-, 由12a =,可得23a =-,312a =-,413a =,52a =, 由15a a =,可知数列{}n a 是周期数列,周期为4, 所以2019312a a ==-. 故选:B. 14.A解析:A【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===, 因为21212S a a =+=,所以211122a =-=-.故选:A15.D解析:D【分析】取特殊值即可求解.【详解】当1n =时,11a =,显然AC 不正确,当2n =时,21459a a =+=,显然B 不符合,D 符合故选:D16.C解析:C【分析】根据题目中已知数据,进行归总结,得到一般性结论,即可求得结果.【详解】根据题意,第1行第1列的数为1,此时111(11)112a ⨯-=+=,, 第2行第1列的数为2,此时212(21)122a ⨯-=+=,, 第3行第1列的数为4 ,此时313(31)142a ⨯-=+=,, 据此分析可得:第64行第1列的数为64164(641)120172a ⨯-=+=,,则6452021a =,, 故选:C.17.C解析:C【分析】由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:222n a n =,即可得出.【详解】由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:222n a n =.则此数列第40项为2220800⨯=.故选:C18.A解析:A【分析】根据条件得出数列{}n b 的周期即可.【详解】由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……则可得到周期为6,所以b 2020=b 4=3,故选:A19.B解析:B【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得 21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和,则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++, 所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B【点睛】 关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.20.A解析:A【分析】直接将6n =代入通项公式可得结果.【详解】因为()()211n n a n =--,所以626(1)(61)35a =--=.故选:A【点睛】本题考查了根据通项公式求数列的项,属于基础题. 二、多选题21.ABD【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确.【详解】依题意可知,,,,,,,,故正确;,所以,故正确;由,,,,,,可得,故不解析:ABD【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确.【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确;7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确; 由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确; 2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-, 所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+-20192020a a =, 所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD.【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.22.ABC【分析】利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果.【详解】数列满足,,依次取代入计算得,,,,,因此继续下去会循环解析:ABC【分析】利用数列{}n a 满足的递推关系及135a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果.【详解】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得, 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,,,5555. 故选:ABC.【点睛】本题考查了数列的递推公式的应用和周期数列,属于基础题. 23.AD【分析】分类讨论大于1的情况,得出符合题意的一项.【详解】①, 与题设矛盾.②符合题意.③与题设矛盾.④ 与题设矛盾.得,则的最大值为.B ,C ,错误.故选:AD.【点睛】解析:AD【分析】分类讨论67,a a 大于1的情况,得出符合题意的一项.【详解】①671,1a a >>, 与题设67101a a -<-矛盾. ②671,1,a a ><符合题意.③671,1,a a <<与题设67101a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.得671,1,01a a q ><<<,则n T 的最大值为6T .∴B ,C ,错误.故选:AD.【点睛】考查等比数列的性质及概念. 补充:等比数列的通项公式:()1*1n n a a q n N -=∈. 24.BD【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故解析:BD【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误; 对于B ,数列(){}1n -中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}2n 中,()()22221112234n n n n n a a ----=-=⨯不是常数,{}2n ∴不是等方差数列,故C 错误;对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD.【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.25.BCD【分析】利用等差等比数列的定义及性质对选项判断得解.【详解】选项A: ,得是等差数列,当时不是等比数列,故错;选项B: ,,得是等差数列,故对;选项C: ,,当时也成立,是等比数列解析:BCD【分析】利用等差等比数列的定义及性质对选项判断得解.【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错;选项B: 2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11n n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对;故选:BCD【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.26.BD【分析】由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B .【详解】因为,所以.因为,,所以公差.故选:BD解析:BD【分析】由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B .【详解】因为1937538a a a a +=+=+=,所以()1999983622a a S +⨯===. 因为35a =,73a =,所以公差731732a a d -==--. 故选:BD27.AC【分析】先根据题意得等差数列的公差,进而计算即可得答案.【详解】解:设等差数列的公差为,则,解得.所以,,,所以当且仅当或时,取得最大值.故选:AC【点睛】本题考查等差数列的解析:AC【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案.【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=,所以当且仅当10n =或11时,n S 取得最大值.故选:AC【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题.等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;28.AB【分析】根据等差数列的性质及可分析出结果.【详解】因为等差数列中,所以,又,所以,所以,,故AB 正确,C 错误;因为,故D 错误,故选:AB【点睛】关键点睛:本题突破口在于由解析:AB【分析】根据等差数列的性质及717S S =可分析出结果.【详解】因为等差数列中717S S =,所以89161712135()0a a a a a a ++++=+=, 又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.29.BCD【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解.【详解】设等差数列的公差为,由题意,,所以,故A 错误;所以,所以,故B 正确;因为,所以当解析:BCD【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解.【详解】设等差数列{}n a 的公差为d , 由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2211168642n n n a n d n n n S -=+=-+=--+, 所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈,所以使得0n S >的最大整数15n =,故D 正确.故选:BCD.30.ABD【分析】结合等差数列的性质、前项和公式,及题中的条件,可选出答案.【详解】由,可得,故B 正确;由,可得,由,可得,所以,故等差数列是递减数列,即,故A 正确;又,所以,故C 不正确解析:ABD【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案.【详解】由67S S =,可得7670S S a -==,故B 正确;由56S S <,可得6560S S a -=>,由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <,所以()117179171702a a S a +==<,故D 正确.故选:ABD.【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 31.BCD【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误;对于B ,数列中,是常数,是等方差数解析:BCD【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误; 对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数, {(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a , 数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k a a a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k k k k k k k k a a a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD.【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.32.BD【分析】由,即,进而可得答案.【详解】解:,因为所以,,最大,故选:.【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 解析:BD【分析】由6111160S S S S =⇒-=,即950a =,进而可得答案.【详解】解:1167891011950S S a a a a a a -=++++==,因为10a >所以90a =,0d <,89S S =最大,故选:BD .【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.33.AC【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式【详解】由题可知,,即,所以等差数列的公差,所以,.故选:AC.【点睛】本题考查等差数列,考查运算求解能力.解析:AC【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-. 故选:AC.【点睛】本题考查等差数列,考查运算求解能力. 34.ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0 解析:ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,n nS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:n nS a <0,但是随着n 的增大而增大. ∴n =7时,n nS a 取得最小值. 综上可得:ABCD 都正确.故选:ABCD .【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.35.AC【分析】由已知求出数列的首项与公差,得到通项公式判断与;再求出,由的项分析的最小值.【详解】解:在递增的等差数列中,由,得,又,联立解得,,则,..故正确,错误;可得数列的解析:AC【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.【详解】解:在递增的等差数列{}n a 中,由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC .【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。
数列练习题(附答案)

数列综合题一、填空题1. 各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q= 2. 已知等差数列{a n },公差d ≠0,a 1,a 5,a 17成等比数列,则18621751a a a a a a ++++=3. 3已知数列{a n }满足S n =1+n a 41,则a n =4.已知二次函数f(x)=n(n+1)x 2-(2n+1)x+1,当n=1,2,…,12时,这些函数的图像在x 轴上截得的线段长度之和为5.已知数列{a n }的通项公式为a n =log (n+1)(n+2),则它的前n 项之积为6.数列{(-1)n-1n 2}的前n 项之和为7.一种堆垛方式,最高一层2个物品,第二层6个物品,第三层12个物品,第四层20个物品,第五层30个物品,…,当堆到第n 层时的物品的个数为8.已知数列1,1,2,…,它的各项由一个等比数列与一个首项为0的等差数列的对应项相加而得到,则该数列前10项之和为9.在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为10.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为 11.设等差数列{a n }的前n 项和是S n ,若a 5=20-a 16,则S 20=___________. 12.若{a n }是等比数列,a 4· a 7= -512,a 3+ a 8=124,且公比q 为整数,则a 10等于___________.13.在数列{a n }中,a 1=1,当n ≥2时,a 1 a 2… a n =n 2恒成立,则a 3+ a 5=___________. 14.设{a n }是首项为1的正项数列,且(n +1)21+n a -na 2n +a n +1 a n =0(n =1,2,3,…),则它的通项公式是a n =___________. 二.解答题1.已知数列{a n }的通项公式为a n =3n +2n +(2n-1),求前n 项和2.已知数列{a n }是公差d 不为零的等差数列,数列{a bn }是公比为q 的等比数列, b 1=1,b 2=10,b 3=46,,求公比q 及bn 。
数列常考题型及解析大题

数列常考题型及解析大题数列是数学中常见的概念,也是高考数学中常考的内容之一。
下面列举了一些数列的常考题型及解析大题:1. 等差数列题型:等差数列是指一个数列中,从第二项起,每一项与它的前一项的差相等的数列。
常见的等差数列题型有: - 求等差数列的第n项;- 求等差数列的前n项和;- 求满足条件的等差数列的项数。
解题方法:- 如果已知等差数列的公差和首项,可以利用递推公式an = a1 + (n-1)d来求解;- 如果已知等差数列的首项和末项,可以利用求和公式Sn = n/2(a1 + an)来求解。
2. 等比数列题型:等比数列是指一个数列中,从第二项起,每一项与它的前一项的比相等的数列。
常见的等比数列题型有: - 求等比数列的第n项;- 求等比数列的前n项和;- 求满足条件的等比数列的项数。
解题方法:- 如果已知等比数列的公比和首项,可以利用递推公式an = a1 * r^(n-1)来求解;- 如果已知等比数列的首项和末项,可以利用求和公式Sn = a1(1-r^n)/(1-r)来求解。
3. 通项公式的推导题型:给定一个数列的前几项,要求推导出数列的通项公式。
解题方法:- 针对等差数列,通过观察数列的规律,使用递推公式进行推导;- 针对等比数列,通过观察数列的规律,使用递推公式进行推导。
4. 综合题型:综合运用数列的知识,结合其他数学知识进行解答。
解题方法:- 根据题目中给出的条件,先推导出数列的通项公式;- 根据已知的条件,解方程组或合理运用其他数学知识,找到所需的解。
以上是数列的常考题型及解析大题,希望对您有所帮助。
高中数学数列题及答案

高中数学数列题及答案
数列是高中数学的重要内容,在高考和各种数学竞赛中都占有重要的地位。
其中,数列求和是重要的内容之一。
除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
第一种方法是利用常用求和公式求和,这是数列求和的最基本、最重要的方法。
第二种方法是乘公比错项相减,主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
数列{cn}是由数列{an}与{bn}对应项的积构成的,此类型的数列适应错位相减。
要注意按以上三种情况进行分类讨论,最后再综合成三种情况。
第三种方法是裂项相消法,这是分解与组合思想在数列求和中的具体应用。
裂项法的实质是将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
在裂项
求和时,要先观察通项类型,尤其要注意究竟是像例2一样剩下首尾两项,还是像例3一样剩下四项。
第四种方法是倒序相加法,这是推导等差数列的前n项和公式时所用的方法。
将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)。
此类型关键是抓
住数列中与首末两端等距离的两项之和相等这一特点来进行倒序相加的。
第五种方法是分组求和法。
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
在数列问题中,要学会灵活应用不同的方法加以求解。
数列 练习题

数列练习题数列练习题数列是数学中一个非常重要的概念,它在各个领域都有广泛的应用。
数列由一系列有序的数字组成,其中每个数字称为数列的项。
在数列中,每个项都有一个位置,称为项数。
数列的通项公式可以用来表示数列中任意一项的值。
在本文中,我们将通过一些练习题来巩固对数列的理解。
练习题一:等差数列1. 某等差数列的首项是3,公差是2,求该数列的第10项。
2. 某等差数列的前三项分别是1,4,7,求该数列的通项公式。
3. 某等差数列的前五项和为30,公差为3,求该数列的首项。
解答:1. 根据等差数列的通项公式an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
代入已知条件,可得a10 = 3 + (10-1)2 = 3 + 18 = 21。
2. 设该等差数列的通项公式为an = a1 + (n-1)d。
代入已知条件,可得1 = a1 + (1-1)d,4 = a1 + (2-1)d,7 = a1 + (3-1)d。
解得a1 = 1,d = 3,所以该数列的通项公式为an = 1 + (n-1)3。
3. 设该等差数列的首项为a1,前五项和为30,公差为3。
根据等差数列前n项和的公式Sn = n/2(a1 + an),代入已知条件,可得30 = 5/2(a1 + a5) = 5/2(a1 + a1 + 4d) = 5/2(2a1 + 4d) = 5/2(2a1 + 12)。
解得2a1 + 12 = 12,所以a1 = 0。
因此,该数列的首项为0。
练习题二:等比数列1. 某等比数列的首项是2,公比是3,求该数列的第5项。
2. 某等比数列的前两项分别是2,6,求该数列的通项公式。
3. 某等比数列的前三项和为21,公比为2,求该数列的首项。
解答:1. 根据等比数列的通项公式an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
代入已知条件,可得a5 = 2 * 3^(5-1) = 2 * 3^4 = 2 * 81 = 162。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学文化——数列(27题)1、“竹九节”问题【编号第1题】1.【2015秋•九江校级期末】《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共5升,下面3节的容积共4升,则第5节的容积为()A.B.C.D.【考点】等差数列的前n项和;等差数列的通项公式.【分析】由题意可得等差数列的首项和公差,由通项公式可得.【解析】:由题意可得每节的容积自上而下构成9项等差数列,且a1+a2+a3+a4=5,a9+a8+a7=4,设公差为d,则a1+a2+a3+a4=4a1+6d=5,a9+a8+a7=3a1+21d=4,两式联立可得a1=,d=,所以第5节的容积a5=a1+4d=.故选:B【点评】本题考查等差数列的通项公式和求和公式,属基础题.【编号第2题】2.【2011•湖北】《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为()A.1升B.升C.升D.升【考点】等差数列的性质.【分析】设出竹子自上而下各节的容积且为等差数列,根据上面4节的容积共3升,下面3节的容积共4升列出关于首项和公差的方程,联立即可求出首项和公差,根据求出的首项和公差,利用等差数列的通项公式即可求出第5节的容积.【解析】:设竹子自上而下各节的容积分别为:a1,a2,…,a9,且为等差数列,根据题意得:a1+a2+a3+a4=3,a7+a8+a9=4,即4a1+6d=3①,3a1+21d=4②,②×4﹣①×3得:66d=7,解得d=,把d=代入①得:a1=,则a5=+(5﹣1)=.故选B【点评】此题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,是一道中档题.2、“女子织布”问题【编号第3题】3.【2016•江西校级模拟】《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第十日所织尺数为()A.8 B.9 C.10 D.11【考点】数列的应用.【分析】由已知条件利用等差数列的前n项和公式和通项公式列出方程组,求出首项和公差,由此能求出第十日所织尺数.【解析】:设第一天织a1尺,从第二天起每天比第一天多织d尺,由已知得,解得a1=1,d=1,所以第十日所织尺数为a10=a1+9d=1+9×1=10.故选:C.【点评】本题考查等差数列的性质,考查了等差数列的前n项和,是基础的计算题.【编号第4题】4.【2015秋•日喀则市校级期末】古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30尺,该女子所需的天数至少为()A.7 B.8 C.9 D.10【考点】等比数列的前n项和.【分析】由等比数列前n项和公式求出这女子每天分别织布尺,由此利用等比数列前n 项和公式能求出要使织布的总尺数不少于30尺,该女子所需的天数至少为多少天.【解析】:设该女五第一天织布x尺,则=5,解得x=,所以前n天织布的尺数为:,由30,得2n≥187,解得n的最小值为8.故选:B.【点评】本题考查等比数列在生产生活中的实际应用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.【编号第5题】5.【2016春•东城区期末】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为()A.尺 B.尺C.尺D.尺【考点】等差数列的前n项和.【分析】利用等差数列的求和公式即可得出.【解析】:由题意可得:每天织布的量组成了等差数列{a n},a1=5(尺),S30=9×40+30=390(尺),设公差为d(尺),则30×5+=390,解得d=.故选:C.【点评】本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于基础题.【编号第6题】6.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织布的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,可求得该女子第3天所织布的尺数为.【考点】等比数列的前n项和.【分析】设这女子每天分别织布形成数列{a n}尺.则该数列{a n}为等比数列,公比q=2,其前5项和S5=5.利用等比数列的通项公式及其前n项和公式即可得出.【解析】:设这女子每天分别织布形成数列{a n}尺.则该数列{a n}为等比数列,公比q=2,其前5项和S5=5.所以,解得a1=.所以a3==.故答案为:.【点评】本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.3、“走步”问题【编号第7题】7.(2016•重庆校级模拟)《九章算术》有这样一个问题:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和为三百九十里,问第六日所走时数为()A.140 B.150 C.160 D.170【考点】等差数列的通项公式.【分析】由题意设比人从第二日起每日此前一日多走d里,第一日走a1里,由等差数列通项公式和前n项和公式求出首项和公差,由此能求出第六日所走里数.【解析】:由题意设比人从第二日起每日此前一日多走d里,第一日走a1里,则,解得a1=100,d=10,所以第六日所走里数为a6=100+50=150.故选:B.【点评】本题考查第差数列在生产生活中的实际运用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.【编号第8题】8.(2016春•普宁市校级期中)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.9日B.8日C.16日D.12日【考点】等比数列的前n项和.【分析】良马每日行的距离成等差数列,记为{a n},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5.求和即可得到答案.【解析】:由题意知,良马每日行的距离成等差数列,记为{a n},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5;设第m天相逢,则a1+a2+…+a m+b1+b2+…+b m=103m++97m+=2×1125,解得:m=9.故选:A.【点评】本题考查了等差数列在实际问题中的应用,属于基础题.【编号第9题】9.(2016•安庆二模)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为()A.24里B.12里C.6里D.3里【考点】等比数列的前n项和.【分析】由题意可知,每天走的路程里数构成以为公比的等比数列,由S6=378求得首项,再由等比数列的通项公式求得该人最后一天走的路程.【解析】:记每天走的路程里数为{a n},可知{a n}是公比的等比数列,由S6=378,得,解得:a1=192,所以,故选:C.【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.4、“分钱”问题【编号第10题】10.(2016•晋中模拟)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱C.钱D.钱【考点】等差数列的通项公式.【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a=﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=5求得a=1,则答案可求.【解析】:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,所以a=1,则a﹣2d=a﹣2×=.故选:B.【点评】本题考查等差数列的通项公式,是基础的计算题.5、两鼠穿墙题问题【编号第11题】11.(2016•松山区校级模拟)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n为前n天两只老鼠打洞长度之和,则S n=尺.【考点】数列的求和.【分析】根据题意可知,大老鼠和小老鼠打洞的距离为等比数列,根据等比数列的前n项和公式,求得S n.【解析】:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前n天打洞之和为=2n﹣1,同理,小老鼠每天打洞的距离=2﹣,所以Sn=2n﹣1+2﹣=,故答案为:=.【点评】本题考查求等比数列的前n项和公式,要认真审题,属于基础题.6、杨辉三角问题【编号第12题】12.【2010•黄州区校级二模】如图,在杨辉三角中,斜线l的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10,…,则这个数列的第21项的值为()A.66 B.220 C.78 D.286【考点】数列的应用.【分析】先对“锯齿形”的数列的奇数项找规律,求出通项公式,然后利用“锯齿形”数列的第21项即为新数列的第11项即可求出结论.【解析】:设“锯齿形”数列的奇数项构成数列{b n},由b2﹣b1=3﹣1=2,b3﹣b2=6﹣3=3,b4﹣b3=10﹣6=4,b5﹣b4=15﹣10=5,⇒b n﹣b n﹣1=n,所以可得,即,又因为“锯齿形”数列的第21项即为数列{b n}的第11项,,故选A.【点评】本题借助于杨辉三角对数列的综合应用进行考查,是道基础题,但也是易错题,当发现不了规律时就变成了难题.所以在做数列题时,要认真审题,仔细解答,避免错误.【编号第13题】13.【2011秋•青羊区校级月考】如图,在杨辉三角中,斜线l的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其n项和为S n,则S21等于()A.229 B.283 C.361 D.374【考点】归纳推理.【分析】由图中锯齿形数列排列,发现规律:奇数项的第n项可以表示成正整数的前n项和的形式,偶数项构成以3为首项,公差是1的等差数列.由此再结合等差数列的通项与求和公式,即可得到S21的值.【解析】:根据图中锯齿形数列的排列,发现a1=1,a3=3=1+2,a5=6=1+2+3,…a21=1+2+3+…+11而a2=3,a4=4,a6=5,…,a20=12所以前21项的和S21=[1+(1+2)+(1+2+3)+…+(1+2+…+11)]+(3+4+5+…+12)=(1×11+2×10+3×9+…+10×2+11)+,因此,S21=286+75=361故选C【点评】本题以杨辉三角为例,求锯齿形数列的前n项和,着重考查了等差数列的通项与求和公式和归纳推理的一般方法等知识点,属于基础题.【编号第14题】14.【2015春•黄石校级期中】如图,在杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,则数列的第10项为()A.55 B.89 C.120 D.144【考点】归纳推理.【分析】根据杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,找出规律,即可求出数列的第10项.【解析】:由题意,a1=1,a2=1,a3=2,a4=1+2=3,a5=2+3=5,a6=3+5=8,a7=5+8=13,a8=8+13=21,a9=13+21=34,a9=21+34=55.故选:A.【点评】本题是规律的归纳题,解决本题的关键是读懂题意,理清前后项的关系,比较基础.【编号第15题】15.【2009秋•浦东新区校级月考】观察如图类似杨辉三角的数表,则此表最后一个数是101×298.【考点】归纳推理;数列的应用.【分析】由第一行第一个数为1,第二行第一个数是1+2,第三行第一个数是1+2•2+3,第四行第一个数是1+3•2+3•3+4,然后猜想第n行第一数是c n﹣10•1+c n﹣11•2+c n﹣112•3+…+c n﹣1n n﹣1•n,利用倒序相加法和二项式定理的性质,即可求得结果.﹣2(n﹣1)+c n﹣1【解析】:令a n,1表示第n行的第一个数,则a1,1=1,a2,1=1+2,a3,1=1+2+2+3=1+2•2+3,a4,1=1+2+2+3+2+3+3+4=1+3•2+3•3+4,…所以a n,1=c n﹣10•1+c n﹣11•2+c n﹣112•3+…+c n﹣1n﹣2(n﹣1)+c n﹣1n﹣1•n,所以a100,1=c990•1+c991•2+c993•3+…+c9999•100,a100,1=c9999•100+c9998•99+c9997•98+…+c990•1,∵2a100,1=101(c990+c991+c992+…+c9999)=101•298,故答案为101•298.【点评】此题是个中档题.本题是一道找规律的题目,要求学生的通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.此题要根据已知的数据发现各行的第一个数和第二个数的规律.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.【编号第16题】16.【2011•江苏模拟】如图,在杨辉三角形中,斜线l的上方从1按箭头方向可以构成一个“锯齿形”的数列{a n}:1,3,3,4,6,5,10,…,记其前n项和为S n,则S19的值为283.【考点】数列的求和.【分析】从杨辉三角的生成过程,C n m﹣1+C n m=C n m,对该数列分奇偶讨论,求出数列的通项公式,解决S19的值【解析】:从杨辉三角形的生成过程,可以得到这个数列的通项公式a n;当n为偶数时,a n+2=a n+1,所以a n是以3为首项,1为公差的等差数列,所以,n为奇数时,a n+2=a n+a n﹣1(n≥3),即所以a5﹣a3=3,a7﹣a5=4…,所以而a1=1满足上式故n为奇数是,所以S19=(a1+a3+…a19)+(a2+a4+…+a18)==220+63=283故答案为:283.【点评】从杨辉三角形成的过程,得出数列的通项公式是难点和关键,题目比较新,属中档题.【编号第17题】17.古希腊毕达哥拉斯学派研究了“多边形数”,人们把多边形数推广到空间,研究了“四面体数”图①是第一至第五个四面体数.这些数可在杨辉三角形(图②)找到由此推出第6个四面体数为56(用数字作答);第n个四面体数为n(n+1)(n+2).【考点】归纳推理.【分析】通过观察前几个图形中顶点的个数得,每一个四面体中每层图形的顶点的个数都可以看成是一个等差数列的前几项的和,再利用等差数列的求和公式即可解决问题.【解析】:第一个四面体数为:1,第二个四面体数为:1+(1+2),第三个四面体数为:1+(1+2)+(1+2+3),第四个四面体数为:1+(1+2)+(1+2+3)+(1+2+3+4),…由此归纳可得:第n个三角形数为:1+(1+2)+(1+2+3)+…+(1+2+3+…+n)=n(n+1)(n+2),当n=6时,n(n+1)(n+2)=56,故答案为:56,n(n+1)(n+2)【点评】本题主要考查了归纳推理,以及数列递推式,属于基础题.所谓归纳推理,就是从个别性知识推出一般性结论的推理.【编号第18题】18.(2010•黄陂区校级自主招生)中国古代数学史曾经有自己光辉灿烂的篇章,其中“杨辉三角”的发现就是十分精彩的一页.而同杨辉三角齐名的世界著名的“莱布尼茨三角形”如图所示,从莱布尼茨三角形可以看出:排在第10行从左边数第3个位置上的数值是()A. B. C. D.【考点】规律型:数字的变化类.【分析】观察发现:分子总是1,第n行的第一个数的分母就是n,第二个数的分母是第一个数的(n﹣1)倍,第三个数的分母是第二个数的分母的(3n﹣1)倍,根据这规律即可求出答案.【解答】解:根据图表的规律,则第10行从左边数第3个位置上的数是=.故选B.【点评】此题考查了数字的变化类;解题的关键是根据所给的特殊数据发现规律.【编号第19题】19.【2010春•苏州校级期中】将杨辉三角(如图(1))中的每一个数C n r都换成分数,就得到一个如图(2)所示的分数三角形,称为莱布尼茨三角形.从莱布尼茨三角形可以看出:,其中x=r+1.【考点】进行简单的合情推理.【分析】这是一个考查归纳推理的题目,解题的关键是仔细观察图中给出的莱布尼茨三角形,并从三解数阵中,找出行与行之间数的关系,探究规律并其表示出来.【解析】:观察图中给出的莱布尼茨三角形,及给定的关系式:,我们可以知道,在上述关系式中:第一项是第n行的第r个数;第二项是第n行的第x个数第二项是第n﹣1行的第x个数分析第一项与第三项的关系,易得第二项是第n行的第r+1个数故x=r+1,故答案为:r+1【点评】这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果.【编号第20题】20.(2010•黄陂区校级自主招生)中国古代数学史曾经有自己光辉灿烂的篇章,其中“杨辉三角”的发现就是十分精彩的一页.而同杨辉三角齐名的世界著名的“莱布尼茨三角形”如图所示,从莱布尼茨三角形可以看出:排在第10行从左边数第3个位置上的数值是()A. B. C. D.【考点】规律型:数字的变化类.【分析】观察发现:分子总是1,第n行的第一个数的分母就是n,第二个数的分母是第一个数的(n﹣1)倍,第三个数的分母是第二个数的分母的(3n﹣1)倍,根据这规律即可求出答案.【解析】解根据图表的规律,则第10行从左边数第3个位置上的数是=.故选B.【点评】此题考查了数字的变化类;解题的关键是根据所给的特殊数据发现规律.【编号第21题】21.【2016•广州一模】以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×22014【考点】归纳推理.【分析】数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论【解析】:由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,…第n行的第一个数为:(n+1)×2n﹣2,第2016行只有M,则M=(1+2016)•22014=2017×22014故选:B.【点评】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.【编号第22题】20.【2016•怀化二模】以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.该表由若干行数字组成,第一行共有2016个数字,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2016×22015B.2016×22014C.2017×22015D.2017×22014【考点】数列递推式.【分析】由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,可得:第n行的第一个数为:(n+1)×2n﹣2,即可得出.【解析】:由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,…第n行的第一个数为:(n+1)×2n﹣2,第2016行只有M,则M=(1+2016)•22014=2017×22014,故选:D.【点评】本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.【编号第23题】21.【2016春•宁波期末】以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.1 2 3 4 5 …2013 2014 2015 20163 5 7 9 …4027 4029 40318 12 16 …8056 806020 28 (16116)该表由若干数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×22014【考点】归纳推理.【分析】由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,可得:第n行的第一个数为:(n+1)×2n﹣2,即可得出.【解析】:由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,…第n行的第一个数为:(n+1)×2n﹣2,第2016行只有M,则M=(1+2016)•22014=2017×22014,故选:B【点评】本题考查了等差和等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.7、宝塔问题【编号第24题】22.【2016•上海校级模拟】明代程大位《算法统宗》卷10中有题:“远望巍巍塔七层,红灯点点倍加增,共灯三百八十一,请问尖头儿盏灯?”你的答案是()A.2盏B.3盏C.4盏D.7盏【考点】等比数列的前n项和.【分析】利用等比数列的求和公式即可得出.【解析】:设每层塔的灯盏数为a n,数列{a n}是公比为2的等比数列.由题意可得:,解得a1=3,故选:B.【点评】本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题.【编号第25题】23.【2016•河南二模】在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.6【考点】等比数列的前n项和.【分析】由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得.【解析】:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,所以由等比数列的求和公式可得=381,解得a=3,所以顶层有3盏灯,故选:B.【点评】本题考查等比数列的求和公式,由题意构造等比数列是解决问题的关键,属基础题.【编号第26题】24.【2015秋•江西校级月考】《算法统宗》是中国古代数学名著,由明代数学家程大位编著.《算法统宗》对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有九節竹一莖,為因盛米不均平;下頭三節三升九,上梢四節貯三升;唯有中間二節竹,要將米數次第盛;若是先生能算法,也教算得到天明!大意是:用一根9节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端4节可盛米3升.要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出中间两节的容积为()A.2.1升B.2.2升C.2.3升D.2.4升【考点】等差数列的通项公式.【分析】要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d升,下端第一节盛米a1升,由等差数列通项公式及前n项和公式列出方程组求出a1,d,由此能求出中间两节可盛米的容积.【解析】:要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d升,下端第一节盛米a1升,由题意得,解得a1=1.4,d=﹣0.1,所以中间两节可盛米的容积为:a4+a5=(a1+3d)+(a1+4d)=2a1+7d=2.8﹣0.7=2.1(升).故选:A.【点评】本题考查等差数列在生产生活中的实际应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.【编号第27题】25.我国数学史上有一部堪与欧几里得《几何原本》媲美的书,这就是历来被尊为算经之首的《九章算术》,其中卷第七《盈不足》有一道关于等比数列求和试题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”其意思是:今有蒲生1日,长3尺.莞生1日,长1尺.蒲的生长逐日减其一半,莞的生长逐日增加1倍,问几日蒲(水生植物名)、莞(植物名)长度相等.试估计3日蒲、莞长度相等(结果采取“只入不舍”原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)【考点】等比数列的前n项和;对数的运算性质.【分析】设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.利用等比数列的前n项和公式及其对数的运算性质即可得出.【解析】:设蒲(水生植物名)的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n.莞(植物名)的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则A n=,B n=,令=,化为:2n+=7,解得2n=6,2n=1(舍去).所以n==1+≈2.6.取n=3.所以估计3日蒲、莞长度相等,故答案为:3.【点评】本题考查了等比数列的通项公式及其前n项和公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.。