断路器永磁机构特点及原理

合集下载

真空断路器用单稳态永磁机构概述

真空断路器用单稳态永磁机构概述

真空断路器用单稳态永磁机构概述贺天元;刘仲晔【摘要】本文对单稳态永磁机构与传统机构以及双稳态永磁机构的特点进行了对比,对其结构与工作原理进行了简单说明,并对其发展前景进行了简要探讨.%This paper compares monostable PMA to traditional actuator and bi-stable PMA. The structure and working principle is simply explained. The development prospect is also discussed.【期刊名称】《船电技术》【年(卷),期】2015(035)010【总页数】4页(P41-44)【关键词】单稳态永磁机构;结构;改进;智能化【作者】贺天元;刘仲晔【作者单位】海军驻湖南地区军事代表室,湖南湘潭 411101;海军驻湖南地区军事代表室,湖南湘潭 411101【正文语种】中文【中图分类】TM464断路器对电力系统起着控制、保护、调节的作用,其能否正常、可靠地工作直接维系着整个系统的安全与稳定。

其中断路器的机械结构是决定其性能的核心部分,从国际、国内对断路器的故障统计数字来看,机械故障占总故障的70%,所以世界各地研究人员一直在努力尝试改进断路器的结构,以使其具有更高的性能与可靠性。

真空断路器的结构在发展过程中大约经历了电磁操动机构、弹簧操动机构和永磁操动机构三个阶段。

在早期使用的电磁操动机构中,当断路器合闸时,电磁线圈通入电流,电磁铁受到端面的吸力开始逐渐向端面移动,并随着电磁铁与端面的距离越来越近,其所受到吸力也越来越大,这也与断路器所需的机械特性相匹配,但是其需要采用机械锁扣来保持合闸位置,由于在合闸过程中,磁路电感变化较大,其产生的反电动势对合闸线圈中的电流增长产生了很强的阻碍作用,并且这种阻碍作用随着合闸速度的增大而增大,使得需要提供数百安培的直流电流才能完成合闸动作,要求的操作功率很大。

电磁操动机构、弹簧操动机构及永磁操动机构

电磁操动机构、弹簧操动机构及永磁操动机构

真空断路器的操动机构主要有三种类型:电磁操动机构、弹簧操动机构及永磁操动机构。

电磁操动机构由一个电磁线圈和铁心,加上分闸弹簧和必要的机械锁扣系统组成,结构简单、零件数少、工作可靠、制造成本低。

同时螺管电磁铁的出力特性容易满足真空断路器合闸反力特性的要求。

其缺点是合闸线圈消耗的功率太大,因而要求配用昂贵的蓄电池,加上电磁机构的结构笨重,动作时间较长。

电磁操动机构出现最早,但目前用量趋于减少。

弹簧操动机构由弹簧贮存分合闸所需的所有能量,并通过凸轮机构和四连杆机构推动真空灭弧室触头动作。

其分合闸速度不受电源电压波动的影响,相当稳定,通过调整弹簧的压力能够获得满足要求的分合闸速度。

其缺点是机械零件多(达160多个),零件的材质、加工精度和装配精度都直接影响机构的可靠性。

弹簧机构的出力特性,基本上就是储能弹簧的释能下降特性,为改善匹配,设计中采用四连杆机构和凸轮机构来进行特性改变。

目前弹簧操动机构技术已经成熟,因此用量较大。

永磁机构是一种全新的操动机构,它利用永磁保持、电子控制、电容器储能。

其优势是结构简单、零件数目少,工作时的主要运动部件只有一个,无需机械脱扣、锁扣装置。

永磁机构分为两种类型:单稳态永磁机构和双稳态永磁机构。

永磁机构尚需经受考验,需解决好电容器的寿命问题、永久磁铁的保持力问题及电子器件的可靠性等问题。

目前其用量还不大。

真空断路器主要结构:真空断路器主要包含三大部分:真空灭弧室、电磁或弹簧操动机构、支架及其结构图他部件断路器采用三相支柱式结构,具有开断性能稳定可靠、无燃烧和爆炸危险、免维修、体积小、重量轻和使用寿命长等特点。

断路器采用全封闭结构,密封性能好,有助于提高防潮、防凝露性能,特别适用于严寒或潮湿地区使用。

三相支柱及电流互感器采用进口户外环氧树脂固体绝缘,或采用户内环氧树脂外包有机硅橡胶固体绝缘;具有耐高低温、耐紫外线、耐老化等特点。

操动机构采用小型化弹簧操动机构,储能电机功率小,分合闸能耗低;机构传动采用直动传输方式,零部件数量少,可靠性高。

真空断路器 永磁操作机构

真空断路器 永磁操作机构

真空断路器永磁操作机构
真空断路器永磁操作机构是一种用于真空断路器的操作机构,它采用了永磁材料来实现断路器的合闸和分闸操作。

相比传统的弹簧操作机构和电磁操作机构,永磁操作机构具有以下优点:
1. 可靠性高:永磁操作机构不需要弹簧或电磁线圈等易损件,因此具有更高的可靠性和更长的使用寿命。

2. 操作速度快:永磁操作机构的合闸和分闸速度非常快,可以大大缩短断路器的动作时间,提高系统的响应速度。

3. 能耗低:永磁操作机构不需要外部能源来维持其工作状态,因此能耗非常低,可以降低系统的运行成本。

4. 体积小:永磁操作机构的结构简单,体积小,可以方便地安装在断路器内部,占用空间小。

5. 环保:永磁操作机构不需要使用弹簧或电磁线圈等易损件,因此减少了废弃物的产生,对环境更加友好。

总之,真空断路器永磁操作机构是一种高性能、高可靠性的操作机构,它可以提高断路器的操作性能和可靠性,降低系统的运行成本,是真空断路器的理想选择。

断路器永磁机构特点及原理

断路器永磁机构特点及原理

断路器永磁机构特点及原理摘要:断路器,作为电力系统中重要的操纵、爱惜设备。

需要借助操动机构来靠得住地完成断路器的分合闸操作。

最近几年来显现了一种新型的操作机构—永磁机构。

它采纳了一种全新的工作原理和结构,相对传统的操动机构来讲,具有更高的靠得住性,因此备受关注。

关键词:断路器;永磁机构引言为了保证电力系统的安全运行,作为操纵、爱惜元件的断路器必需能切断额定电流,开断关合短路电流,开合各类空载和负荷电路。

为了完成这些任务,断路器必需能及时靠得住地分合动静触头,这要借助于操作机构来完成。

因此,操作机构的工作性能和质量好坏,直接决定了断路器的工作性能和靠得住性。

最近几年来,伴随着电力电子技术的进展,显现了一种新型的操作机构—永磁机构。

它采纳了一种全新的工作原理和结构,工作时要紧运动部件只有一个,具有较高的靠得住性,因此备受关注。

1 永磁机构的组成传统的操作机构有电磁操作机构和弹簧操作机构。

电磁操作机构结构较简单,但结构笨重,合闸线圈消耗功率专门大。

弹簧操作机构由弹簧储能、合闸、维持合闸和分闸几个部份组成。

优势是不需要大功率的电源,缺点是结构复杂,制造工艺复杂,本钱高,靠得住性较难保证。

在借鉴了以上两种操作机构的优缺点的基础上,永磁机构进行了改良设计。

设计中使真空断路器分合闸位置的维持通过永久磁铁实现,取代了传统的机械锁扣装置。

这种磁力机构要紧由永久磁铁和分闸、合闸操纵线圈组成,当合闸操纵线圈通电后,它使动铁心向下运动,并由永久磁铁维持在合闸位置;当分闸操纵线圈通电,动铁心向反方向运动,一样由永久磁铁将它保待在另一个工作位置即分闸位置上,也确实是说,该机构在操纵线圈不通电流时它的动铁心有两个稳固工作状态,(合闸和分闸)。

也称双稳态电磁机构[1]。

永磁操动机构作为替代传统操动机构的一种新型机构,组成单元超级简单。

要紧由极化电磁铁、智能操纵器、储能电容器、电源模块、位置传感器等五部份组成。

图1 系统连接组成工作原理框图2 永磁机构动作原理、双线圈电磁铁结构极化电磁铁是永磁机构的要紧执行部件。

永磁断路器工作原理

永磁断路器工作原理

永磁断路器工作原理永磁断路器是一种利用永磁体和电磁铁相互作用来实现断路和闭合的电器设备。

它主要用于电力系统中的过载和短路保护,能够快速切断电路并保护电器设备不受损坏。

在本文中,我们将详细介绍永磁断路器的工作原理。

永磁断路器的主要部件包括永磁体、电磁铁、触头、弹簧、导电材料等。

当电路中出现过载或短路时,电磁铁会受到电流的作用而产生磁场,这个磁场会与永磁体相互作用,使得永磁体受到力的作用而移动,从而使触头与固定触头分离,切断电路。

当电路中的故障被排除后,永磁体和电磁铁之间的作用力消失,永磁体会受到弹簧的作用而回到原位,使得触头再次闭合,电路恢复通电状态。

永磁断路器的工作原理可以分为两个部分:断路和闭合。

首先是断路过程。

当电路中出现过载或短路时,电流会急剧增大,电磁铁受到电流的作用而产生强磁场,这个磁场会与永磁体相互作用,使得永磁体受到力的作用而移动,从而使触头与固定触头分离,切断电路。

在这个过程中,永磁体和电磁铁之间的相互作用起到了关键作用,它们之间的力使得触头能够快速、可靠地分离,从而实现电路的断路保护。

接下来是闭合过程。

当电路中的故障被排除后,电磁铁中的电流减小,磁场减弱,永磁体受到弹簧的作用而回到原位,触头再次闭合,电路恢复通电状态。

在这个过程中,弹簧起到了重要作用,它能够使得永磁体快速、可靠地回到原位,从而实现电路的闭合保护。

总的来说,永磁断路器的工作原理是利用永磁体和电磁铁相互作用来实现断路和闭合的功能。

在电路中出现过载或短路时,电磁铁产生磁场与永磁体相互作用,使得触头分离,切断电路;当故障排除后,永磁体受到弹簧的作用而回到原位,触头再次闭合,电路恢复通电状态。

这种工作原理使得永磁断路器能够快速、可靠地保护电路和电器设备,是电力系统中不可或缺的重要设备。

永磁机构工作原理

永磁机构工作原理

永磁机构工作原理随着电气化铁路运营里程的增长,高速、重载已成为电气化铁路发展的方向,这就要求牵引供电系统为电力机车提供更安全、经济、可靠和高质量的电能,自动过分相技术应运而生,但由于换相过程中极易产生过电压和合闸涌流,对牵引变压器的冲击很大,极大制约自动过分相技术的发展。

自动过分相转换装置的核心部件是真空负荷开关,而真空负荷开关的长寿命和可靠性是急需解决的问题。

从技术上讲,真空灭弧室技术的发展,使其电寿命大大增加。

其机械寿命从传统的两千次跃增为几万次,因此,与其配合的操动机构的机械寿命及可靠性成为较突出的问题。

传统的弹簧操动机构,结构复杂,零件数量多,且加工精度要求高;电磁机构虽然机构相对简单,零件数量少,但电源电压波动对合闸速度影响较大,操作电流大,无法调控分合闸速度和相位;使用寿命没有根本突破,对电力系统操作的过电压和合闸涌流的控制更无从谈起。

永磁机构采用一种全新的工作原理和结构,工作时主要运动部件只有一个,无需机械脱、锁扣装置,故障源少,可靠性较高,且使用寿命长,一般达十万次以上,同时控制分合闸相位,实现同步控制,从而减少过电压和涌流对系统的冲击,减少系统保护的投入,提高系统整体寿命。

因此永磁操作机构是智能选相真空开关的必然选择.1 永磁机构工作原理当该机构处于合闸位时,线圈中无电流通过,由永磁作用保持动铁心在上端。

分闸时,特定方向的电流通过操作线圈,该电流在动铁心上端产生与永磁体磁场相反的磁场,使动铁心受到的磁吸力减小,当动铁心受到的向上的合力小于弹簧的拉力时,动铁心向下运动,实现分闸。

当处于分闸位置,操作线圈中通过与分闸操作相反的电流。

该电流在静铁心上部产生与永磁体磁场方向相同的磁场,在动铁心下部产生与永磁体磁场相反的磁场,使动铁心下端所受到的磁吸力减小。

当操作电流增大到一定值时,向上的电磁合力大于下端的吸力与弹簧的反力,动铁心向上运动,实现合闸。

2 智能选相原理智能选相(同步关合技术)就是开关在电流或电压的过零点进行分、合闸操作,断路器分合闸时间的稳定性是实现同步开断的基本要求.由于永磁机构的机构简单,传动部件少,相对弹簧机构而言,其分合闸时间的分散性较小,有利于发展为同步关合的断路器。

永磁机构原理

永磁机构原理

永磁机构原理
永磁机构是一种利用永磁材料产生磁场的装置,它可以将磁场用于各种应用,如电机、发电机、传感器等。

永磁机构的原理是基于永磁材料的磁性特性和磁场的作用原理。

首先,永磁机构的核心是永磁材料。

永磁材料是一种具有自发磁化特性的材料,它可以在没有外部磁场的情况下产生磁场,并且可以保持这种磁场长时间不衰减。

常见的永磁材料有铁氧体、钕铁硼、钴磁铁等。

这些材料具有较高的矫顽力和剩磁,使得它们可以产生较强的磁场。

其次,永磁机构利用永磁材料产生的磁场来实现各种功能。

在电机中,永磁机构可以产生旋转磁场,从而驱动电机转动;在发电机中,永磁机构可以产生感应磁场,从而将机械能转化为电能;在传感器中,永磁机构可以产生静态磁场,从而实现对磁场变化的敏感检测。

这些功能都是基于永磁材料产生的磁场所实现的。

另外,永磁机构的工作原理还与磁场的作用原理密切相关。

磁场是一种具有方向和大小的物理场,它可以对磁性物质和电流产生作用。

在永磁机构中,磁场可以通过永磁材料的磁化产生,并且可
以对周围的物质和电流产生作用。

这种作用可以通过磁力线的分布
和磁场的能量来描述,从而实现对物理过程的控制和转换。

总的来说,永磁机构的原理是基于永磁材料的磁性特性和磁场
的作用原理。

它利用永磁材料产生的磁场来实现各种功能,如驱动、转换和检测等。

因此,永磁机构在电机、发电机、传感器等领域具
有重要的应用价值,对于提高能源利用率和提升设备性能具有重要
意义。

断路器的原理

断路器的原理

断路器的原理
断路器是一种用于保护电路的电气开关装置,其工作原理主要是通过电磁机构或热释放原理实现的。

以下是断路器的工作原理:
1. 电磁机构原理:
断路器中包含有电磁线圈,当电路中的电流超过了设定的额定电流值时,电磁线圈中的电流也会增大。

当电流达到设定的故障电流值时,电磁线圈产生的电磁力会使得触发器释放,断开电路,阻止过大的电流流过。

这是由于电磁线圈内产生的电磁力会抵消电路中的电流力。

2. 热释放原理:
断路器中还包含有一种特殊的材料,称为"双金属片"。

当电路中的电流超过额定电流时,双金属片受热变形,弯曲并失去其形状记忆特性。

一旦温度升高到能使双金属片弯曲的程度,它将促使触发器释放,使断路器打开,这样在短时间内过大的电流也会得到有效阻断。

断路器是非常重要的电气保护装置,主要用于预防电路中的过载和短路故障。

它能够在电路中的电流超过安全值时迅速切断电路,从而保护其他电气设备和人身安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

断路器永磁机构特点及
原理
Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
断路器永磁机构特点及原理摘要:
断路器,作为电力系统中重要的控制、保护设备。

需要借助操动机构来可靠地完成断路器的分合闸操作。

近年来出现了一种新型的操作机构—永磁机构。

它采用了一种全新的工作原理和结构,相对传统的操动机构来说,具有更高的可靠性,因此备受关注。

关键词:断路器;永磁机构
引言
为了保证电力系统的安全运行,作为控制、保护元件的断路器必须能切断额定电流,开断关合短路电流,开合各种空载和负荷电路。

为了完成这些任务,断路器必须能及时可靠地分合动静触头,这要借助于操作机构来完成。

因此,操作机构的工作性能和质量优劣,直接决定了断路器的工作性能和可靠性。

近年来,伴随着电力电子技术的发展,出现了一种新型的操作机构—永磁机构。

它采用了一种全新的工作原理和结构,工作时主要运动部件只有一个,具有较高的可靠性,因此备受关注。

1 永磁机构的构成
传统的操作机构有电磁操作机构和弹簧操作机构。

电磁操作机构结构较简单,但结构笨重,合闸线圈消耗功率很大。

弹簧操作机构由弹簧储能、合闸、保持合闸和分闸几个部分组成。

优点是不需要大功率的电源,缺点是结构复杂,制造工艺复杂,成本高,可靠性较难保证。

在借鉴了以上两种操作机构的优缺点的基础上,永磁机构进行了改进设计。

设计中使真空断路器分合闸位置的保持通过永久磁铁实现,取代了传统的机械锁扣装置。

这种磁力机构主要由永久磁铁和分闸、合闸控制线圈组成,当合闸控制线圈通电后,它使动铁心向下运动,并由永久磁铁保持在合闸位置;当分闸控制线圈通电,动铁心向反方向运动,同样由永久磁铁将它保待在另一个工作位置即分闸位置
上,也就是说,该机构在控制线圈不通电流时它的动铁心有两个稳定工作状态,(合闸和分闸)。

也称双稳态电磁机构[1]。

永磁操动机构作为替代传统操动机构的一种新型机构,构成单元非常简单。

主要由极化电磁铁、智能控制器、储能电容器、电源模块、位置传感器等五部分组成。

图1 系统连接组成工作原理框图
2 永磁机构动作原理
、双线圈电磁铁结构
极化电磁铁是永磁机构的主要执行
部件。

组成, 励磁线圈,如图2所示[2]。

图2 双线圈电磁铁结构
、双稳态电磁铁的工作原理
永磁机构与传统的电磁机构工作原理基本相似,所不同的是分合闸状态前者是通过现代新型稀土永磁体的强大永磁吸力保持状态;后者是靠机械连锁保持状态。

因此,永磁机构(分、合)动作过程是启动初始靠电磁力F s 克服永磁反力F m 及机械摩擦力f 。


铁心所受的合力F 为:
ΣF=F s –F m –f
当ΣF 〉0时动铁心开始运动,当铁心移动到某一临界间隙时,永磁体磁力F m 由反力变为
助动力:
ΣF=F s +F m –f
由此可见,电磁合力增大,迅速完成(分、合)过程,此后线圈断电由永磁吸力保持(分、合)状态,如图三所示,应用于真空断路器的操动机构使分合闸动作迅速,且分合闸时间一致性好,使其应用进一步扩展。

如图3
上部的静铁芯之间间隙较小,相对应的磁阻也较小,而动铁芯与下部的静铁芯之间间隙较大,相对应的磁阻也较大,故永久磁铁所形成的磁力线大部分集中在上部,从而产生很大的向上吸引力,将动铁芯紧紧地吸附在上面。

如图3 合闸过程所示,当断路器要合闸时,合闸线圈通过合闸电流,产生感应
磁场,该磁场对动铁芯产生向下的吸引力,随着合闸电流的增大,该向下的吸引力由
小变大,当合闸电流到达某一临界值时,动铁芯受到的合力方向向下,开始向下运
动。

如图3 合闸状态所示,当动铁芯到达下部时,永久磁铁和合闸线圈两者产生的
磁场将动铁芯牢牢地吸附在下部。

几秒钟以后,合闸电流消失,此时永久磁铁产生的
磁场将动铁芯保持在下部位置。

至此,断路器完成合闸操作。

基于同样的原理,当分闸线圈得电后,动铁芯向上运动,如图3 分闸过程所
示。

同样由永久磁铁将它保持在分闸位置。

由以上动作原理可知,永久磁铁与分合闸线圈相配合,较好地解决了合闸时需要
大功率能量的问题,因为永久磁铁可以提供磁场能量,作为合闸之用,合闸线圈所需
提供的能量便相对可以减少,这就使我们可以减小合闸线圈的尺寸和工作电流。

永磁机构的控制部分
智能控制器主要由五大部分组成:电源模块、信号输入模块、信号输出模块、专用控制芯片以及电力电子驱动模块,原理框图如下:
图4 水磁机构的控制部分框图
储能电容器用于储存能量,当合分闸时,它可向合闸线圈或分闸线圈提供高达2600W的脉冲电能,使断路器完成合分闸操作。

每次放电后,它能在10s内被重新充电。

晶体管和晶闸管等电力半导体用于分合闸电流的控制。

当分合闸线圈突然失电时,由于分合闸线圈属电感性元件,电流不能突变,会产生过电压,这时采用续流二极管可以很好地解决这一问题。

控制器由可编程元件FPGA组成,可以说FPGA是整个控制部分的灵魂。

通过设定的预置程序,我们实现储能电容充电恒压,过充电截压保护,就地合分闸和远方合分闸,合分闸遥信输出,与电力系统自动综合保护联合实施各种保护合闸和重合闸操作等功能。

3 特点
(1)永久磁铁与分闸、合闸控制线圈结合,解决了合闸时需要大功率能量的问题。

(2)真空灭弧室的动触头靠永久磁铁产生的力通过拐臂、绝缘拉杆使其保持在合闸、分闸位置上,取代传统的机械锁扣方式,机械结构大为简化,仅有几个活动部件,零件总数约为50件左右,耗材少,节能且成本低。

(3)操动机构无需机械锁扣和辅助电器,机械动作的可靠性大大提高,能够实现免维护,节省维修费用。

(4)真空断路器采用永磁操动机构,永磁力可保证100年不消失,该机构寿命高达10万次,以电磁力进行分合闸操作,以永磁力进行双稳态保持,简化了传动链,降低了能耗和噪音。

开断能力强,安全可靠。

与传统的弹簧机构和电磁机构相比,机械寿命至少提高3倍。

(5)采用先进的真空灭弧室,额定电流为630A-3150A,额定短路开断电流为—40kA,技术性能达到世界领先水平。

(6)断路器机构简单,布局合理。

真空灭弧室纵向安装在绝缘筒内,即使在恶劣的环境下,仍能保持很高的抗爬电性能及绝缘性能。

本产品无爆炸、无污染、噪音低、体积小、重量轻、寿命长。

参考文献:
[1] 林莘。

永磁机构与真空断路器[M].北京:机械工业出版社,2002.
[2] 谭东现,李岩,牟坚,等.动态式双稳态永磁机构的研究[J].高压电器,2007,43(3):229-231。

相关文档
最新文档