含参一元一次方程的解法(上)
3.2 一元一次方程及其解法(第1课时一元一次方程)(课件)六年级数学上册(沪教版2024)

可以发现,平衡的天平两边物体的质量分别
变为了原来的一半,天平也保持平衡.
新知探究
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,等式仍成立.
如果 = ,那么 = ; 如果 = , 那么 = ≠ 0 .
求方程的解的过程叫作解方程
只含有一个未知数,且含有未知数的项是一次项的方程叫作一元一次方程
一元一次方程的形式为 + = 0 ≠ 0 .
课本例题
例1 判断下列方程是不是一元一次方程,如果不是,请说明理由:
1 4 − 36 = 0;
2 − 2 = 56;
3 4 2 − 9 = 2 − 7;
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,等式仍成立.
如果 = ,那么 = ; 如果 = , 那么 = ≠ 0 .
求方程的解的过程叫作解方程
只含有一个未知数,且含有未知数的项是一次项的方程叫作一元一次方程
一元一次方程的形式为 + = 0 ≠ 0 .
9 − − 9 = 5 − 9.
合并同类项,得 − = −4.
根据等式性质2,在等式两边同除以 − 1, 得
− ÷ −1 = −4 ÷ −1
解得
= 4.
所以,原方程的解是 = 4.
分层练习-基础
1.下列方程的变形正确的是( A )
A.3x-6=0,变形为 3x=6
B.x+5=3-3x,变形为 4x=2
(1)8+x=-7;
解:两边减8得x=-15;
1
(2)- x=16;
2
解:两边乘以-2得x=-32;
人教版七年级数学上册3.一元一次方程的解法(一)移项课件

例1.解下列方程:
(1) 3 x 7 32 2 x ;
解:移项,得
3x 2x 32 7.
合并同类项 ,得
5x 25.
系数化为1,得
x 5.
3
(2) x 3 x 1 .
2
解:移项,得
3
x x 1 3.
2
合并同类项,得
1
x 4.
2
系数化为1,得
解:正方体的表面展开图,相对的面之间一定相隔
一个正方形,
5与y-1是相对面,x与3x是相对面,6与2是相对面,
∵折成正方体后相对面上的两个数之和都相等,
∴5+y-1=6+2,x+3x=6+2,
解得x=2 , y=4 ,
∴yx=42=16.
1.解方程,移项要________,其根据是__________________.
3x 20 4 x 25
移项
3 x 4 x 25 20
合并同类项
x 45
系数化为1
x 45
由上可知,这个班有45名学生.
下面解方程中“移项”起了什么作用?
3x 20 4 x 25
移项
3 x 4 x 25 20
合并同类项
x 45
移项得:2x=5-k,
5−k
系数化为1得:x=
,
C.3
2
∵方程2x+k=5的解为正整数,
∴5-k为2的正整数倍,
5-k=2,5-k=4,5-k=6,5-k=8…,
解得:k=3,k=1,k=-1,k=-3…,
故选B.
D.2或3
例4.如图是一个正方体的展开图,折成正方体后相对面上的两个数之和都
5.3 一元一次方程的解法(课件)青岛版(2024)数学七年级上册

知4-练
感悟新知
知识点 5 解一元一次方程的一般步骤
知5-讲
1. 解一元一次方程的一般步骤 去分母、去括号、移项、合并同类项、系数化为1 . 通 过这些步骤可以使以x 为未知数的方程逐步向着x=a(a 为常数)的形式转化.
感悟新知
知5-讲
2. 解一元一次方程的具体方法、变形依据、注意事项列表
如下:
感悟新知
知1-讲
3. 用合并同类项解一元一次方程的步骤 第一步:合并同类项,即将等号同侧的含未知数的项和 常数项分别合并,把方程转化为ax=b(a ≠ 0)的形式. 第二步:系数化为1,即在方程两边同时除以一次项系
数a,将一次项系数化为1,得到x=ba.
感悟新知
知1-讲
特别解读 解方程中的合并同类项和整式加减中的合并同类
知5-练
感悟新知
(3)x-2 4-(3x+4)=-125; 解:去分母,得 x-4-2(3x+4)=-15.
去括号,得 x-4-6x-8=-15.
移项,得 x-6x=-15+4+8.
合并同类项,得-5x=-3. 系数化为 1,得 x=35.
知5-练
感悟新知
(4)3x+x-2 1=3-2x-3 1; 解:去分母,得 18x+3(x-1)=18-2(2x-1).
(2)两边都乘2,得3x-15(x+1)-2=2x . 两边都乘5,得15x-(x+1)-10=10x. 去括号,得15x-x-1-10=10x . 移项,得15x-x-10x=10+1 . 合并同类项,得4x=11.
系数化为1,得x=141.
知5-练
感5悟-新1. 解知下列方程:
(1)53(1-x+2 3)=-72x+1; 解:方程可化为53-5(x+ 6 3)=-72x+1.
人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。
本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。
教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。
二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。
但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。
三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。
2.能够运用移项法解一元一次方程。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。
2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。
2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。
示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。
3.操练(10分钟)教师给出一些练习题,让学生独立完成。
教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。
4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。
教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。
5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。
2024年秋北师大七年级数学上册 第2节 一元一次方程的解法第2课时 利用移项解一元一次方程(课件)

方程两边都除以-2得
x=-5
3
5
(4)1- =3x+
2
2
3
(3)x= x+16
2
(3)移项得
合并同类项得
3
x- =16
2
1
- x=16
2
1
方程两边都除以- 得
2
(4)移项得
合并同类项得
9
方程两边都除以- 得
2
x=-32
3
5
- -3x= -1
2
2
9 3
- x=
2 2
1
x=3
知识升华,巩固提升
x = 4.
例2 解方程
解:
1
1
x x3
4
2
1
1
移项,得 4 x 2 x 3.
3
x3
合并同类项,得
4
3
4
x=4
方程两边都除以 ( 或同乘 ),得
4
3
思考:在上面解方程的过程中,移项的依据是什么?
目的是什么?
移项的依据:等式的基本性质1
目的:使含有未知数的项与常数项分别在等号左、右两边,
所以单项式2a2b2k+3与3a2b11-6k是同类项,
所以2k+3=11-6k
移项,得2k+6k=11-3
合并同类项,得8k=8.
方程的两边都除以8,得k=1.
随堂训练,课堂总结
1.解方程
【选自教材P145 习题5.2 第1题】
(1)4y-2=3-y
解(1)移项得
4y+y=3+2
合并同类项得 5y=5
(2)对.
202年初中数学七年级上册第二单元一元一次方程03 一元一次方程(3)解法(一)移项合并同类项

3.2解一元一次方程(一)合并同项与移项一、解一元一次方程的方法1、合并同类项2、移项3、去括号去分母二、移项的定义:把等式一边的某项变号后移到另一边,叫做移项三、移项的性质:把某一项移到式子的另一边,要改变这一项的符号a+b=c → a=c-ba-b=c → a=c+b四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号相同,+(x-3)=x-3(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号相反。
-(x-3)=-x+3(3)(3)等式两边乘同一个数,结果仍相等。
五、解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1概念题一、解一元一次方程的方法1、2、3、二、移项的定义:把等式叫做移项三、移项的性质:把某一项移到式子的另一边,要a+b=c → a=a-b=c → a=四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号号,+(x-3)=(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号号。
-(x-3)=(3)等式两边乘同一个数,结果仍。
五、解一元一次方程的一般步骤包括:、、、、。
3.2.1 解法(一)合并同类项一、合并下列各式中可以合并的项:(1)2x+3x-4x= (2)3y-2y+y=(3)8x+7+2x= (4)7x-4.5x=(5)15x+4x-10x= (6)-6ab+8ab+ab=(7) -p2-p2-p2-p2= (8) m-n2+m-n2=(9) 4(a+b)+(a+b)-7(a+b)=(10)2(x+y)2-7(x+y)2+9(x+y)2=二、完成下面的解题过程:(1)解方程-3x+0.5x=10. (2)解方程3x-4x=-25-20.解:合并同类项,得 . 解:合并同类项,得 .两边,得两边,得∴=x;x;∴=(3)9x—5x=8 (4)4x-6x-x =-15解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=(5) 3+-6-xxx(6)4x+3-3x-2=0x-=5.1⨯4315-7⨯5.2解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=三、用合并同类法解下列方程:(1)6x —x =4 (2)-4x +6x -0.5x =-0.3 (3)9x -5x =8(4)4x -6x -x =-15 (5)2y -25y =6-8 (6)14x +12x =3(7)3(x -7)+5(x -4)=15 (8)7232=+x x (9)314125=-x x(10) 21)15(51=+x (11)3x -1.3x +5x -2.7x =-12×3-6+43.2.2 解法(二)移项把某一项移到式子的另一边,要 一、选择题1.下列变形中属于移项的是( )A.由572x y -=,得275y x --+ B.由634x x -=+,得634x x -=+ C.由85x x -=-,得58x x --=-- D.由931x x +=-,得319x x -=+ 2.解方程6x +1=-4,移项正确的是( )A.6x =4-1B.-6x =-4-1C.6x =1+4D.6x =-4-1 3.解方程-3x +5=2x -1, 移项正确的是( )A.3x -2x =-1+5B.-3x -2x =5-1C.3x -2x =-1-5D.-3x -2x =-1-5 4.下列变形正确的是( ) A.由3921x +=,得3219x =+B.由125x-=,得110x -=C.由105x -=,得15x = D.由747x +=,得41x +=5.方程3412x x -=+,移项,得3214x x -=+,也可以理解为方程两边同时( ) A.加上()24x -+ B.减去()24x -+ C.加上()24x + D.减去()24x + 二、填空(1)方程3y =2的解是y = ; (2)方程-x =5的解是x = ; (3)方程-8t =-72的解是t = ; (4)方程7x =0的解是x = ; (5)方程34x =-12的解是x = ;三、填空:(只写移项的变化,不用计算结果) (1) x +7=13移项得 ; (2) x -7=13移项得 ; (3) 5+x =-7移项得 ; (4) -5+x =-7移项得 ; (5) 4x =3x -2移项得 ;(6) 4x =2+3x 移项得 ; (7) -2x =-3x +2移项得 ; (8) -2x =-2-3x 移项得 ; (9) 4x +3=0移项得 ; (10) 0=4x +3移项得 .四、将下列方程中含有未知数的项移到方程的左边,•将常数项移方程的右边:(1)6+x =10 (2)5433xx -=(3)7-6x =5-4x (4) 11522x x -=-+五.完成下面的解题过程:(1)解方程6x -7=4x -5. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(2)解方程3x -4x =-25-20. 解:合并同类项,得 .系数化为1,得 .(3).解方程2x +5=25-8x. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(5)解方程:5x +2=7x -8解: ,得5x -7x =-8-2. ,得-2x =-10. ,得x =5.3.用先移项后合并的方法解下列方程。
数学人教版七年级上册一元一次方程的解法1

15.解下列方程: (1)2x+3x+5x=100;
解:x=10
(2)6x-3=4x+5;
解:x=4
1 2 (3)3x-4=5x;
解:x=-60
1 (4)2x+8=0.3x-7.
解:x=-75
16.有一列数,按一定规律排列成 1、-4、16、-64、256、„,其中某三 个相邻的数的和是 3328,求这三个数各是多少?
解:x=3
(3)8x-3=6x+2;
5 解:x=2
1 1 (4)2x-0.2x=4x+4.
解:x=80
列方程解决简单的实际问题 6.学校机房今年和去年共购置了 100 台计算机,已知今年购置计算机数量 是去年购置计算机数量的 3 倍,今年购置计算机的数量是( C ) A.25 台 C.75 台 B.50 台 D.100 台
解:设这两个正方形边长分别为 3xcm,4xcm,则 4×3x+4×4x=140,∴x =5,所以 3x=15cm,4x=20cm,即这两个正方形边长分别为 15cm、20cm.
9.关于 x 的方程 x+2a=3 与方程 x+3x=28 的解相同,则 a 的值为( B ) A.2 C.5 B.-2 D.-5 b =ad-bc.已知 d
C )
1 3.如果 x=m 是方程2x-m=1 的解,那么 m 的值是( C ) A.0 C.-2 B.2 1 4 ;3x+3x=5 的解是 x=3 . D.-6 3 x=2 4.方程 10x-6x-2x=3 的解是
5.解下列方程: (1)6x+5x=44;
解:x=4
(2)-x-2x+7x=12;
七年级数学(上册)•人教版
含参一元一次方程解法

⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,可以先分别用参数来表示这两个方程的解,再通过数量关系列等式从而求得参数,这是求解同解方程的最一般方法.
3.易错点1:去括号:括号前是负号时,括号里各项均要变号.
易错点2:去分母:漏乘不含分母的项.
易错点3:移项忘记变号.
【巩固1】若 是关于x的一元一次方程,则 .
【巩固2】方程 去分母正确的是()
A. B.
C. D.
【巩固3】解方程
1.1一元一次方程的巧解
求解一元一次方程的一般步骤是: 去分母; 去括号; 移项; 合并同类项; 未知数的系数化为1.在求解的过程中要要根据方程的特点灵活运用.
1.5课后习题
【演练1】解方程:
【演练2】解方程:
【演练3】⑴方程 与方程 的解相同,则a的值为.
⑵若关于x的方程 与 的解互为相反数,则 =.
若关于x的方程 和 ,求a得值.
【演练4】解关于x的方程:
【演练5】⑴已知关于x的方程 无解,那么 ,
.
若关于x的方程 有唯一解,则题中的参数应满足的条件是
【例6】⑴若方程 没有解,则a的值为.
⑵若方程 有无数解,则 的值是.
当 时,关于x的方程 是一元一次方程.若该方程的唯一解是 ,求p得值.
已知:关于 的方程 有无数多组解,试求 的值.
1.4绝对值方程
解绝对值方程的一般步骤: 分类讨论去绝对值; 分别求解两个方程; 综合两个方程的解; 验证.
【例7】解绝对值方程:
.
含参一元一次方程的解法