最新专题7.1 与数学文化相关的数学考题(解析版)
平面直角坐标系(1)-2020-2021学年七年级数学下册尖子生同步培优题典(解析版)【人教版】

2020-2021学年七年级数学下册尖子生同步培优题典【人教版】专题7.1平面直角坐标系(1)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.一.选择题(共10小题)1.(2020春•天津期末)若电影院中“5排8号”的位置,记作(5,8),丽丽的电影票是“3排1号”.则下列有序数对表示丽丽在电影院位置正确的是()A.(3,1)B.(1,3)C.(13,31)D.(31,13)【分析】由题意可得:第一个数字表示“排”,第二个数字表示“号”,据此即可解答问题.【解析】∵“5排8号”的位置,记作(5,8),∴丽丽的电影票是“3排1号”,记作(3,1).故选:A.2.(2020春•津南区校级月考)如图是象棋残局,已知棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2)C.(1,3)D.(0,3)【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题.【解析】由题意可得,建立的平面直角坐标系如右图所示,则表示棋子“炮”的点的坐标为(1,3),故选:C.3.(2019秋•罗湖区校级期末)若(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为()A.(2,3)B.(3,2)C.(2,1)D.(3,3)【分析】理清有序实数对与教室座位的对应关系,据此说明其它实数对表示的意义.【解析】类比(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为(3,2).故选:B.4.(2020春•泸县期末)如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于()A.(1,3)B.(5,3)C.(6,1)D.(8,2)【分析】直接利用已知点坐标确定平面直角坐标系,进而得出答案.【解析】如图所示:“马”位于(6,1).故选:C.5.(2020•宜昌)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是()A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【分析】根据坐标确定位置,从有序数对的两个数的实际意义考虑解答.【解析】根据题意画出图形可得:A、小李现在位置为第1排第4列,此选项说法错误;B、小张现在位置为第3排第2列,此选项说法正确;C、小王现在位置为第2排第3列,此选项说法错误;D、小谢现在位置为第4排第4列,此选项说法错误;故选:B.6.(2020春•海淀区校级期末)如图是利用平面直角坐标系画出的天安门附近的部分建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示弘义阁的点的坐标为(﹣1,﹣1),表示本仁殿的点的坐标为(2,﹣2),则表示中福海商店的点的坐标是()A.(﹣4,﹣3)B.(﹣2,﹣1)C.(﹣3,﹣4)D.(﹣1,﹣2)【分析】根据弘义阁的点的坐标和本仁殿的点的坐标,建立平面直角坐标,进而得出中福海商店的点的坐标.【解析】根据题意可建立如下坐标系:由坐标系可知,表示中福海商店的点的坐标是(﹣4,﹣3),故选:A.7.(2020春•集贤县期末)间操时,小红,小华和小军的位置如图,小华对小红说:“如果我的位置用(0,0)表示,小军的位置用(2,3)表示,那么你的位置可以表示成()A.(6,4 )B.(2,3)C.(3,2)D.(3,3)【分析】以小华的位置为坐标原点建立平面直角坐标系,然后写出小红的位置即可.【解析】建立平面直角坐标系如图所示,小红的位置可以表示成(3,2).故选:C.8.(2020•昌平区二模)昌平公园建成于1990年,公园内有一个占地10000平方米的静明湖,另外建有弘文阁、碑亭、文节亭、诗田亭、逸步桥、牌楼等园林景观及古建筑.如图,分别以正东、正北方向为x 轴、y轴建立平面直角坐标系,如果表示文节亭的点的坐标为(2,0),表示园中园的点的坐标为(﹣1,2),则表示弘文阁所在的点的坐标为()A.(﹣2,﹣3)B.(﹣2,﹣2)C.(﹣3,﹣3)D.(﹣3,﹣4)【分析】直接利用文节亭的点的坐标为(2,0),进而得出原点位置进而得出答案.【解析】如图所示:弘文阁所在的点的坐标为:(﹣2,﹣2).故选:B.9.(2020春•官渡区期末)棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是局象棋残局,若在中国象棋盘上建立平面直角坐标系,使表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示“炮”的点的坐标为()A.(1,3)B.(3,1)C.(2,3)D.(1,2)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解析】如图所示:“炮”的点的坐标为(1,3).故选:A.10.(2020秋•河南期中)如图所示的是一所学校的平面示意图,若用(3,2)表示教学楼,(4,0)表示旗杆,则实验楼的位置可表示成()A.(1,﹣2)B.(﹣2,1)C.(﹣3,2)D.(2,﹣3)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解析】如图所示:实验楼的位置可表示成(2,﹣3).故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•市中区期末)某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作(3,5).【分析】由于将“7排4号”记作(7,4),根据这个规定即可确定3排5表示的点坐标.【解析】∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).12.(2019春•临海市期末)如果将电影票上“6排3号”简记为(6,3),那么“10排12号”可简记为(10,12).【分析】根据第一个数表示排数,第二个数表示号数解答.【解析】∵“6排3号”简记为(6,3),∴“10排12号”可表示为(10,12).故答案为:(10,12).13.(2019秋•商河县期末)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”的坐标是(4,1),那么“帅”的坐标为(0,﹣1).【分析】直接利用“相”的坐标是(4,1),得出原点位置,进而得出“帅”的坐标.【解析】如图所示:“帅”的坐标为(0,﹣1).故答案为:(0,﹣1).14.(2019秋•上城区期末)如图,已知雷达探测器在一次探测中发现了两个目标A、B,其中A的位置可以表示成(60°,6),那么B可以表示为(150°,4),A与B的距离为2√13.【分析】根据度数表示横坐标,圆圈数表示纵坐标,可得答案,再利用勾股定理得出AB的长.【解析】B可以表示为(150°,4),由题意可得:√42+62=2√13.故答案为:(150°,4),2√13.15.(2018秋•杏花岭区校级期中)若电影院的5排3号记为(5,3),那么3排5号记为(3,5).【分析】明确对应关系,排在前,号在后,然后解答.【解析】电影院中的5排3号记为(5,3),则3排5号记为(3,5).故答案为:(3,5).16.(2020春•红河州期末)如图,这是一所学校的部分平面示意图,教学楼、实验楼和图书馆的位置都在边长为1的小正方形网格线的交点处,若教学楼位置的坐标是(﹣1,1),实验楼位置的坐标是(3,﹣2),则图书馆位置的坐标是(2,3).【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【解析】如图所示:图书馆位置的坐标是(2,3).故答案为:(2,3).17.(2020秋•郫都区期中)如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),B的位置为(4,210°),则C的位置为(4,150°).【分析】根据题意写出坐标即可.【解析】由题意,点C的位置为(4,150°).故答案为(4,150°).18.(2020春•海淀区校级期末)“健步走”越来越受到人们的喜爱.一个健步走小组将自己的活动场地定在奥林匹克公园(路线:森林公园﹣玲珑塔﹣国家体育场﹣水立方),如图,假设在奥林匹克公园设计图上规定玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,2),则终点水立方的坐标为(﹣2,﹣4).【分析】先根据玲珑塔的坐标和森林公园的坐标建立平面直角坐标系,再结合坐标系可得答案.【解析】根据题意,可建立如图所示平面直角坐标系,则水立方的坐标为(﹣2,﹣4),故答案为:(﹣2,﹣4).三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.如图,在一台雷达的屏幕上的A,B,C,D,E各点处同时发现可疑目标,如果你是一名雷达兵,你如何向上级报告各目标所在的位置(图中的1个单位长度表示10千米)?【分析】根据坐标的第一个数表示到中心的距离,第二个数表示角度,分别写出各目标的坐标即可.【解析】A(20,60°),B(30,30°),C(40,0°),D(30,120°),E(40,240°).20.(2020春•永年区期末)如图,在边长为1个单位长度的小正方形组成的网格中,小明家可用坐标(﹣1,2)表示,汽车站可用坐标(3,﹣1)表示.(1)建立平面直角坐标系,画出x轴和y轴;(2)某星期日早晨,小明同学从家出发,沿(0,1)→(﹣2,﹣1)→(﹣1,﹣2)→(0,﹣1)→(1,0)→(2,﹣1)→(2,2)的路线转了一圈,又回到家里,写出他路上经过的地方;(3)连接他在上一问中经过的地点,你得到了什么图形?【分析】(1)根据平面直角坐标系的定义建立即可;(2)根据平面直角坐标系找出各点的位置,然后连接即可,再写出各地方的名称;(3)根据图形形状解答.【解析】(1)如图,建立平面直角坐标系;(2)小明家﹣学校﹣奶奶家﹣宠物店﹣医院﹣公园﹣邮局﹣游乐场﹣消防站﹣小明家;(3)连接他在上一问中经过的地点,得到“箭头”状的图形.21.(2019春•台江区期中)如图是某市部分路段简图,若以超市为原点.(1)请写出文化宫的坐标.(2)李红家的坐标为(1,﹣1),请在图中标出李红家的位置.(3)从超市到市场的一条线路可用(0,0)→(1,0)→(2,0)→(3,0)→(3,1)表示,类比上面的线路表示法,请你写出一条李红家到文化宫的路线图.【分析】(1)根据超市为原点,横坐标向右为正,向左为负,纵坐标向上为正,向下为负,可得文化宫的坐标.(2)根据题中规定的原点及横纵坐标的正负,在图中标出李红家的位置即可.(3)结合(2)中图上所标信息写出答案即可.【解析】(1)以超市为原点,横坐标向右为正,向左为负,纵坐标向上为正,向下为负,可得文化宫的坐标为:(﹣1,2).(2)李红家的坐标为(1,﹣1),在图中标出李红家的位置如下:(3)一条李红家到文化宫的路线图如下:(1,﹣1)→(1,0)→(1,1)→(1,2)→(0,2)→(﹣1,2).22.(2019春•滦南县期中)如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的地方是哪个?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.【分析】(1)由点C为OP的中点,可得出OC=2km,结合OA=2km,即可得出距小明家距离相同的是学校和公园;(2)观察图形,根据OA,OB,OP的长度及图中各角度,即可得出结论.【解析】(1)∵点C为OP的中点,∴OC=12OP=12×4=2km,∵OA=2km,∴距小明家距离相同的是学校和公园.(2)学校在小明家北偏东45°的方向上,且到小明家的距离为2km,商场在小明家北偏西30°的方向上,且到小明家的距离为3.5km,停车场在小明家南偏东60°的方向上,且到小明家的距离为4km.23.(2019春•大兴区期末)小莹、小亮准备参加中考模拟考试,学校规定考生每人占一个桌子,按考号人座.考号按如图方式贴在桌子上,请回答下面的问题:(1)小莹的考号是13,小亮的考号是24,在图中对应的“□”中,请用他们的名字分别标出他们在考场内座位的位置;(2)某同学座位的位置在第a行和第b列的相交的“□”处,用数对表示是(a,b),那么小莹的位置用数对表示是(1,3),小亮的位置用数对表示是(1,4).【分析】(1)按照数字排列顺序可得答案;(2)第一个数字表示行、第2个数字表示列,据此可得答案.【解析】(1)小莹和小亮的位置如图所示.(2)小莹的位置用数对表示是(1,3),小亮的位置用数对表示是(1,4),故答案为:1,3;1,4.24.(2018秋•鄠邑区期末)中国棋盘中蕴含着平面直角坐标系,如图所示是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形对角线走.例如:图中“马”所在位置可以直接走到点A、B处.(1)如果“相”位于点(4,2),“帅”位于点(0,0),则“马”所在点的坐标为(﹣3,0),点D的坐标为(3,1).(2)若“马”的位置在C点,为了到达“D”点,请按“马”走的规则,写出一种你认为合理的行走路线,(在答题纸图中标出行走路线即可).【分析】(1)由“相”与“帅”的坐标,可求“马”与D的坐标;(2)路线不唯一,标出一种即可.【解析】(1)由“相”位于点(4,2),“帅”位于点(0,0),∴“马”的坐标为(﹣3,0),D的坐标(3,1),故答案为(﹣3,0),(3,1);(2)如图所示:。
数学文化与三角函数(解析版)

五、数学文化与三角函数例54. 第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan ⎝⎛⎭⎫θ+π4=________.【解析】 依题意得大、小正方形的边长分别是1,5,于是有5sin θ-5cos θ=1⎝⎛⎭⎫0<θ<π2, 即有sin θ-cos θ=15.从而(sin θ+cos θ)2=2-(sin θ-cos θ)2=4925,则sin θ+cos θ=75,因此sin θ=45,cos θ=35,tan θ=43,故tan ⎝⎛⎭⎫θ+π4=tan θ+11-tan θ=-7例55. 秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是S =,,a b c 是ABC 的内角,,A B C 的对边为.若sin 2sin cos C A B =,且222b c +=,则ABC 面积S 的最大值为________.【解析】sin 2sin cos C A B = ,222222cos 22a c b c a B a a b a b ac+−∴==⋅⇒=⇒=又222b c +=,222a c ∴=−,S ∴==245c ∴=时,ABC ∆面积S. 故答案为:例56. “数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,A 为OB 的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是( )A .14B .12C .34D .58【解析】设AB r =,圆心角为α,则整个折扇的面积为212S r α=,扇面的面积为2221132228r s r r ααα⎛⎫=−= ⎪⎝⎭, 若在整个扇形区域内随机取一点,记此点取自扇面(扇环)部分为事件M ,则根据几何概型的概率公式得()22338142r P M r αα==故选:C例57. 《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦1AB =尺,弓形高1CD =寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈10=尺100=寸, 3.14π≈,5sin22.513≈)A .600立方寸B .610立方寸C .620立方寸D .633立方寸【解析】连接,,OA OB OD ,设⊙O 的半径为R ,则()22215R R −+=,所以13R =.由于5sin 13AD AOD R ∠==,所以22.5AOD ∠=︒,即45AOB ∠=︒.所以OAB ACB OACB S S S ∆=−弓形扇形 2451311012 6.333602π⨯=−⨯⨯≈平方寸. ∴该木材镶嵌在墙中的体积为100633ACB V S =⨯≈弓形立方寸, 故选D .例58. 赵爽是我国古代数学家大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成)类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD AB AC λμ=+,若2DF AF =,则可以推出λμ+=_________.【解析】设1AF =,则3,1AD BD AF ===,如图由题可知:120ADB ∠=,由2222cos AB AD BD AD BD ADB =+−⋅⋅∠,所以AB =AC AB ==),B C ⎝⎭,()0,0A又sin sin sin BD AB BAD BAD ADB =⇒∠=∠∠,所以cos BAD ∠=所以()cos ,sin BAD BAD D AD AD ∠∠,即D ⎝⎭所以()2113339,13,02626,AD AB ⎛⎫==⎪ ⎪⎝⎭,1322AC ⎛ ⎝⎭=,又AD AB AC λμ=+所以913313λμ⎧=+=⎪⎪⇒⎨⎪==⎪⎩,所以1213λμ+=,故答案为:1213例59. 干支纪年历法(农历),是屹立于世界民族之林的科学历法之一,与国际公历历法并存.黄帝时期,就有了使用六十花甲子的干支纪年历法.干支是天干和地支的总称,把干支顺序相配正好六十为一周期,周而复始,循环记录.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.受此周期律的启发,可以求得函数2()sincos33x f x x =+的最小正周期为( )A .15πB .12πC .6πD .3π【解析】由天干为10个,地支为12个,其周期为其公倍数:60 故可得:2sin 3x y =的周期13T π=, cos3y x =的周期223T π=, 12T T 、的最小公倍数为6π,故()f x 的最小正周期为6π.故选:C.例60. 我国南宋著名数学家秦九韶发现了由三角形三边长求三角形的面积的“三斜求积”公式:设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,则△ABC 的面积S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.3 B .2 C .3 D.6【解析】 根据正弦定理,由a 2sin C =4sin A ,得ac =4.再结合(a +c )2=12+b 2,得a 2+c 2-b 2=4,则S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222= 16-44=3,故选A.例61. 公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它表现了恰到好处的和谐,其比值为5-12≈0.618,这一比值也可以表示为m =2sin 18°.若m 2+n =4,则m n 2cos 27°-1=( ) A .1 B .2 C .4 D .8【解析】由题设n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,m n 2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=2(2sin 18°cos 18°)cos 54°=2sin 36°sin 36°=2.故选B .例62. 《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2π3,半径为6米的弧田,按照上述经验公式计算所得弧田面积是________平方米.(结果保留根号)【解析】如图,由题意可得∠AOB =2π3,OA =6.所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×6=3,可得CD =6-3=3.由AD =AO ·sin π3=6×3=33,可得AB =2AD=2×33=6 3.所以弧田面积S =12(弦×矢+矢2)=12×(63×3+32)=93+92(平方米).。
数学文化考试答案

一、单选题(题数:40,共40.0分)1拓扑学是数学的一个分支,是()引出来的。
(1.0分)1.0分A、阿基米德B、罗素C、欧拉D、华罗庚正确答案:C我的答案:C2在(),第一次数学危机得到了真正解决。
(1.0分)1.0分A、17世纪B、18世纪C、19世纪D、16世纪正确答案:C我的答案:C3运用9个平面,空间可以分为()部分。
(1.0分)1.0分A、64B、93C、130D、42正确答案:C我的答案:C4第一次用计算机证明数学定理发生在1972年,主要是证明()。
(1.0分)1.0分A、多边形内角和B、哥尼斯堡七桥问题C、勾股定理D、四色问题正确答案:D我的答案:D5子集N的对称集合S(N)不是一个普通集合,它是一个具有()的集合。
(1.0分)1.0分A、常数结构B、有理数结构C、代数结构D、玄数结构正确答案:C我的答案:C6数学发展史上一共有()次危机,都是数学的基本部分收到了质疑;但每一次危机,都引发了数学的思想解放。
()(1.0分)1.0分A、一B、二C、三D、四正确答案:C我的答案:C7第一次数学危机是由()提出的。
(1.0分)1.0分A、牛顿学派B、毕达哥拉斯学派内部C、贝克莱大主教D、阿基米德正确答案:B我的答案:B8哥德尔是哪一国家的?()(1.0分)1.0分A、德国B、奥地利C、瑞士D、法国正确答案:B我的答案:B9数学让人受益终身的精华是()。
(1.0分)1.0分A、数学思维B、数学知识C、数学素养D、数学分数正确答案:C我的答案:C10自然数集是()的真子集,但是却能和它一一对应。
(1.0分)1.0分A、有理数集B、无理数集C、实数集D、素数集正确答案:A我的答案:A11数学的起源时期指的是(),这一时期人类建立了自然数的概念,认识了简单的几何图形;但算数和几何尚未分开。
(1.0分)1.0分A、远古-公元前5世纪B、远古-原始社会C、远古-公元5世纪D、远古到公元元年正确答案:A我的答案:A12“把未知的问题转化为已知的问题;把待解决的问题归结为已解决的问题,从而解决问题。
数学文化练习题数学在不同文化中的应用

数学文化练习题数学在不同文化中的应用数学文化练习题:数学在不同文化中的应用数学作为一门学科,在全球范围内都扮演着重要的角色。
它不仅仅是一种计算工具,更是一种文化载体。
数学在不同的文化中,以各种形式得以应用和发展。
本文将通过几个具体的例子,探讨数学在不同文化中的应用。
一、古埃及文化中的数学应用古埃及文化是世界上最古老的文明之一,而数学在古埃及文化中也占据非常重要的地位。
古埃及人善于利用数学解决日常生活中的问题,尤其是建筑和土地测量方面。
他们使用了一种独特的计数系统,基于“凑十法”。
这种计数方法中,数字1~9被表示为横线和点,而数字10则用一个卜字符号表示。
这种计数系统使得古埃及人能够进行复杂的计算,并设计出精确的建筑和工程方案。
二、古希腊文化中的几何学古希腊文化对现代数学几何学的发展影响深远。
古希腊人将几何学从实际问题中提炼出来,形成了独立的数学学科。
他们研究了三角形、多边形和圆形等几何图形的性质和定理。
其中最著名的是欧几里得的《几何原本》。
这本书系统概述了数学公理和定理,并建立了一套完整且严密的推理方法,对后世的数学研究产生了深远的影响。
三、中国古代文化中的“六艺”之数学中国古代文化中的数学应用有着独特的特点。
在古代中国,数学与其他五种艺术技能一起,统称为“六艺”。
古代中国人将数学应用于土地测量、日历制定、农业技术等方面。
在数学的传承和发展中,中国出现了许多杰出的数学家,如《九章算术》的编纂者秦九韶、《数书九章》的作者刘徽等。
他们的研究成果对于后世的数学发展起到了重要的推动作用。
四、阿拉伯文化中的代数学阿拉伯文化对代数学的发展做出了巨大贡献。
阿拉伯数学家通过将字母和符号引入数学,创造性地解决了一系列复杂的代数问题。
阿拉伯人的代数学成果在欧洲中世纪时期被传入,对于欧洲数学的发展产生了极大的影响。
举例来说,阿拉伯数学家穆罕默德·本·穆萨所著的《和合分之法》是西方最早的代数学专著之一,其中介绍了二次方程的求根方法,对于后来的代数学发展起到了重要的推动作用。
2025年中考数学总复习第二轮中档题突破专项训练二古代数学文化题

数的回文数是11的倍数.
指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰
立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC
和∠AQP均为直角,AP与BC相交于点D.测得AB=40 cm,BD=20 cm,
AQ=12 m,则树高PQ= 6
m.
2025版
数学
甘肃专版
11.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,
的问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊
各直金几何.”译文:“今有牛5头,羊2头,共值金10两,牛2头,羊5头,
共值金8两,问牛、羊每头各值金多少.”若设牛每头值金x两,羊每头值
金y两,则可列方程组是( A )
5 + 2 = 10,
2 + 5 = 10,
A.ቊ
B.ቊ
2 + 5 = 8
数学
甘肃专版
12.(2024·武威模拟)魏晋时期,数学家刘徽利用如图所示的“青朱出入图”
证明了勾股定理,其中四边形ABCD、四边形EFGD和四边形EAIH都是正
16
方形.如果图中△EMH与△DMI的面积比为 ,那么tan∠GDC的值为
9
.
S
2
4
△
解析:证明△EMH∽△DMI,可得
A.45尺 B.88尺
C.90尺 D.98尺
2025版
数学
甘肃专版
7.我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数
字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相
压轴题13 数学文化与新情景问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题13数学文化与新情景问题数学文化与新情景问题是高考重点考查的内容之一,命题形式多种多样,主要以选择题、填空题为主,难度较难.考向一:融合传统文化和数学史的数学阅读题考向二:融合其他学科知识的数学阅读题考向三:融合社会热点和建设成就的数学阅读题考向四:融合生活实际的数学阅读题数学文化与新情景问题试题一般从中外优秀传统文化和生产生活实际中挖掘素材,将数学文化、生活情境与高中数学知识有机结合.其解答过程大致需要实现两个转化:先是将实际问题转化为数学问题,然后再将数学问题转化为问题结果.具体地说,就是先通过阅读情境、审读题目,在明确对象、分析过程(或状态)的基础上过滤情境,并构造出符合题意的数学模型,从而使“实际问题”转化为“数学问题”;接着选用恰当的数学方法求解作答,得出“问题结果”,并将其纳入原问题的情境中,予以“检验讨论”,对解题过程作出评价.其中过滤情境、构建模型的环节至关重要,它既是使复杂的实际问题转化为相应的数学问题的前提,也是正确选用数学方法、求解数学问题的依据,起着承上启下的关键作用.一、单选题1.(2023·北京·高三专题练习)众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形224x y +=.其中黑色阴影区域在y 轴右侧部分的边界为一个半圆,给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是12;②当32a =-时,直线2y ax a =+与白色部分有公共点;③黑色阴影部分(包括黑白交界处)中一点(),x y ,则x y +1;④若点()0,1P ,MN 为圆224x y +=过点P 的直径,线段AB 是圆224x y +=所有过点P 的弦中最短的弦,则()AM BN AB -⋅ 的值为12.其中所有正确结论的序号是()A .①③B .③④C .①③④D .①②④【答案】C【解析】对于①,设黑色部分区域的面积为1S ,整个圆的面积为S ,由对称性可知,112S S =,所以,在太极图中随机取一点,此点取自黑色阴影部分的概率为112S P S ==,故①正确;对于②,当32a =-时,直线的方程为332y x =--,即3260x y ++=,圆心()0,0到直线3260x y ++=613213=<,下方白色小圆的方程为()2211x y ++=,圆心为()0,1-,半径为1,圆心()0,1-到直线3260x y ++=的距离为1d =,如下图所示:由图可知,直线332y x =--与与白色部分无公共点,故②错误;对于③,黑色阴影部分小圆的方程为()2211x y +-=,设z x y =+,如下图所示:当直线z x y =+与圆()2211x y +-=相切时,z 取得最大值,且圆()2211x y +-=的圆心坐标为()0,1,半径为11=,解得1z =由图可知,0z >,故max 1z =,故③正确;对于④,由于MN 是圆224x y +=中过点()0,1P 的直径,则M 、N 为圆224x y +=与y 轴的两个交点,可设()0,2M 、()0,2N -,当AB y ⊥轴时,AB 取最小值,则直线AB 的方程为1y =,可设点()3,1A -、)3,1B,所以,)3,1AM = ,()3,3BN =-,()3,0AB = ,()3,4AM BN -= ,所以,()12AM BN AB -⋅=,故④正确.故选:C.2.(2023·全国·高三专题练习)箕舌线因意大利著名的女数学家玛丽亚·阿涅西的深入研究而闻名于世.如图所示,过原点的动直线交定圆()2200x y ay a +-=>于点P ,交直线y a =于点Q ,过P 和Q 分别作x 轴和y 轴的平行线交于点M ,则点M 的轨迹叫做箕舌线.记箕舌线函数为()f x ,设AOQ θ∠=,下列说法正确的是()A .()f x 是奇函数B .点M 的横坐标为tan M a x θ=C .点M 的纵坐标为2cos M y a θ=D .()f x 的值域是(],1-∞【答案】C【解析】连接AP ,则AP OP ⊥,圆()2200x y ay a +-=>的标准方程为22224a a x y ⎛⎫+-= ⎪⎝⎭,该圆的直径为a,设点()0,Q x a ,当点Q 不与点A 重合时,直线OQ 的方程为0ay x x =,联立02200a y x x x y ay y ⎧=⎪⎪⎪+-=⎨⎪≠⎪⎪⎩,解得3220a y x a =+,当点Q 与点A 重合时,点A 的坐标也满足方程322a y x a =+,所以,()322a f x x a=+,对任意的x ∈R ,220x a +>,即函数()f x 的定义域为R ,()()()332222a a f x f x x a x a -===+-+ ,故函数()f x 为偶函数,A 错;当点Q 在第一象限时,Q M x x =,因为tan Q x aθ=,此时tan Q M x x a θ==,B 错;当点Q 不与点A 重合时,0M P y y =>,因为cos OP a θ=,则2cos cos M P y y OP a θθ===,当点Q 与点A 重合时,点P 也与点A 重合,此时0θ=,点P 的纵坐标也满足2cos P y a θ=,综上所述,点M 的纵坐标为2cos M y a θ=,C 对;对于D 选项,222x a a +≥ ,所以,()(]3220,a f x a x a =∈+,D 错.故选:C.3.(2023·全国·高三专题练习)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,为了纪念数学家高斯,人们把函数[],y x x =∈R 称为高斯函数,其中[]x 表示不超过x 的最大整数.设{}[]x x x =-,则函数(){}21f x x x x =--的所有零点之和为()A .1-B .0C .1D .2【答案】A【解析】由题意知,当0x =时,()1f x =-,所以0不是函数()f x 的零点,当0x ≠时,(){}21f x x x x =--0=可得,{}121x x=+,令{}[]121222,1y x x x y x==-=+,作出函数{}[]121222,1y x x x y x==-=+的图象如图所示:由图象可知,除点()1,0-外,函数{}[]121222,1y x x x y x==-=+图象其余交点关于(0,1)中心对称,∴横坐标互为相反数,即1230x x x +++⋅⋅⋅=,由函数零点的定义知,函数(){}21f x x x x =--的所有零点之和为1231101x x x -++++⋅⋅⋅=-+=-.故选:A4.(2023·全国·高三专题练习)目前,我国的水环境问题已经到了刻不容缓的地步,河道水质在线监测COD 传感器针对水源污染等无组织污染源的在线监控系统,进行24小时在线数据采集和上传通讯,并具有实时报警功能及统计分析报告,对保护环境有很大帮助.该传感器在水中逆流行进时,所消耗的能量为2E kv t =,其中v 为传感器在静水中行进的速度(单位:km /h ),t 为行进的时间(单位:h ),k 为常数,如果待测量的河道的水流速度为3km /h ,则该传感器在水中逆流行进10km 消耗的能量的最小值为()A .60kB .120kC .180kD .240k【答案】B【解析】由题意,该传感器在水中逆流行进10km 所用的时间10(3)3t v v =>-,则所消耗的能量210(3)3E kv v v =⋅>-.方法一:2222210[(3)3][(3)2(3)33]910101010[(3)6]33333v v v v E kv k k k k v v v v v v -+-+⋅-⋅+=⋅=⋅=⋅=⋅=⋅-++≥----106]1012120k k k ⋅=⋅=,当且仅当933v v -=-,即6v =时等号成立,此时2103E kv v =⋅-取得最小值120k .方法二:221010(3)33v E kv k v v v =⋅=⋅>--,求导得22610(3)v v E k v -'=⋅-,令226100(3)v v E k v -'=⋅=-,得6v =,当36v <<时,0E '<,2103E kv v =⋅-单调递减;当6v >时,0E '>,2103E kv v =⋅-单调递增,所以当6v =时,2103E kv v =⋅-取得最小值,为210612063k k ⨯⨯=-.故选:B.5.(2023·江西·校联考二模)2023年是农历癸卯兔年,在中国传统文化中,兔被视为一种祥瑞之物,是活力和幸福的象征,寓意福寿安康.故宫博物院就收藏着这样一副蕴含“吉祥团圆”美好愿景的名画——《梧桐双兔图》,该绢本设色画纵约176cm ,横约95cm ,其挂在墙壁上的最低点B 离地面194cm.小南身高160cm (头顶距眼睛的距离为10cm ),为使观赏视角θ最大,小南离墙距离S 应为()A .2cmB .76cmC .94cmD .445cm【答案】D【解析】由题意可得θ为锐角,故要使θ最大,只需tan θ最大,设小南眼睛所在的位置点为点D ,过点D 做直线AB 的垂线,垂足为O ,如图,则依题意可得()1941601044=--=BC (cm ),=CD S (cm ),0S >,设,αβ∠=∠=ADC BDC ,则θαβ=-,且17644220tan α++===AB BC CD S S,44tan β==BC CD S,故()222044tan tan 176176tan tan 2204496801tan tan 96801αβθαβαβ--=-===++++S S S S S S S S1762596802≤SS9680=S S即445=S 时等号成立,故使观赏视角θ最大,小南离墙距离S 应为445故选:D.6.(2023·全国·高三专题练习)古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明,他指出,到定点的距离与到定直线的距离的比是常数e 的点的轨迹叫做圆锥曲线:当01e <<时,轨迹为椭圆;当1e =时,轨迹为抛物线;当1e >时,轨迹为双曲线.现有方程()()2224431m x y y x y +-+=-+表示的曲线是双曲线,则m 的取值范围为()A .()10,+∞B .()0,10C .()0,5D .()5,+∞【答案】B【解析】由()()2224431m x y y x y +-+=-+,0m >,得222[(2)](31)m x y x y +-=-+,22(2)31m x y x y +-=-+,222222(2)13103113x y x y m m +-+==-++,可得动点(,)P x y 到这点(0,2)和定直线310x y -+=10m101m>,解得010m <<,故选:B7.(2023·全国·高三专题练习)《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2+股2=弦2”,设直线l 交抛物线214y x =于A ,B 两点,若OA ,OB 恰好是Rt OAB V 的“勾”“股”(O 为坐标原点),则此直线l 恒过定点()A .1,04⎛⎫ ⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .()0,2D .()0,4【答案】D【解析】设直线AB 的方程为y kx b =+,()11,A x y ,()22,B x y ,由24y kx b x y=+⎧⎨=⎩得2440x kx b --=,由根与系数的关系可得:124x x k +=,124x x b =-,若OA ,OB 恰好是Rt OAB V 的“勾”“股”(O 为坐标原点),可得222OA OB AB +=,所以OA OB ⊥,即OA OB ⊥ ,所以12120OA OB x x y y ⋅=+= ,()2221212*********y y x x x x =⨯=,所以()()2212121212114401616OA OB x x y y x x x x b b ⋅=+=+=-+⨯-=,即240b b -=,解得4b =或0b =(舍)所以直线AB 的方程为4y kx =+,恒过点()0,4,故选:D8.(2023·河南郑州·统考二模)世界数学三大猜想:“费马猜想”、“四色猜想”、“哥德巴赫猜想”,其中“四色猜想”和“费马猜想”已经分别在1976年和1994年荣升为“四色定理”和“费马大定理”.281年过去了,哥德巴赫猜想仍未解决,目前最好的成果“1+2”由我国数学家陈景润在1966年取得.哥德巴赫猜想描述为:任何不小于4的偶数,都可以写成两个质数之和.在不超过17的质数中,随机选取两个不同的数,其和为奇数的概率为()A .14B .27C .13D .25【答案】B【解析】不超过17的质数有:2,3,5,7,11,13,17,共7个,随机选取两个不同的数,基本事件总数27C 21n ==,其和为奇数包含的基本事件有:(2,3),(2,5),(2,7),(2,11),(2,13),(2,17),共6个,所以62217P ==.故选:B9.(2023·江西·金溪一中校联考模拟预测)宋神宗熙宁九年文学家苏轼在《水调歌头·明月几时有》中有一名句“月有阴晴圆缺”表达了他超脱的胸怀。
专题7.1 与数学文化相关的数学考题(原卷版)

【方法综述】关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导.【解答策略】类型一、取材数学游戏游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念.例1、五位同学围成一圈依次循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数是3的倍数,则报该数的同学需拍手一次.已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为. 【指点迷津】以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏.例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识.本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力.【举一反三】回文数是指从左到右与从右到左读都一样的正整数.如22,,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(Ⅰ)4位回文数有______个;(Ⅱ)2n+1(n∈N+)位回文数有______个.类型二、取材数学名著如数学家的传记、数学演讲报告、数学讲义等,这些都是命制考题好的素材,从中选取一段有关的数学素材,突出索要考查的数学知识,在引导中学数学教学知能并重的同时,有意识地培养学生的数学素养. 例2、我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M ,现将该金杖截成长度相等的10段,记第i 段的重量为()1,2,,10i a i =,且1210a a a <<<,若485i a M =,则i =( )A. 4B. 5C. 6D. 7【指点迷津】本题主要考查阅读能力、等差数列的通项公式、等差数列的前n 项和公式以及转化与划归思想,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量1,,,,,n n a d n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等差数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.学*科网【举一反三】【辽宁省丹东市2019届高三测试(一)】我国明代伟大数学家程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上梢四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明”意思是:九节竹的盛米容积成等差数列,其中的“三升九”指3.9升,则九节竹的中间一节的盛米容积为( )A .0.9升B .1升C .1.1升D .2.1升类型三、取材数学名题数学名题具有非凡的魅力,它常常蕴涵深刻的数学内容、经典的数学方法或与一些数学大师相关联,数学名题能持续地是命制试题的重点取材之一.例3、【江西省南昌市2019届高三第一次模】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )A.4072 B.2026 C.4096 D.2048【指点迷津】利用n次二项式系数对应杨辉三角形的第n+1行,然后令x=1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可.【举一反三】【广西桂林市,贺州市,崇左市2019年高三3月调研】2018年9月24日,英国数学家M.F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和.记无穷数列的各项的和,那么下列结论正确的是()A.B.C.D.类型四、取材数学推理数学猜想是推动数学发展的强大动力之一,是数学发展中最活跃、最主动、最积极的因素,也是人类理性中最富有创造性的部分,数学猜想一旦被证明,就将转化为定理,从而丰富数学理论,即使被否定或不能被证实,也常常能给数学带来不可预期的成果,数学猜想是命制考题的好素材,它包含丰富的数学知识和思想方法.例4、古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中及时三角形数又是正方形数的是A.289B.1024C.1225D.1378【指点迷津】合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).【举一反三】【湖北省恩施州2019届高三2月检测】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人.”在该问题中的1864人全部派遣到位需要的天数为()A.9 B.16 C.18 D.20类型五、取材数学图形例5、一幅图胜过一千字,“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”,图形不仅包含大量信息,而且形象直观,生动绚丽,还能展示数学之美,图形是数学总要的组成部分,高考试题中自然少不了这样的试题,同时能较好的体现数学文化,甚至富有诗意的数学图形.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷二》】如图,是我国古代数学家赵爽的弦图,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果大正方形的面积为,小正方形的面积为,直角三角形较小的锐角为,则()A.B.C.D.【举一反三】1.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取,立方寸=升,则商鞅铜方升的容积约为()A.升B.升C.升D.升2.【黑龙江省哈尔滨市第六中学2019届高三二模】牛顿迭代法亦称切线法,它是求函数零点近似解的另一种方法,若定义是函数零点近似解的初始值,过点的切线为,切线与轴交点的横坐标,即为函数零点近似解的下一个初始值,以此类推,满足精度的初始值即为函数零点的近似解,设函数,满足应用上述方法,则()A.B.C.D.类型六、取材数学文化与现代科学:数学文化与现代科学泛指最近一段时间国内外发生的数学方面的大事,被广大媒体和公众共同关注,具有方向性和短暂性和聚焦性等特点,命题专家从一段时事材料中甄选一个角度,简明扼要的交代时事背景,抽象出数学模型,突出索要考查的数学问题,类似于文科综合卷中的时事材料,既能达到一般试题的考查效果,又能融入肥厚的数学文化,平添点滴生活气息.例6、【福建省2019届高考适应(三)】习总书记在十九大报告中指出:必须树立和践行绿水青山就是金山银山的理念.某市为贯彻落实十九大精神,开展植树造林活动,拟测量某座山的高.如图,勘探队员在山脚A测得山顶B的仰角为,他沿着倾斜角为的斜坡向上走了40米后到达C,在C处测得山顶B的仰角为,则山高约为______米.(结果精确到个位,在同一铅垂面).参考数据:.【指点迷津】1.命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.2.注意到椭圆轨道Ⅰ和Ⅱ共一个顶点P和一个焦点F,题目所给四个式子涉及长半轴长和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查,是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.【举一反三】【河北省沧州市2019年高考模拟】中国最早的天文学和数学著作《周髀算经》里提到了七衡,即七个等距的同心圆.七衡的直径和周长都是等差数列,最里面的一圆叫内一衡,外面的圆依次叫次二衡,次三衡,….设内一衡直径为,衡间距为,则次二衡直径为,次三衡直径为,…,执行如下程序框图,则输出的中最大的一个数为()A.B.C.D.【强化训练】一、选择题1.【河南省八市重点高中2019届高三第二次测评】《九章算术》中有一题:今有牛、马、羊食人苗苗主责之粟五斗羊主曰:“我羊食半马”马主曰:“我马食半牛”今欲衰偿之,问各出几何其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”若按此比例偿还,牛、马、羊的主人各应赔偿多少?设牛、马、羊的主人分别应偿还x斗、y斗、z斗,则下列判断正确的是()A.且B.且C.且D.且2.【安徽省合肥一中、马鞍山二中等六校教育研究会2019届高三第二次联考】《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌” 就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第个儿子的年龄为,则( )A.23 B.32 C.35 D.383.【陕西省宝鸡中学2019届高三一模】我国古代数学著作算法统宗中有这样一个问题意为:“有一个人要走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地“那么,此人第4天和第5天共走路程是A.24里B.36里C.48里D.60里4.【河北省沧州市2019年高考模拟】中国最早的天文学和数学著作《周髀算经》里提到了七衡,即七个等距的同心圆.七衡的直径和周长都是等差数列,最里面的一圆叫内一衡,外面的圆依次叫次二衡,次三衡,….设内一衡直径为,衡间距为,则次二衡直径为,次三衡直径为,…,执行如下程序框图,则输出的中最大的一个数为()A.B.C.D.5.【安徽省合肥市2019届高三第二次检测】“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“菱草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的.若这堆货物总价是万元,则的值为()A.7 B.8 C.9 D.106.【安徽省黄山市2019届高三第二次检测】在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑中,平面,,且,为AD的中点,则异面直线与夹角的余弦值为()A.B.C.D.7.【辽宁省沈阳市郊联体2019届高三一模】我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,中等级中的五等人与六等人所得黄金数()A.B.C.D.8.【北师大实验中学2019届高三二模】中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为( )A.B.C.D.9.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成的),类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,则()A.B.C.D.10.【山东省济南市2019届高三3月模拟】我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线,直线为曲线在点处的切线.如图所示,阴影部分为曲线、直线以及轴所围成的平面图形,记该平面图形绕轴旋转一周所得的几何体为.给出以下四个几何体:① ② ③ ④图①是底面直径和高均为的圆锥;图②是将底面直径和高均为的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体;图③是底面边长和高均为的正四棱锥;图④是将上底面直径为,下底面直径为,高为的圆台挖掉一个底面直径为,高为的倒置圆锥得到的几何体.根据祖暅原理,以上四个几何体中与的体积相等的是()A.①B.②C.③D.④11.【山西省吕梁市2019年高考模拟】孔明锁,也叫鲁班锁,起源于中国古代建筑中首创的榫卵结构,它是用6根木条制作的一件可拼可拆的、广泛流传于中国民间的智力玩具.如图,网格纸上小正方形的边长为1,粗线画出的是其中3根木条的三视图,记这3根木条的体积分别为,则()A.B.C.D.二、填空题12.【福建省2019届高三模拟】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________.13.【浙江省杭州地区(含周边)重点中学2019届高三第一学期期中】九章算术中有一题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马,”马主曰:“我马食半牛”,今欲衰偿之,问各出几何?其意:今有牛、马、羊吃了别人的禾苗,苗主人要求赔偿五斗粟,羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比例偿还,问羊的主人应赔偿______斗粟,在这个问题中牛主人比羊主人多赔偿______斗粟.14.【四川省内江、眉山等六市2019届高三第二次诊断】中国古代数学专家(九章算术)中有这样一题:今有男子善走,日增等里,九日走里,第一日,第四日,第七日所走之和为里,则该男子的第三日走的里数为__________.15.【湖南省长沙市长郡中学2019届高三一模】太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫、白外五观的标记物;从道袍、卦摊、中医、气功、武术到南韩国旗、新加坡空军机徽……,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分的区域可用小等式组或来表示,设是阴影中任意一点,则的最大值为___________.16.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖,周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能装多少斛米.”则该圆柱形容器能装米__________斛.(古制1丈=10尺,1斛=1.62立方尺,圆周率)17.【江苏省南通市通州区2019届高三下期末】对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______.。
“数学文化”专题

“数学文化”专题1 《九章算术》是人类科学史上应用数学的最早巅峰,在研究比率方面的应用十分丰富,其中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1 534石,验其米内杂谷,随机取米一把,数得254粒内夹谷28粒,则这批米内夹谷约( )A .134石B .169石C .268石D .338石解析 设这批米内夹谷约为x 石,根据随机抽样事件的概率得x 1 534=28254,得x ≈169,故选B 。
答案 B2 《九章算术》是我国古代数学名著,在其中有道 “竹九问题”“今有竹九节,下三节容量四升,上四节容量三升。
问中间二节欲均容各多少?”意思为:今有竹九节,下三节容量和为4升,上四节容量之和为3升,且每一节容量变化均匀(即每节容量成等差数列)。
问每节容量各为多少?在这个问题中,中间一节的容量为( )A.72B.3733C.6766D.1011 解析 设从最下节往上的容量构成等差数列{a n },公差为d 。
则⎩⎪⎨⎪⎧ a 1+a 2+a 3=4a 9+a 8+a 7+a 6=3,即⎩⎪⎨⎪⎧3a 1+3d =44a 1+26d =3,解得a 1=9566,d =-766,中间为第五节,即a 5=a 1+4d =9566+4×⎝ ⎛⎭⎪⎫-766=6766,故选C 。
答案 C3 如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A.0B.2 C.4D.14解析由题知,若输入a=14,b=18,则第一次执行循环结构时,由a<b知,a=14,b=b-a=18-14=4;第二次执行循环结构时,由a>b知,a=a-b=14-4=10,b =4;第三次执行循环结构时,由a>b知,a=a-b=10-4=6,b =4;第四次执行循环结构时,由a>b知,a=a-b=6-4=2,b=4;第五次执行循环结构时,由a<b知,a=2,b=b-a=4-2=2;第六次执行循环结构时,由a=b知,输出a=2,结束,故选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、方法综述:关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导.二、解答策略:类型一、取材数学游戏游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念。
例1、五位同学围成一圈依次循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数是3的倍数,则报该数的同学需拍手一次。
已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为。
探究提高:以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏。
例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识。
本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力。
举一反三:回文数是指从左到右与从右到左读都一样的正整数。
如22,,11,3443,94249等。
显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。
则(Ⅰ)4位回文数有______个;(Ⅱ)2n+1(n∈N+)位回文数有______个。
()21n n ++∈N 位回文数与()22n n ++∈N 位回文数个数相等,均为910n ⨯个.类型二、取材数学名著如数学家的传记、数学演讲报告、数学讲义等,这些都是命制考题好的素材,从中选取一段有关的数学素材,突出索要考查的数学知识,在引导中学数学教学知能并重的同时,有意识地培养学生的数学素养。
例2、【2018百校联盟联考】我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M ,现将该金杖截成长度相等的10段,记第i 段的重量为()1,2,,10i a i =,且1210a a a <<<,若485i a M =,则i =( )A. 4B. 5C. 6D. 7探究提高:本题主要考查阅读能力、等差数列的通项公式、等差数列的前n 项和公式以及转化与划归思想,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量1,,,,,n n a d n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等差数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.学*科网举一反三:【2017届江西省赣州市高三上学期期末考试】中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一个走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为( )A. 48里B. 24里C. 12里D. 6里【答案】C类型三、取材数学名题数学名题具有非凡的魅力,它常常蕴涵深刻的数学内容、经典的数学方法或与一些数学大师相关联,数学名题能持续地是命制试题的重点取材之一。
例3、在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图1所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)如图1,17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图 2.在杨辉三角中相邻两行满足关系式:C r n +C r +1n =C r +1n +1,其中n 是行数,r ∈N .请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是________.图1图2解析 类比观察得,将莱布尼茨三角形的每一行都能提出倍数1C 1n +1,而相邻两项之和是上一行的两者相拱之数,故类比式子C r n +C r +1n =C r +1n +1,有1C 1n +1C r n =1C 1n +2C r n +1+1C 1n +2C r +1n +1.学*科网 答案 1C 1n +2C r n +1+1C 1n +2C r +1n +1=1C 1n +1C r n探究提高:《九章算术》大约成书于公元1世纪,是中国古代最著名的传世数学著作,它的出现标志着中国古代数学形成了完成的体系,本题取材《九章算术》与著名的17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”相结合考查了组合数的运算,很好的把中国古代数学名著和欧洲数学有解的结合在一起,进行和合理命题。
举一反三:【2017届河南省安阳市高三第一次模拟考试数学】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用勾股股勾朱实黄实弦实,化简,得勾股弦.设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A. 866B. 500C. 300D. 134【答案】D类型四、取材数学推理数学猜想是推动数学发展的强大动力之一,是数学发展中最活跃、最主动、最积极的因素,也是人类理性中最富有创造性的部分,数学猜想一旦被证明,就将转化为定理,从而丰富数学理论,即使被否定或不能被证实,也常常能给数学带来不可预期的成果,数学猜想是命制考题的好素材,它包含丰富的数学知识和思想方法。
例4、古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:w.w.w.k.s.5.u.c.o.m他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。
下列数中及时三角形数又是正方形数的是A.289B.1024C.1225D.1378【答案】C探究提高:合情推理主要包括归纳推理和类比推理。
数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向。
合情推理仅是“合乎情理”的推理,它得到的结论不一定正确。
而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下)。
举一反三:我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M,现将该金杖截成长度相等的10段,记第i段的重量为()1,2,,10ia i=,且1210a a a<<<,若485ia M=,则i=()A. 4B. 5C. 6D. 7【答案】C学*科网【解析】由题意知,由细到粗每段的重量成等差数列,记为{}n a,设公差为d,则1219101222{{42174a a a da a a d+=+=+=+=,,解得1151,168a d==,所以该金杖的总重量15109110151628M⨯=⨯+⨯=,()151485,48175168ia M i⎡⎤=∴+-⨯=⎢⎥⎣⎦,解得6i=,故选C.类型五、取材数学图形例5、一幅图胜过一千字,“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”,图形不仅包含大量信息,而且形象直观,生动绚丽,还能展示数学之美,图形是数学总要的组成部分,高考试题中自然少不了这样的试题,同时能较好的体现数学文化,甚至富有诗意的数学图形。
【2018北京丰台二模】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度. 药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:根据图中提供的信息,下列关于成人使用该药物的说法中,不正确...的个数是①首次服用该药物1单位约10分钟后,药物发挥治疗作用②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒A. 1个B. 2个C. 3个D. 4个关键.由图象可得函数先增后减,在t=1时取到极大值,在血液浓度所对应的值超过最低中毒浓度时,会发生药物中毒,因此两次服药的间隔不能太小,需要看是否有两次药效之和超过最低值. 学*科网举一反三:【2018广东湛江二模】某产品进入商场销售,商场第一年免收管理费,因此第一年该产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对该产品征收销售额的%x的管理费(即销售100元要征收x元),于是该产品定价每件比第一年增加了70%1%xx⋅-元,预计年销售量减少x万件,要使第二年商场在该产品经营中收取的管理费不少于14万元,则x的最大值是()A. 2 B. 6 C. 8.5 D. 10【答案】D类型六、取材数学文化与现代科学:数学文化与现代科学泛指最近一段时间国内外发生的数学方面的大事,被广大媒体和公众共同关注,具有方向性和短暂性和聚焦性等特点,命题专家从一段时事材料中甄选一个角度,简明扼要的交代时事背景,抽象出数学模型,突出索要考查的数学问题,类似于文科综合卷中的时事材料,既能达到一般试题的考查效果,又能融入肥厚的数学文化,平添点滴生活气息。