混凝土第八章

合集下载

第八章钢筋混凝土构件正常使用极限状态验算

第八章钢筋混凝土构件正常使用极限状态验算

第八章钢筋混凝土构件正常使用极限状态验算钢筋混凝土构件正常使用极限状态验算,是指在使用过程中,构件受到工作荷载作用时,保证其安全可靠地工作的一种验算方法。

该验算方法主要涉及构件的强度验算和变形验算两个方面。

首先,对于强度验算,需要计算构件所受工作荷载产生的应力和变形,与构件的抗弯强度、抗压强度、抗剪强度等进行比较。

通常,构件的设计强度可以通过相应的设计规范中的计算公式来确定。

例如,在抗弯强度验算时,可以根据规范中的受拉区和受压区的计算公式,计算出构件的最大抗弯强度。

然后,将该抗弯强度与施加在构件上的工作荷载产生的弯矩进行比较,以确定构件是否能够满足强度要求。

另外,对于变形验算,主要考虑构件在受荷状态下的变形情况,以确保构件在使用过程中不会产生过大的变形,影响正常使用。

一般来说,变形验算主要包括挠度验算和裂缝宽度验算。

挠度验算需要计算构件在工作荷载下的挠度,与规范中所要求的挠度限值进行比较,以确定构件的变形是否满足要求。

裂缝宽度验算则需要计算构件在工作荷载下的裂缝宽度,与规范中规定的最大裂缝宽度进行比较,以确保构件在使用过程中不会出现过大的裂缝。

在进行正常使用极限状态验算时,需要结合实际工程情况,确定构件的荷载组合,并考虑不同荷载组合下的最不利情况。

同时,还需要注意构件的截面尺寸、钢筋配筋、混凝土等材料的性能参数等因素的准确性,以提高验算的准确性和可靠性。

最后,进行正常使用极限状态验算的目的是为了确保钢筋混凝土构件在使用过程中不会发生破坏或损坏,保证其安全、稳定和可靠地工作。

通过合理地进行验算,可以有效避免因工作荷载超过构件承载能力而引起的结构安全隐患,提高工程质量和使用寿命。

总之,钢筋混凝土构件正常使用极限状态验算是一项重要的设计工作,需要综合考虑构件的强度和变形特性,并利用相应的设计规范和计算方法进行验算。

只有通过科学、合理的验算,才能保证结构在使用过程中的安全可靠性。

第8章 钢筋混凝土构件的裂缝、变形和耐久性

第8章 钢筋混凝土构件的裂缝、变形和耐久性

裂缝的控制等级分为三级: 正常使用阶段严格要求不出现裂缝的构件,裂缝控制 等级属一级; 正常使用阶段一般要求不出现裂缝的构件,裂缝控制 等级属二级; 正常使用阶段允许出现裂缝的构件,裂缝控制等级属 三级。 钢筋混凝土结构构件由于混凝土的抗拉强度低,在正 常使用阶段常带裂缝工作,因此,其裂缝控制等级属于三 级。若要使结构构件的裂缝达到一级或二级要求,必须对 其施加预应力,将结构构件做成预应力混凝土结构构件。 试验和工程实践表明,在一般环境情况下,只要将钢 筋混凝土结构构件的裂缝宽度限制在一定的范围以内,结 构构件内的钢筋并不会锈蚀,对结构构件的耐久性也不会 构成威胁。因此,裂缝宽度的验算可以按下面的公式进行
宽度还需乘以荷载长期效应裂缝扩大系数τ l。对各种受力
构件,《规范》均取τ l=0.9×1.66≈1.5.这样,最大裂缝宽 度为
ω max = τ sτ lω m
安全、适用和耐久,是结构可靠的标志,总称为结构 的可靠性。 对于使用上需要控制变形和裂缝的结构构件,除了要 进行临近破坏阶段的承载力计算以外,还要进行正常使用 情况下的变形和裂缝验算。 因为,过大的变形会造成房屋内粉刷层剥落、填充墙 和隔断墙开裂及屋面积水等后果;在多层精密仪表车间 中,过大的楼面变形可能会影响到产品的质量;水池、油 罐等结构开裂会引起渗漏现象;过大的裂缝会影响到结构 的耐久性;过大的变形和裂缝也将使用户在心理上产生不 安全感。 此外,混凝土结构是由多种材料组成的复合人工材 料,由于结构本身组成成分及承载受力特点,在周围环境
Ψ= 1.1- 0.65ftk/(ρteσ sk)
(8-11)
式中ftk——混凝土抗拉强度标准值,按附表1-1采用。
为避免过高估计混凝土协助钢筋抗拉的作用,当按式 (8-11)算得的Ψ<时,取Ψ=0.2;当Ψ=1.0时,取Ψ=1.0.对直 接承受重复荷载的构件,Ψ=1.0。 (2)最大裂缝宽度ωmax 由于混凝土的非匀质性及其随机性,裂缝并非均匀分 布,具有较大的离散性。因此,在荷载短期效应组合作用 下,其短期最大裂缝宽度应等于平均裂缝宽度ω m乘以荷载 短期效应裂缝扩大系数τ s。根据可靠概率为95%的要求, 该系数可由实测裂缝宽度分布直方图的统计分析求得:对 于轴心受拉和偏心受拉构件,τ s=1.9;对于受弯和偏心受 压构件已τ s=1.66。此外,最大裂缝宽度ω max尚应考虑在 荷载长期效应组合作用下,由于受拉区混凝土应力松弛和 滑移徐变裂缝间受拉钢筋平均应变还将继续增长;同时混 凝土收缩,也使裂缝宽度有所增大。因此,短期最大裂缝

第八章-钢筋混凝土构件的变形、裂缝及混凝土结构的耐久性

第八章-钢筋混凝土构件的变形、裂缝及混凝土结构的耐久性
引起裂缝的原因很多,主要有:
1.混凝土收缩或温度变形受到约束; 2. 施工措施不当; 3. 基础不均匀沉降; 4. 钢筋锈蚀;
5.荷载作用;
1. 混凝土收缩或温度变形受到约束产生的裂缝
大体积混凝土水化过程 中发热量很大,内部温度较 高,混混凝凝土土体收积缩膨或胀温,度内变外 温化差时很,大体,积内会部发混生凝变土化膨,胀 受若到能外自部由已变硬形化则混不凝会土产的生约 束裂,缝使;构但件若表变面形混受凝到土约受束拉, 产则生会裂在缝混。凝对土于中杆产件生系拉统应,
无滑移理论
认为开裂后钢筋与混凝土之间仍保持可靠 粘结,无相对滑动;沿裂缝深度存在应变梯度 ,表面裂缝宽度与混凝土表面离钢筋的距离成 正比。可见,保护层越厚表面裂缝越宽。
裂缝综合理论
它综合了上述两种理论中影响裂缝宽度的
主要因素,并在统计回归的基础上建立了实用 的计算公式。裂缝综合理论也许称不上“理论 ”,实际上只是一种实用的计算方法。
5.荷载 产生的 裂缝
拉、弯、剪、扭、粘结等引起的裂缝
目前,只有在拉、弯状态下混凝土横向裂 缝宽度的计算理论比较成熟。这也是下面 所要介绍的主要内容
我国《规范》将裂缝控制等级分为三级
一级:严格要求不出现裂缝的构件。按荷载效应标准组合进行验算 时,构件受拉边缘混凝土不应产生拉应力;
二级:一般要求不出现裂缝的构件。按荷载效应标准组合验算时, 构件受拉边缘混凝土拉应力不应大于轴心抗拉强度标准 值 ft k ;而按荷载效应准永久值组合验算时,构件受拉边
3. 跨高比
f S M kl02 B
l0越大,f越大。因此,我们可以做到在承载力计算前选定足够 的截面高度或较小的跨高比l0/h,配筋率又限制在一定范围内,
如果满足了承载力要求,计算挠度也必然满足

第八章-约束混凝土详述

第八章-约束混凝土详述

8.3.2 极限强度计算
钢管混凝土抗压强度的两种极端情况
8.4 局部受压
(BC段)
载荷继续增加,钢管在纵向和切向应力的共同作用下达到初始屈服 状态(B点),但其承载尚有余量;钢管表面此时会出现屈服线。轴力缓
慢增加,但是试件的应变增长的很快,切向拉应力增大,也加大了对核
心混凝土的约束应力,进而提高了其三轴抗压强度,试件的总承载力仍 能继续增加。
(CD段)
当到达C点时达到极限轴力,钢管纵向应力减小,总承载力逐渐 降低,形成下降段;试件此时会出现明显的鼓凸或皱点(D点)
1
nc2 5.5B
2
1
s 2
2B
s fs
(12 13)
式中:B为核芯面积边长;n和c为纵筋的数量和间距;s为箍筋间距;Poc 为核芯混凝土不受约束时的承载力。
③给定应力-应变全曲线的形状,上升段(oA)为二次抛物线,其余AB, BCD和DE为直线。 C点的应力取为0.85fcc,残余强度为0.3fcc,几个
面上有效约束核芯面积最小。通过分析和试验数据回归,给出参数, 和面积Aeff 、Acc的计算式。 ②有效约束核芯混凝土的抗压强度取决于体积配箍率s和约束混凝土达
峰 值强度时的箍筋应力 。
采用正方形箍筋、且纵筋沿周边均匀布置时,核芯混凝土抗压强度 的提高系数为:
fcc fc
ks
1 B2 140Poc
8.3 钢管混凝土
钢管混凝土短柱轴心受压的典型轴力(平均应力)-应变 曲线反映了不同阶段的受力特点
(OA段)
试件刚开始加载时,处于弹性阶段,钢管和混凝土的应力都小,钢 材泊松比大,钢管横向膨胀变形略大,若粘结良好,则钢管如同纵向钢 筋一样和混凝土共同作用;

第八章 钢筋混凝土受弯构件变形与裂缝宽度计算汇总

第八章 钢筋混凝土受弯构件变形与裂缝宽度计算汇总

y —裂缝间纵向受拉钢筋应变不均匀系数
f tk y 1.1 0.65 sq te
当y <0.2时,取y =0.2; 当y >1.0时,取y =1.0; 对直接承受重复荷载作
用的构件,取y =1.0。
sq ——按荷载准永久组合计算的钢筋混凝土
构件纵向受拉普通钢筋应力。 对于受弯构件
sq
M M EI M EI EI
截面弯曲刚度EI 就是使截面产生单位曲率所施 加的弯矩值体现了截面抵抗弯曲变形的能力,同时 也反映了截面弯矩与曲率之间的物理关系。 对于弹性均质材料截面,EI为常数,M- 关系 为直线。如下图中的黑线所示。
②钢筋混凝土构件
由于混凝土开裂、弹塑性应力-应变关系和钢筋 屈服等影响,钢筋混凝土适筋梁的M-f 关系不再是直 线,而是随弯矩增大,截面曲率呈曲线变化。如下图 红线所示。
★如果两条裂缝的间距小于2 l,则由于粘结应力传递 长度不够,混凝土拉应力不可能达到ft,因此将不会出 现新的裂缝,裂缝的间距最终将稳定在(l ~ 2 l)之间, 平均间距可取1.5 l。 ★粘接应力传递长度l越短,裂缝分布越密。粘接强度 越高, l越短;钢筋面积相同时小直径钢筋表面积大些, l就短些;低配筋率钢筋, l长些。
8.3.3平均裂缝宽度Wm
c wm s lm clm s (1 )lm s
c (1 ) 0.85 s
s y s y
sk
Es
◆平均裂缝宽度
wm 0.85 y
sk
Es
lm
8.3.4最大裂缝宽度及其验算 实测表明,裂缝宽度具有很大的离散性。取实测 裂缝宽度wt与上述计算的平均裂缝宽度wm的比值 为 s l 。

混凝土结构设计原理 课后习题第八章答案

混凝土结构设计原理 课后习题第八章答案

第八章8.2承受集中荷载的T 形截面独立梁,截面尺寸为250mm b =,f 450mm b '=,f 100mm h '=, 500mm h =。

作用于梁截面上的弯矩90kN m M =⋅,60kN V =,12kN m T =⋅。

混凝土强度等级为C25,纵向钢筋采用HRB400级,箍筋采用HPB235级。

试配置纵向钢筋和箍筋。

解:查附表知,C25级混凝土:2c 11.9N/mm f =,2t 1.27N/mm f =;HRB400级钢筋:2y 360N/mm f =;0s 50035465mm h h a =-=-=(环境类别未知,按一类环境取25mm c =,s 35mm a =)截面塑性抵抗矩的计算: 腹板:()()2263100450250110mm 22f tf f h W b b '''=-=⨯-=⨯ 翼缘:()()2232503350025013020833mm 62tw b W h b =-=⨯⨯-= 631302083311014020833mm t tw tf W W W '=+=+⨯=(1)验算截面尺寸()()0/465100/250 1.464w f h b h h '=-=-=<3622060101210 1.59N/mm 0.250.25 1.011.9 2.975N/mm 0.82504650.814020833c c t V T f bh W β⨯⨯+=+=<=⨯⨯=⨯⨯所以截面尺寸满足要求(2)验算是否按构造配筋3622060101210 1.37N/mm 0.70.7 1.0 1.270.889N/mm 2504650.814020833t t V T f bh W ⨯⨯+=+=>=⨯⨯=⨯⨯ 所以必须按照计算配筋(3)判别腹板配筋是否可以忽略剪力V 或扭矩T6309010 3.2336010465M Vh λ⨯===>⨯⨯,取3λ= )()00.87510.875 1.272504653132.3kN<60kN t f bh λ+=⨯⨯⨯+=,故不能忽略剪力影响 0.1750.175 1.2714020833 3.1kN mm 12kN mm t t f W =⨯⨯=⋅<⋅,故不能忽略扭矩的影响(4)扭的分配 腹板:130208331211.1kN m 14020833tw w t W T T W ==⨯=⋅ 翼缘:6110120.9kN m 14020833tf f t W T T W '⨯'==⨯=⋅ (5)腹板箍筋的配置 ()3tw 6w 01.51.5 1.01160101302083310.2(1).10.23111.110250465t W V T bh βλ===>⨯⨯+++⨯+⨯⨯⨯⨯,取1t β=由001.75(1.5)1sv u t t yv A V V f bh f h Sβλ≤=-++得 ()30201.75 1.75(1.5)6010 1.51 1.272504651310.284mm /mm 210465t t sv yv V f bh A s f h βλ--⨯--⨯⨯⨯⨯++=≥=⨯ 对腹板矩形cor 2250225200mm b b c =-=-⨯=cor 2500225450mm h h c =-=-⨯=2cor 20045090000mm A =⨯=,()2cor 22004501300mm u =⨯+=6210.214mm /mm st A s === 腹板采用双肢箍,故腹板上单肢箍筋所需要的面积为21110.2840.2140.356mm /mm 2sv st sv st A A A A s s ns s +=+=+= 腹板高为500mm ,查表知箍筋最小直径为6mm ,max 200mm S =,选箍筋直径为8mm ,则150.3141.3mm 0.2480.356sv A s ===,取140mm s =,即A 8@140 250.3 1.270.287%0.280.280.169%250140210sv t sv yv A f bs f ρ⨯===>=⨯=⨯,满足要求(6)腹板纵筋计算①配置在梁截面弯曲受拉区的纵向钢筋先判别T 形截面类型:()()10/2 1.011.9450100465100/2222.2kN m 90kN m c f f f f b h h h M α'''-=⨯⨯⨯⨯-=⋅>=⋅ 故为第一类T 形截面6221090100.0781.011.9450465s c f M f b h αα⨯==='⨯⨯⨯b 110.0810.518ξξ===<=1021.011.94504650.081560.3mm 360c f s y f b h A f αξ'⨯⨯⨯⨯=== t min y 1.27max 0.2%.45max 0.2%.450.002360f f ρ⎧⎫⎪⎪⎧⎫==⨯=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,0,0 2min 0.002250500250mm stl A bh ρ>=⨯⨯=,满足要求②腹板受扭纵筋 由11//stl y stl y cor st yv cor st yv A f sA f u A f u A f s ζ==得:2121013001.20.214194.7mm 360yv cor st stl y f u A A s f ζ⨯=⨯=⨯⨯= 6312100.826010250T Vb ⨯==<⨯⨯,min 194.70.156%0.60.189%250500stl tl tl A bh ρρ===<===⨯ 故取2,min 0.189%250500236.7mm tl tl bh ρρ==⨯⨯=③腹板纵筋总用量 顶部:2200236.736.4mm 1300cor stl cor b A u ⨯=⨯=,选配2C 8(2101mm stl A =) 底部:2560.336.4596.7mm cor s stl cor b A A u +⨯=+=,选配2C 20(2628mm stl A =) 每侧面:2450236.781.9mm 1300cor stl cor h A u ⨯=⨯=,选配2C 8(2101mm stl A =) (7)翼缘受扭钢筋计算翼缘不承担剪力,按纯扭构件计算对翼缘:cor f 210022550mm b h c '=-=-⨯=cor f 2450250225150mm h b b c '=--=--⨯=2cor 501507500mm A =⨯=,()2cor 250150400mm u =⨯+=受扭箍筋:66210.350.22mm /mm st T f W A s ''-=== 为与腹板箍筋协调,取A 8(2150.3mm st A =),取140mm s =,150.30.359140st A s ==,即A 8@140 250.30.719%0.169%100140sv sv A bs ρ⨯===>⨯,满足要求 受扭纵筋:212104001.20.359100.5mm 360yv cor st stl y f u A A s f ζ⨯=⨯=⨯⨯=,选配4C 8(2201mm stl A =)。

混凝土结构设计原理 第八章钢筋混凝土构件裂缝及变形的验算习题+答案

第八章 钢筋混凝土构件裂缝及变形的验算一、填空题1.混凝土构件裂缝开展宽度及变形验算属于 正常使用 极限状态的设计要求,验算时材料强度采用 标准值 。

2. 增加截面高度 是提高钢筋混凝土受弯构件刚度的最有效措施。

3. 裂缝宽度计算公式中的,σsk是指裂缝截面处纵向手拉刚筋的应力,其值是按荷载效应的 标准 组合计算的。

4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而 曾大。

用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距 小(大、小)些。

5.钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在 同号 弯矩范围内,假定其刚度为常数,并按 最大弯矩 截面处的刚度进行计算。

6.结构构件正常使用极限状态的要求主要是指在各种作用下 裂缝宽度和变形值 不超过规定的限值。

7.裂缝间纵向受拉钢筋应变的不均匀系数Ψ是指 裂缝间钢筋平均应变与裂缝截面钢筋应变 之比,反映了裂缝间 受拉区混凝土 参与工作的程度。

8.平均裂缝宽度是指 受拉钢筋合力重心 位置处构件的裂缝宽度。

9. 钢筋混凝土构件裂缝宽度计算中,钢筋应变不均匀系数ψ愈小,说明裂缝之间的混凝土协助钢筋抗拉的作用 抗拉作用越强。

10.钢筋混凝土受弯构件挠度计算与材料力学方法()相比,主要不同点是前者沿长向有变化的 抗弯刚度 。

11. 混凝土结构的耐久性与结构工作的环境有密切关系,纵向受力钢筋的混凝土保护层厚度 由所处环境类别决定。

12.混凝土的耐久性应根据结构的 使用环境 和设计使用年限进行设计。

二、选择题1. 计算钢筋混凝土梁的挠度时,荷载采用( B )A、平均值;B、标准值;C、设计值。

2. 当验算受弯构件挠度时,出现f>[f]时,采取( C )措施最有效。

A、加大截面的宽度;B、提高混凝土强度等级;C、加大截面的高度;D、提高钢筋的强度等级。

3. 验算受弯构件裂缝宽度和挠度的目的是( B )。

A、使构件能够带裂缝工作;B、使构件满足正常使用极限状态的要求;C、使构件满足承载能力极限状态的要求;D、使构件能在弹性阶段工作。

混凝土结构设计原理 第八章


第八章 受扭构件
2)部分超筋破坏(纵筋或箍筋过多)
3)完全超筋破坏(纵筋和箍筋均过多)
4)少筋破坏(纵筋和箍筋均太少)
第八章 受扭构件
1)适筋破坏(纵筋和箍筋合适) ①开裂前受扭钢筋混凝土构件 呈弹性特征。 ②随着扭矩增大,构件表面相
继出现多条大体连续或不连续
的与构件纵轴线成某一交角的 螺旋形裂缝,开裂后扭转角明 显增大,扭转刚度明显降低。
第八章 受扭构件
8.3 复合受扭构件承载力计算
在弯矩、剪力和扭矩的共同作用下,各项承载力是相互 关联的,其相互影响十分复杂。 为了简化,《混凝土结构设计规范》偏于安全地将受弯 所需的纵筋与受扭所需纵筋分别计算后进行叠加,而对剪 扭作用为避免混凝土部分的抗力被重复利用,考虑混凝土 项的相关作用,钢筋的贡献不考虑相关性,采用简单叠加 方法。
(1)协调扭转的概念 在超静定结构,扭矩是由相邻构件的变形受到约束而产 生的,不能仅由静力平衡条件求得,还应根据变形协调条 件来决定。 扭矩大小与受扭构件的抗扭刚度有关,且会产生内力重 分布。(扭矩大小与构件受力阶段的刚度比有关,不是定 值,需要考虑内力重分布进行扭矩计算)。 协调扭转通过受扭构造要求保证。
置过少。扭转裂缝一经出现,构件即告破坏,极限扭矩和 开裂扭矩非常接近,属脆性破坏(受扭承载力取决于混凝土 的抗拉强度)。工程设计时应避免出现这种情况。
第八章 受扭构件
第八章 受扭构件
8.2.2 纯扭构件的开裂扭矩
一、矩形截面纯扭构件
纯扭构件开裂前受扭钢筋的应力很小,因此在研究开裂扭
矩时,可忽略钢筋的影响,视为与素混凝土纯扭构件相似。 (1)按塑性理论计算 假定混凝土为理想塑性材料,开裂时, 截面上各点应力均达到 ft 45o

混凝土结构中的受扭构件

8.1 概 述
第八章 受扭构件
8.2 纯扭构件的开裂扭矩
一、开裂前后的受力性能 1、开裂前,钢筋混凝土纯扭构件的受力与弹性扭转理 论基本吻合; 2、开裂前,受扭钢筋的应力很低,可忽略钢筋的影响; 3、开裂前,矩形截面受扭构件截面上的剪应力分布见 下页图,最大剪应力tmax发生在截面长边中点; 4、(开裂前,主拉应力和主压应力迹线沿构件表面成 螺旋型,且构件侧面的主拉应力和主压应力相等;) 5、当主拉应力达到混凝土抗拉强度时,在构件的某个 薄弱部位形成裂缝,裂缝沿主压应力迹线迅速延伸; 6、对于素混凝土构件,开裂会迅速导致构件破坏,破 坏面呈一空间扭曲曲面。
第八章 受扭构件
第八章 受扭构件
8.1 概 述 一、受扭构件的概念
截面上有扭矩作用,且扭矩值不可忽略的构件。
二、受扭构件的分类(按引起扭转的原因分类)
平衡扭转和协调扭转(亦称约束扭转)
8.1 概 述
第八章 受扭构件
1、平衡扭转
(1)平衡扭转的概念
构件中的扭矩由荷载直接引起,其值可由平衡条件直接求出。 该类扭转称平衡扭转。
h
b
hw
(2)Wtw、 W’tf、 Wtf的计算
hf
bf
b Wtw (3h b) Wtf (b f b) 6 2
2
h2 f
Wtf
hf 2 2
(bf b)
▲翼缘宽度应满足bf' ≤b+6hf' 及bf ≤b+6hf的条件,且hw/b≤6。
8.2 开裂扭距
第八章 受扭构件
f yv Ast1 Tu 0.35 1.2 z Acor ftWt sf tWt
f yv Ast1
z
f yv Ast1 sf tWt

钢筋混凝土第八章受拉构件

第八章受拉构件(64分)一填空题(每空1分,共3分)1.轴心受拉构件破坏时,全部拉力由承担。

2.小偏心受拉构件的判断标准为。

3.对于小偏拉构件,拉力的存在使得其斜截面的受剪承载力。

二选择题(每题2分,共18分)1.仅配筋率不同的甲, 乙两轴拉构件即将开裂时, 其钢筋应力()(A)甲≈乙 (B)甲>乙(C)甲<乙 (D)不能肯定2. 矩形截面不对称配筋大偏拉构件()(A)没有受压区, As′不屈服 (B)有受压区, 但As′一般不屈服(C)有受压区, 且As′屈服 (D)没有压区,As'屈服3. 矩形截面对称配筋大偏拉构件()(A)As′受压不屈服 (B)As′受压屈服(C)As′受拉不屈服 (D)As′受拉屈服4. 矩形截面不对称配筋小偏拉构件()(A)没有受压区, As′不屈服 (B)没有受压区, As′受拉屈服(C)有受压区, As′受压屈服 (D)有受压区, As′不屈服5. 矩形截面对称配筋小偏拉构件()(A)As′受压不屈服 (B)As′受拉不屈服(C)As′受拉屈服 (D)As′受压屈服6. 偏心受拉构件斜截面受剪能力Vu=Vc+Vsv-0.2N, 当Vu<Vsv时(A)取Vu=Vsv (B)取Vu=Vc (C)取Vu=0 (D)取Vsv=07. 偏拉构件的抗弯承载力(A)随轴向力的增加而增加 (B)随轴向力的减小而增加(C)小偏拉时随轴向力的增加而增加 (D)大偏拉时随轴向力的增加而增加8.下列说法中正确的是()(A)大偏心受拉构件破坏时裂缝已经贯通 (B) 大偏心受拉构件没有受压区(C)小偏心受拉构件破坏时裂缝已经贯通 (D) 小偏心受拉构件存在受压区9.对于小偏拉构件,拉力的存在使得其斜截面的受剪承载力()(A)降低 (B)提高 (C)不好确定三简答题(18分)1.小偏拉构件和大偏拉构件的破坏形态有何不同?2.试说明为什么大、小偏心受拉构件的区分只与轴向力的作用位置有关,与配筋率无关?3.怎样区别偏心受拉构件所属的类型?四、计算题(共25分)1.已知截面尺寸为b×h =300mm×500mm的钢筋混凝土偏拉构件,承受轴向拉力设计值N =300kN,弯矩设计值M=90kN·m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、截面抗弯刚度的定义;均质弹性材料和非均质弹塑性材料的抗弯刚度有何不同?
截面刚度:使截面产生单位转角所需施加的弯矩值.弹性材料的硬力应变曲线通常呈线性状态,塑性材料的硬力应变曲线通常呈非线性状态。

2、我国《混凝土结构设计规范》对受弯构件截面弯曲刚度是如何定义的?
在曲线的0.5 Mu~0.7Mu区域内,曲线上的任一点与坐标原点相连的割线的斜率
3、何谓短期截面抗弯刚度Bs?它的基本表达式如何?它的最终应用表达式如何?影响它的因素有哪些?
4、何谓截面弯曲刚度B?(即长期截面弯曲刚度)如何建立计算公式?
5、何谓弯矩的短期效应组合?何谓弯矩的准永久组合?
6、裂缝间受拉钢筋应变不均匀系数反映了怎样的物理意义?它增大或者减小,体现了什么样的受力特点?
7、什么是钢筋混凝土梁的“最小刚度原则”?它和挠度验算有何关系?
8、解释结构、构件或截面的延性这一概念。

9、什么是受弯构件的截面曲率延性系数?哪些因素影响它?提高这一系数的主要措施有哪些?
10、什么是混凝土结构的耐久性?
在预定作用和预期的维护与使用条件下,结构及其部件能在预定的期限内维持其所需的最低性能要求的能力。

11、耐久性达到极限情况时,都有哪些表现?
构件表面出现锈胀裂缝
12、影响混凝土结构耐久性
+的内部因素和外部因素都有哪些?
13、影响混凝土结构耐久性的最陪练,主要的两个核心因素是什么?
混凝土碳化跟钢筋锈蚀
14、什么是混凝土的碳化?碳化对混凝土结构有何影响?
凝土的碳化是混凝土所受到的一种化学腐蚀。

空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化。

影响:使混凝土的碱度降低,减弱了对钢筋的保护作用,可能导致钢筋的锈蚀。

碳化还会引起混凝土收缩(碳化收缩),容易会使混凝土的表面产生细微的裂缝。

15、影响混凝土碳化的外部因素和内在因素有哪些?
内部因素:不同的水泥,集料品种和级配不同
外因:1.酸性气体(如CO2)渗入混凝土孔隙溶解在混凝土的液相中形成酸,与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其他化合物发生中和反应,导致水泥石逐渐变质,混凝土的碱度降低,这是引起混凝土碳化的直接原因2.在混凝土浸水饱和或水位变化部位,由于温度交替变化,使混凝土内部孔隙水交替地冻结膨胀和融解松弛,造成混凝土大面积疏松剥落或产生裂缝,导致混凝土碳化。

渗漏水会使混凝土中的氢氧化钙流失,在混凝土表面结成碳酸
钙结晶,引起混凝土水化产物的分解,其结果是严重降低混凝土强度和碱度,恶化钢筋锈蚀条件。

3.混凝土温度骤降,其表面收缩产生拉力,一旦超过混凝土的抗拉强度,混凝土表面便开裂,导致形成裂缝或逐渐脱落,为二氧化碳和水分渗入创造了条件,加速混凝土碳化。

16、减小、延缓混凝土碳化的措施有哪些?
在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种
要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段
采用覆盖面层
规定钢筋保护层最小厚度
17、混凝土结构中,钢筋锈蚀的充分条件和必要条件是什么?(即:钢筋为何会锈蚀?)钢筋表面氧化膜的破坏是钢筋锈蚀的必要条件,含氧水分侵入是钢筋锈蚀的充分条件
18、防止钢筋锈蚀的措施有哪些?
降低水灰比,增加水泥用量,提高混凝土的密实度
要有足够的混凝土保护层厚度
严格控制氯离子的含量。

相关文档
最新文档