用数学归纳法证明命题基本步骤是共17页
高考数学中的数学归纳法及应用

高考数学中的数学归纳法及应用在高考数学中,数学归纳法是一个重要的概念,它被广泛应用于各种数学问题的解决和证明,特别是那些与自然数和整数相关的问题。
在本文中,我们将主要讨论高考数学中的数学归纳法及其应用。
1. 数学归纳法的基本原理数学归纳法是一种数学推理方法,通过一个已知的命题的真实性,证明其对于所有的自然数都成立。
数学归纳法的基本步骤包括以下三个部分:第一步,证明基本情况,即证明所要证明的命题在某个整数上成立。
这个整数一般是0或1,有时也可以是其他的整数。
第二步,证明归纳步骤,即证明如果命题在某个整数上成立,那么它在下一个整数上也会成立。
第三步,结论,即由前两步推出所要证明的命题对所有的自然数都成立。
2. 数学归纳法的应用数学归纳法在高考数学中的应用非常广泛,以下是一些常见的应用:2.1. 计算等差数列的和等差数列的和问题,就可以用数学归纳法来推导出通用公式。
具体步骤如下:首先,我们用初中阶段所学的方法,求出等差数列前n项和的通式Sn。
S1 = a1 (n=1时,Sn=a1)S2 = a1 + a2 (n=2时,Sn=a1+a2)S3 = a1 + a2 + a3 (n=3时,Sn=a1+a2+a3)……Sn = a1 + a2 + …… + an我们通过数学归纳法来推导出通用公式:证明基本情况,当n=1 时,Sn=a1 成立。
证明归纳步骤:假设当n = k(k≥1)时,Sn = a1 + a2 + …… + ak 成立。
即证明当n=k+1 时,Sn=a1+a2+……+ak+ak+1 成立。
即结论:对于所有的自然数n,等差数列的前n项和为Sn = n[a1 + an] / 2。
2.2. 证明不等式数学归纳法也可以用于证明不等式的真实性。
如果某个命题的成立可以从另一个命题的成立推导出来,而这两个命题都可以用数学归纳法进行证明,那么我们可以通过这两个命题的联合证明,来证明原来的不等式。
例如,我们可以用数学归纳法证明n ≥ 3 时,2^n > n^2。
如何巧妙使用数学归纳法

如何巧妙使用数学归纳法一、数学归纳法的基本概念知识点:数学归纳法的定义知识点:数学归纳法的基本步骤知识点:数学归纳法的证明形式二、数学归纳法的应用领域知识点:数学归纳法在数列中的应用知识点:数学归纳法在几何中的应用知识点:数学归纳法在代数中的应用知识点:数学归纳法在微积分中的应用三、数学归纳法的证明过程知识点:数学归纳法的第一步——验证基础情况知识点:数学归纳法的第二步——假设命题在基础情况成立知识点:数学归纳法的第三步——证明当命题在基础情况成立时,命题在下一情况也成立知识点:数学归纳法的证明方法——直接证明法和反证法四、数学归纳法的巧妙使用知识点:数学归纳法在证明恒等式中的应用知识点:数学归纳法在证明不等式中的应用知识点:数学归纳法在证明函数性质中的应用知识点:数学归纳法在解决递推式中的应用五、数学归纳法的局限性知识点:数学归纳法只能证明与自然数有关的命题知识点:数学归纳法不能证明与特定个体有关的命题知识点:数学归纳法不能证明与具体情境有关的命题六、数学归纳法的拓展知识点:双向数学归纳法知识点:数学归纳法的推广形式——归纳法知识点:数学归纳法与数学逻辑的关系七、数学归纳法的教学策略知识点:引导学生理解数学归纳法的基本概念知识点:通过实例让学生掌握数学归纳法的证明过程知识点:培养学生运用数学归纳法解决实际问题的能力知识点:引导学生反思数学归纳法的局限性,提高思维品质八、数学归纳法的评价与反思知识点:评价学生掌握数学归纳法的情况知识点:反思数学归纳法在教学中的优点和不足知识点:探讨数学归纳法在数学发展中的作用和地位综上所述,数学归纳法是一种重要的数学证明方法,通过理解其基本概念、掌握证明过程和巧妙使用,可以解决许多与自然数有关的数学问题。
在教学过程中,教师应引导学生深入理解数学归纳法,通过实例让学生掌握其证明过程,并培养学生运用数学归纳法解决实际问题的能力。
同时,也要让学生了解数学归纳法的局限性,从而提高他们的数学思维品质。
第 11 讲 数学归纳法(第1课时-证题原理及步骤)

第 11 讲 数学归纳法-证题原理及步骤(第1课时)数学归纳法⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧+==明探索性问题的猜想与证有关整除问题的证明等式或不等式证明数学归纳法的应用时命题成立推证时命题成立假设验证初始值数学归纳法证明的步骤推思想)数学归纳法的原理(递1k n k n n 重点:1.数学归纳法的原理与证题步骤;2.数学归纳法的应用。
难点:1.归纳、猜想、证明猜想;2.由k n =时的命题成立推证1+=k n 时的命题成立。
2.能进行一些探索性问题的归纳、猜想与证明,初步形成“观察→归纳→猜想→证明”的思维方法。
主要为证明不等式、恒等式以及整除这三个方面的应用,考题又常以数列问题为背景,将数学归纳法证与一些探索性问题综合起来考察。
⑴ 定义按下述步骤证明一个与自然数有关的数学命题的方法叫做数学归纳法: ① 验证当n 取第一个值时这个命题成立;② 假设当k n =,命题成立,然后证明当1+=k n ,命题也成立。
⑵ 数学归纳法与不完全归纳法的区别与联系 归纳是一种由特殊事例导出一般原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在数学解题中有着广泛的应用。
它是一种递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。
这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n ≥n 0且n ∈N )结论都正确”。
数学归纳法的两种形式

数学归纳法的两种形式
1.第一数学归纳法
一般地,证明一个与自然数n有关的命题P(n),有如下步骤:
(1)证明当n取第一个值n0时命题成立。
n0对于一般数列取值为0或1,但也有特殊情况;
(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。
综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
2. 第二数学归纳法(完整归纳法)
另一个一般化的方法叫完整归纳法(也称第二数学归纳法),在第二步中我们假定式子不仅当n=m时成立,当n小于或等于m时也成立.这样可以设计出这样两步:
1.证明当n= 0时式子成立.
2.假设当n≤m时成立,证明当n=m+ 1时式子也成立.
则命题成立。
2018-2019学年广东省东莞市三校高二(下)期中数学试卷(理科)(解析版)

2018-2019学年广东省东莞市三校高二(下)期中数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知a+ii=b+2i(a,b∈R),其中为虚数单位,则a-b=()A. −3B. −2C. −1D. 12.函数f(x)=x3+ax2+3x-9已知f(x)在x=-3时取得极值,则a=()A. 2B. 3C. 4D. 53.已知f(x)=e x-e-x,f'(x)是f(x)的导函数,则f'(2)=()A. 0B. e2+e−2C. e2−e−2D. 14.若函数f(x)=sinα-cos x,α为常数,则f'(α)=()A. sinαB. −sinαC. sinα+cosαD. 2sinα5.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=|Ax0+By0+C|√A2+B2,通过类比的方法,可求得:在空间中,点(2,4,1)到平面x+2y+2z+3=0的距离为()A. 3B. 5C. 5√217D. 3√56.已知函数f(x)=e x-x,x>0,下列结论中正确的是()A. 函数f(x)有极小值B. 函数f(x)有极大值C. 函数f(x)有一个零点D. 函数f(x)没有零点7.如图,下有七张卡片,现这样组成一个三位数:甲从这七张卡片中随机抽出一张,把卡片上的数字写在百位,然后把卡片放回;乙再从这七张卡片中随机抽出一张,把卡片上的数字写在十位,然后把卡片放回;丙又从这七张卡片中随机抽出一张,把卡片上的数字写在个位,然后把卡片放回.则这样组成的三位数的个数为()A. 21B. 48C. 64D. 818.改革开放以来,中国经济飞速发展,科学技术突飞猛进.高铁、核电、桥梁、激光、5G通信、人工智能、航空航天、移动支付、量子通讯、特高压输电等许多技术都领先于世界.厉害了,我的国!把“厉害了我的国”这六个字随机地排成一排,其中“厉”、“害”这两个字必须相邻(可以交换顺序),“了”、“的”这两个助词不能相邻,则不同排法的种数为()A. 72B. 108C. 144D. 2889.现有命题“1−2+3−4+5−6+⋯+(−1)n+1n=14+(−1)n+1(14+n2),n∈N+”,不知真假.请你用数学归纳法去探究,此命题的真假情况为()A. 不能用数学归纳法去判断真假B. 一定为真命题C. 加上条件n≤9后才是真命题,否则为假D. 存在一个很大常数m,当n>m时,命题为假10.王老师的班上有四个体育健将甲、乙、丙、丁,他们都特别擅长短跑,在某次运动会上,他们四人要组成一个4×100米接力队,王老师要安排他们四个人的出场顺序,以下是他们四人的对话:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;王老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定,在王老师安排的出场顺序中,跑第三棒的人是()A.甲B.乙C.丙D. 丁11.如图,y=f(x)是可导函数,直线L:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()A. −1B. 0C. 2D. 412.过坐标原点O作曲线C:y=e x的切线l,则曲线C、直线l与y轴所围成的封闭图形的面积为()A. e2−1 B. e−1 C. e−2 D. e2二、填空题(本大题共4小题,共20.0分)13.定积分∫(13x+e x)dx=______.14.已知函数f(x)=x2-5x+2ln2x,则f(x)的单调递增区间为______.15.已知:cosπ3=12,cosπ5cos2π5=14,cosπ7cos2π7cos3π7=18…………,根据以上等式,可猜想出的一般结论是______.16.函数f(x)=e x-ax2在(0,+∞)上有两个极值点,则实数a的取值范围是______.三、解答题(本大题共6小题,共70.0分)17.已知m为实数,设复数z=(m2+5m+6)+(m2-2m-15)i.(1)当复数z为纯虚数时,求m的值;(2)当复数z对应的点在直线x-y+7=0的下方,求m的取值范围.18.已知函数f(x)=e x cos x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,π2]上的值域.19.设函数f(x)=x3-6x2+9x+a.(1)求f(x)在区间x∈[-2,2]的最值;(2)若f(x)有且只有两个零点,求a的值.20.下面图形都是由小正三角形构成的,设第n个图形中的黑点总数为f(n)(n∈N+).(1)写出f(2),f(3),f(4),f(5)的值;(2)归纳出f(n+1)与f(n)的关系(不用证明),并求出f(n)的表达式.21.“既要金山银山,又要绿水青山”.某风景区在一个直径AB为100米的半圆形花圆中设计一条观光线路.打算在半圆弧上任选一点C(与A,B不重合),沿AC修一条直线段小路,在路的两侧(注意是两侧)种植绿化带;再沿弧BC⏜修一条弧形小路,在小路的一侧(注意是一侧)种植绿化带,小路与绿化带的宽度忽略不计.(1)设∠BAC=θ(弧度),将绿化带的总长度表示为θ的函数f(θ);(2)求绿化带的总长度f(θ)的最大值.22.已知函数f(x)=x2-2m ln x-2m(m∈R).(1)讨论函数f(x)的单调性;(2)若函数f(x)有极小值,求该极小值的取值范围.答案和解析1.【答案】A【解析】解:由=b+2i,得a+i=-2+bi,∴a=-2,b=1,则a-b=-3.故选:A.由=b+2i,得a+i=-2+bi,再由复数相等的条件列式求得a,b的值,则答案可求.本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.2.【答案】D【解析】解:对函数求导可得,f′(x)=3x2+2ax+3∵f(x)在x=-3时取得极值∴f′(-3)=0⇒a=5,验证知,符合题意故选:D.先对函数进行求导,根据函数f(x)在x=-3时取得极值,可以得到f′(-3)=0,代入求a值.本题主要考查函数在某点取得极值的性质.属基础题.比较容易,要求考生只要熟练掌握基本概念,即可解决问题.3.【答案】B【解析】解:函数的导数为f′(x)=e x+e-x,则f′(2)=e2+e-2,故选:B.求函数的导数,结合函数的导数公式进行计算即可.本题主要考查函数的导数计算,结合函数的导数公式是解决本题的关键.比较基础.4.【答案】A【解析】解:函数的导数f′(x)=sinx,则f′(α)=sinα,故选:A.根据函数的导数公式进行计算即可.本题主要考查函数的导数的计算,结合函数的导数公式是解决本题的关键.5.【答案】B【解析】解:类比点P(x0,y0)到直线Ax+By+C=0的距离d=,可知在空间中,点P(x0,y0,z0)到直线Ax+By+Cz+D=0的距离d=点(2,4,1)到平面x+2y+2z+3=0的距离d==5.故选:B.类比点P(x0,y0)到直线Ax+By+C=0的距离d=,可知在空间中,d==5类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).6.【答案】D【解析】解:∵函数f(x)=e x-x,x>0,∴f′(x)=e x-1>0,∴f(x)在x>0内是增函数,∵f(0)=1-0=1>0,∴函数f(x)=e x-x,x>0没有零点,没有极值,故选:D.推导出f′(x)=e x-1>0,从而f(x)在x>0内是增函数,由f(0)=1,得到函数f(x)=e x-x,x>0没有零点,没有极值.本题考查命题真假的判断,考查导数性质、函数性质、最值等基础知识,意在考查学生的转化能力和计算求解能力,是中档题.7.【答案】C【解析】解:依题意,百位、十位和个位每个位置有4种选择,根据分步乘法原理,这样的三位数共有4×4×4=64个.故选:C.百位、十位、个位每个位置有4种选择,根据分步乘法原理,共有4×4×4=64种三位数.本题考查了计数原理,不同的三位数的个数由三个数位上的数字决定,不随着取数的人的变化而变化.本题属于中档题.8.【答案】C【解析】解:把厉”、“害”这两个字看出一个元素和“我“,“国”,全排列为A=12种,中间有4个空,排“了”、“的”有=12种,共有12×12=144种,故选:C.根据相邻问题捆绑法,不相邻问题插空法进行求解即可.本题主要考查排列组合的计算,利用相邻问题捆绑法,不相邻问题插空法是解决本题的关键.9.【答案】B【解析】解:n=1时,左边=(-1)2•1=1,右边=+(-1)2•(+)=1,左边=右边,命题成立;假设n=k,k≥1,k∈Z时,命题成立,即1-2+3-4+5-6+…+(-1)k+1•k=+(-1)k+1•(+),则n=k+1时,左边=1-2+3-4+5-6+…+(-1)k+1•k+(-1)k+2•(k+1)=+(-1)k+1•(+)+(-1)k+2•(k+1)=+(-1)k+2•[-(+)+(k+1)]=+(-1)k+2•(+)=右边,命题也成立;命题“,n∈N+”,是真命题.故选:B.利用数学归纳法证明,基本步骤是①验证n=1时命题成立,②假设n=k时命题成立,③证明n=k+1时命题也成立.本题考查了利用数学归纳法证明命题成立的应用问题,也考查了运算求解以及化归、转化思想.是基础题.10.【答案】C【解析】解:由题意得乙、丙均不跑第一棒和第四棒,∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.故跑第三棒的是丙.故选:C.跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.11.【答案】B【解析】解:∵直线L:y=kx+2是曲线y=f(x)在x=3处的切线,∴f(3)=1,又点(3,1)在直线L上,∴3k+2=1,从而k=,∴f′(3)=k=,∵g(x)=xf(x),∴g′(x)=f(x)+xf′(x)则g′(3)=f(3)+3f′(3)=1+3×()=0,故选:B.先从图中求出切线过的点,再求出直线L的方程,利用导数在切点处的导数值为切线的斜率,最后结合导数的概念求出g′(3)的值.本题考查导数的几何意义,曲线在切点处的导数值为曲线的切线的斜率.12.【答案】A【解析】解:根据题意,过坐标原点O作曲线C:y=e x的切线l,设切点为(m,e m),y=e x,其导数y=e x,则切线的斜率k=e m,则直线l的方程为:y-e m=e m(x-m),又由直线l经过原点,则有-e m=e m(-m),分析可得m=1,则直线l的方程为y-e=e(x-1),即y=ex,切点为(1,e);曲线C、直线l与y轴所围成的封闭图形的面积S=(e x-ex)dx=(e x -)=(e-)-(1-0)=-1;故选:A.根据题意,设直线l与曲线C的切点为(m,e m),求出曲线C的导数,由导数的几何意义可得直线l的方程,进而由定积分的计算公式分析可得答案.本题考查利用导数求曲线的切线方程以及定积分的计算,关键是求出直线l的方程,属于基础题.13.【答案】12+e【解析】解:根据题意,=(+e x )=(+e )-(0+1)=+e,故答案为:+e.根据题意,由定积分的计算公式可得=(+e x ),进而计算可得答案.本题考查定积分的计算,关键是掌握定积分的计算公式.14.【答案】(0,12),(2,+∞)【解析】解:函数f(x)=x 2-5x+2ln2x,其定义域{x|x>0}则f′(x)=2x-5+=令f′(x)=0,可得x1=,x2=2 当x时,f′(x)>0,∴函数f(x)在(0,)是单调递增.当x∈(2,+∞)时,f′(x)>0,∴函数f(x)在(2,+∞)是单调递增.∴函数f(x)的单调递增区间是(0,)和(2,+∞).故答案为:(0,),(2,+∞).利用导函数研究原函数的单调性即可.本题考查函数的单调区间的求法,考查导数的应用,考查运算能力,属于中档题.15.【答案】cosπ2n+1cos2π2n+1…cos nπ2n+1=12n【解析】解:根据题意,分析所给的等式可得:cos=,可化为cos=cos cos=,可化为cos cos=cos cos cos=,可化为cos cos cos=;则一般的结论为cos cos…cos=;故答案为cos cos…cos=.根据题意,分析所给的等式可得:对于第n个等式,等式左边为n个余弦连乘的形式,且角部分为分式,分子从π到nπ,分母为(2n+1),右式为;将规律表示出来可得答案.本题考查归纳推理的运用,解题的关键在于发现3个等式的变化的规律.16.【答案】(e2,+∞)【解析】解:∵f(x)=e x-ax2,∴f′(x)=e x-2ax,若f(x)在(0,+∞)上有两个极值点x1,x2(0<x1<x2),则y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),则y′=e x,y′|x=m=e m,故y-e m=e m(x-m),即y=e m x+(1-m)e m=2ax,故(1-m)e m=0,解得:m=1,故A(1,e),故2a=e,a=,故直线y=2ax和y=e x相交时,a >.故实数a的取值范围为().故答案为:().求出函数的导数,问题转化为y=e x和y=2ax在(0,+∞)上有2个交点,设直线y=2ax和y=e x相切时切点是A(m,e m),求出临界值,求出a的范围即可.本题考查切线方程,考查函数的单调性,极值问题,考查导数的应用以及转化思想,考查导数性质、函数性质、最值等基础知识,意在考查学生的转化能力和计算求解能力,是中档题.17.【答案】解:(1)由题意得:{m2−2m−15≠0m2+5m+6=0,解得m=-2.(2)复数z对应的点的坐标为(m2+5m+6,m2-2m-15),直线x-y+7=0的下方的点的坐标(x,y)应满足x-y+7>0,即:(m2+5m+6)-(m2-2m-15)+7>0,解得m>-4,∴m的取值范围为(-4,+∞).【解析】(1)由实部为0且虚部不为0列式求解;(2)由复数z对应的点在直线x-y+7=0的下方,得(m2+5m+6)-(m2-2m-15)+7>0,求解不等式得答案.本题考查复数的基本概念,考查复数的代数表示法及其几何意义,是基础题.18.【答案】解:(1)因为f(0)=e0cos0=1,所以切点为(0,1);又因为f'(x)=e x cos x-e x sin x=e x(cos x-sin x),所以f'(0)=1,即切线斜率k=1.所以切线方程为:y=x+1.即y=f(x)在点(0,f(0))处的切线方程为x-y+1=0.---------------------(6分)(2)令f'(x)=e x(cos x-sin x)=0,因为x∈[0,π2],所以x=π4.当x∈[0,π4]时,f'(x)>0,f(x)单调递增;当x∈[π4,π2]时,f'(x)<0,f(x)单调递减;所以f(x)max=f(π4)=eπ4cosπ4=√22eπ4;又因为f(0)=1,f(π2)=0,所以f(x)min=0;所以f(x)在[0,π2]上的值域为[0,√22eπ4].--------------------------------------(12分)【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程.(2)判断函数的单调性然后求解函数的最值.本题考查函数的单调性以及切线方程的求法,考查最值思想以及计算能力.19.【答案】解:(1)f'(x)=3x2-12x+9,令f'(x)=0可得:x=1或x=3(舍去)因为f(1)=4+a,f(-2)=-50+a,f(2)=2+a,所以f(x)min=-50+a,f(x)max=4+a.----------------------------(6分)(2)令f(x)=x3-6x2+9x+a=0,可得a=-x3+6x2-9x.设g(x)=-x3+6x2-9x,则g'(x)=-3x2+12x-9,令g'(x)=0,得x=1或x=3,列表如下:x(-∞,1)1(1,3)3(3,+∞)f'(x)-0+0-f(x)递减有极小值-4递增有极大值0递减所以g(x)的大致图象如下:要使a=-x3+6x2-9x有且只有两个零点,只需直线y=a与g(x)的图象有两个不同交点,所以a=-4或a=0.------------------------(12分)【解析】(1)求出函数的导数,求出极值点,然后转化求解最值即可.(2)令f(x)=x3-6x2+9x+a=0,可得a=-x3+6x2-9x.设g(x)=-x3+6x2-9x,则g'(x)=-3x2+12x-9,判断函数的单调性以及函数的极值,结合数形结合转化求解即可.本题考查函数的导数的应用,函数的最值以及函数的极值函数单调性的求法,数形结合以及转化思想的应用.20.【答案】解:(1)由题意有f (1)=3,f (2)=f (1)+3+3×2=12, f (3)=f (2)+3+3×4=27, f (4)=f (3)+3+3×6=48, f (5)=f (4)+3+3×8=75.…(6分)(2)由题意及(Ⅰ)知,f (n +1)=f (n )+3+3×2n =f (n )+6n +3, 即f (n +1)-f (n )=6n +3,…(8分)故f (2)-f (1)=6×1+3, f (3)-f (2)=6×2+3,f (4)-f (3)=6×3+3, …f (n )-f (n -1)=6(n -1)+3,n ≥2.…(10分) 将上面(n -1)个式子相加,得:f(n)−f(1)=6[1+2+3+⋯+(n −1)]+3(n −1)=6×(1+n−1)(n−1)2+3(n −1)=3n 2−3,又f (1)=3,所以f (n )=3n 2,n ≥2, 而当n =1时,f (1)=3也满足上式, 故f (n )=3n 2,n ∈N *.…(12分) 【解析】(1)由题意有f (1)=3,借助三角形能求出f (2),f (3),f (4),f (5)的值.(2)f (n+1)=f (n )+3+3×2n=f (n )+6n+3,从而f (n+1)-f (n )=6n+3,由此利用累加法能求出f (n )的表达式.本题考查推理能力,考查进行简单的合情推理,考查学生分析解决问题的能力,考查累加法的求解思路与方法,是中档题.21.【答案】解:(1)设圆心为O ,连结OC ,BC .在直角△ABC 中,AC =AB cosθ=100cosθ,BC⏜的弧长=50×2θ=100θ; 所以绿化带的总长度为f (θ)=200cosθ+100θ,其中θ∈(0,π2);------------------------(6分)(2)对f (θ)求导数,得f '(θ)=-200sinθ+100,θ∈(0,π2), 令f '(θ)=0,可得sinθ=12,所以θ=π6; 当θ∈(0,π6)时,f '(θ)>0,f (θ)单调递增; 当θ∈(π6,π2)时,f '(θ)<0,f (θ)单调递减; 所以f(θ)max =f(π6)=200×√32+100×π6=100√3+50π3;所以绿化带的总长度f (θ)的最大值为(100√3+50π3)米.------------------------(12分)【解析】(1)设圆心为O ,连结OC 、BC ,利用直角三角形的边角关系和弧长公式,求出绿化带的总长度f (θ);(2)对f (θ)求导数,利用导数判断f (θ)的单调性,再求出它的最大值.本题考查了三角函数模型的实际应用问题,也考查了利用导数求函数的单调性与最值问题,是中档题.22.【答案】解:(1)函数f (x )=x 2-2m ln x -2m (m ∈R )的定义域为(0,+∞).f′(x)=2x −2m x =2x 2−2mx①当m ≤0时,f ′(x )>0,函数f (x )在(0,+∞)单调递增.②当m >0时,令f ′(x )=0⇒x =√m ,当x ∈(0,√m)时,f ′(x )<0,当x ∈(√m ,+∞)时,f ′(x )>0,∴函数f (x )在(0,√m )单调递减,在(√m ,+∞)单调递增.(2)①当m ≤0时,f ′(x )>0,函数f (x )在(0,+∞)单调递增,没有极值.②当m >0时,令f ′(x )=0⇒x =√m ,当x ∈(0,√m)时,f ′(x )<0,当x ∈(√m ,+∞)时,f ′(x )>0,∴函数f (x )在(0,√m )单调递减,在(√m ,+∞)单调递增. ∴函数f (x )有极小值为f(√m)=-m (ln m +1).记h (m )=-m (ln m +1).(m >0),则h ′(m )=-2-ln m ,由h ′(m )=0得m =e -2, 当0<m <e -2时,h ′(m )>0,当m >e -2时,h ′(m )<0, ∴h (m )≤h (e -2)=e -2,∴函数f (x )有极小值的取值范围为(-∞,e -2). 【解析】(1)函数f (x )=x 2-2mlnx-2m (m ∈R )的定义域为(0,+∞).,分①当m≤0,②当m >0分别求单调性.(2)由①当m≤0时,没有极值;②当m >0时,函数f (x )有极小值为=-m (lnm+1).记h (m )=-m (lnm+1).(m >0),利用导数求得函数f (x )有极小值的取值范围. 本题考查了导数的应用,利用导数求单调性、极值,属于中档题.。
数学归纳法证明的原理

数学归纳法证明的原理2020-12-07数学归纳法证明的原理数学归纳法证明的原理数学归纳法证明的是与自然数有关的命题,它的依据是皮亚诺提出的自然数的序数理论,就是通常所说的自然数的皮亚诺公理,内容是:(1)l是自然数。
(2)每个自然数a有一个确定的“直接后继”数a’,a也是自然数。
(2)a’≠1,即1不是任何自然数的“直接后继”数。
(4)由a’=b’,推得a=b,即每个自然数只能是另外的唯一自然的“直接后继”数。
(5)任一自然数的集合,如果包含1,并且假设包含a,也一定包含a的“直接后继”数a’,则这个集合包含所有的自然数。
皮亚诺公理中的(5)是数学归纳法的依据,又叫归纳公理数学归纳法的应用及举例。
因为由假设知42k+1+3k+2能被13整除,1342k+1也能被13整除,这就是说,当n=k+1时,f(k+l)能被13整除。
根据(1)、(2),可知命题对任何n∈N都成立。
下面按归纳步中归纳假设的形式向读者介绍数学归纳法的几种不同形式以及它们的应用。
(l)简单归纳法。
即在归纳步中,归纳假设为“n=k时待证命题成立”。
这是最常用的一种归纳法,称为简单归纳法,大家都比较熟悉,这里不再赘述。
(2)强归纳法。
这种数学归纳法,在归纳步中,其归纳假设为“n≥k时待证命题成立”。
我们称之为强归纳法,又叫串值归纳法。
通常,如果在证明p(n+l)成立时,不仅依赖于p(n)成立,而且还可能依赖于以前各步时,一般应选用强归纳法,下面举例说明其应用。
例有数目相等的两堆棋子,两人轮流从任一堆里取几项棋子,但不能不取也不能同时从两堆里取,规定凡取得最后一项者胜。
求证后者必胜。
证:归纳元n为每堆棋子的数目。
设甲为先取者,乙为后取者。
奠基n=l,易证乙必胜。
归纳设Nn≤k时,乙必胜。
现证n=k+l时也是乙必胜。
设甲在某堆中先取r颗,O<r≤k。
乙的对策是在另一堆中也取r颗。
有二种可能:(1)若r<k,经过两人各取一次之后,两堆都只有k-r颗,k-r<k,现在又轮到甲先取,依归纳假设,乙必胜。
用数学归纳法证明命题的基本步骤是

4、在从n=k到n=k+1的推证过程中,要注 意项的增减变化,以及对式子进行灵活变形, 凑出 “归纳假设”的结论。
基础练习:
1、已知
f
(n)
1
1 2
1 3
1 2n
1
(n
N
)
则当n=1时,f (n)
;
则当n=k+1时,
f (k 1) f (k)
。
基础练习:
2、在用数学归纳法证明
1 1 1 1 1 1 1
求证:an
3n 1 2
【例3】用数学归纳法证明:
n3 5n (n N )能够被6整除.
【练习】用数学归纳法证明:
n2 n (n N ) 能够被2整除.
【例4】用数学归纳法证明:
x2n y2n (n N )能够被 x 整y除.
【练习】用数学归纳法证明:
34n2 52n1(n N )能够被14整除.
2、第一步证明中的初始值一定是使命题成 立的可取的最小的值,具体是多少要视具 体情况而定,并不一定都取1。
注意:
3、用数学归纳法证明命题时,关键在第二 步,即在“假设n=k时,命题成立”的前 提下,推出 “n=k+1时,命题成立”,在 推证过程中,必须用到“归纳假设”的结 论,否则这个证明则不是数学归纳法。
【例1】用数学归纳法证明:
12+22+32+ +n2 n(n 1)(2n 1) 6
【练习】用数学归纳法证明:
1 4+27+ +n (3n 1) n(n 1)2
【例2】已知数列{an满}足 Sn 2,n an
求证:an
数学归纳法证明。

数学归纳法可 以分为两种: 直接数学归纳 法和间接数学 归纳法。
直接数学归纳 法是假设命题 对某个正整数 成立证明命题 对下一个正整 数也成立。
间接数学归纳 法是假设命题 对某个正整数 不成立证明命 题对下一个正 整数也不成立。
数学归纳法的原理
单击此处添加标题
基本思想:通过证明一个命题对n=1成立然后假设对n=k成立推导出对 n=k+1也成立从而证明命题对一切正整数n都成立。
数学归纳法的应用
证明数学定理:如等差数列、 等比数列的求和公式等
解决数学问题:如求最大公约 数、最小公倍数等
证明数学猜想:如哥德巴赫猜 想、费马大定理等
解决实际问题:如计算π的值、 求解最优化问题等
数学归纳法的证明步骤
初始步骤
归纳步骤
确定命题:明 确要证明的命
题
基础步骤:证 明命题在n=1
时成立
数学归纳法在证明中的应用
证明等式成立
数学归纳法:一种证明数学命题的方法 步骤:假设命题对n成立证明命题对n+1也成立 应用:证明等式、不等式、数列等数学问题 示例:证明1+2+3+...+n=n(n+1)/2
证明不等式成立
数学归纳法:一种证明数学命题的方法通过证明一个命题对某个初始值成立然 后假设对某个值成立证明对下一个值也成立从而证明对所有值都成立。
费马小定理:对于任意正整数n和任意整数如果和n互质那么^n-1可以被n整除。 证明思路:使用数学归纳法假设n=k时命题成立证明n=k+1时命题也成立。 证明过程:首先证明n=1时命题成立然后假设n=k时命题成立证明n=k+1时命题也成立。 结论:通过数学归纳法可以证明费马小定理成立。