一元一次方程——打折销售
4.3一元一次方程的应用打折销售

2、利润率=利润/进价(成本)
例:一家商店将某种服装成本提高40% 后标价,又以8折(即按标价的80%) 优惠出售,结果每件仍获利15元,这种 服装每件的成本是多少元?
想
一
这15元的利润是怎么来的?题 目用来列方程的相等关系是什么?
想:
利润=售价-进价
如果设每件服装的成本价为x元,那么:
每件服装的标价为:(
这节课你的收获是 什么?
打折销售
林敏 院格庄初级中学
这节课我们学习商品销售中的 有关问题,解答这类问题首先要理 解:进价(成本)、售价、原价、 标价,利润、利润率和打折等相关 量的关系。你知道吗?
1.进价:购进商品时的价格(有时也叫成本价) 2.售价:在销售商品时的售出价(有时也叫成交价,卖出价) 3.标价:在销售时标出的价(有时称原价,定价) 4.利润:在销售商品的过程式中的纯收入,在教材中,我们就
解:设商品原价是x元,根据题意,得
利润 成本
售价-成本
80% x 1800 10% 1800
解这个方程,得 x=2475. 因此,这种商品的原价为2475元。
挑战自我:
1、某工厂生产产品因积压过多,实行亏本打折销售, 以回收资金,该产品成本价为a元,打9折后售价为 0.9a ( )元,如果再打一次9折,那么这时的售 0.81a)元。 价为( 2、一件夹克按成本提高50%后标价,后因季节关系 按标价的8折出售,每件以180元卖出,这批夹克每 件的成本价是多少元?
规定 : 利润 = 售价 - 进价
5.利润率:利润占进价的百分率,即利润率 = 利润÷进价×100﹪ 6.打折:卖货时,按照标价乘以十分之几或百分之几十,则称 将标价进行了几折.或理解为:销售价占标价的百分率. 例如某种服装打 8 折即按标价的百分之八十出售,或
初一数学《应用一元一次方程——打折销售》知识点总结

初一数学《应用一元一次方程——打折销售》知识点总结知识点总结1.与打折有关的概念(1)进价:也叫成本价.(2)标价:也称原价.(3)售价:也叫成交价.(4)利润:“获利”“盈利”“赚”.(5)利润率:利润占进价的百分比.(6)打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打八折就是以原价的80%卖出.2.利润问题中的关系式(1)售价=标价×折扣;售价=成本+利润售价=成本×(1+利润率)(2)利润=售价-进价=标价×折扣-进价(3)利润=进价×利润率;利润=成本价×利润率;利润率=利润/进价=(售价-进价)/进价1.一件衣服按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批服装每件的成本价是多少元?2.一件衣服按成本价提高40%后标价,后因季节关系按标价的8折出售,结果每件仍获利15元,这批服装每件的成本价是多少元?3.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是多少元?4.某商品打八折比打九折少花20元,那么这本书的原价是多少元?5.小明买了20本练习本,店主给他八折优惠(即以标价的80%出售),结果便宜了32元,则每本练习本的标价是多少元?6.某商品把进价2250元的某商品按标价的九折出售,仍获利20%,则该商品的标价为多少元?7.某商场举行优惠活动,规定一次购物不超过200元的不优惠;超过200元的,全部按八折优惠.顾客买了一件服装,付款180元,这件服装的标价是多少?A.180元B.200元C.225元D.180元或225元8.书店举行购书优惠活动:(1)一次性购书不超过100元,不享受打折优惠;(2)一次性购书超过100元,但不超过200元一律打九折;(3)一次性购书200元以上一律打七折.小明在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小明这两次购书原价的总和是多少元?9.已知A、B两件商品的成本共1000元,老板分别以30%和20%的利润率定价后进行销售,两件商品共获利130元,问A、B两件服装的成本各是多少元.10.某商品若按标价的七五折出售将亏25元,而按标价的九折出售将赚20元,问这种商品的标价是多少,进价是多少?11.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折且让利40元销售,仍可获利10%,则x为()A.700 B.约773 C.约736 D.约85612.某种商品的进价是每件8元,销售价是每件10元,现为了扩大销售量,将每件的销售价打折出售,但要求卖出一件商品所获的利润是降价前所获利润的90%,则折扣应为多少?13.某商品进价为200元,原价为300元,折价销售后的利润率为5%,则此商品是按原价的几折销售的?14.某服装店将品牌时装提价25%后,发现销路不好,要恢复原价,则应降价百分之多少.15.书店里每本定价10元的书,成本是8元,为了促销,书店决定让利10%给读者,问该书应打几折?16..某商场以每件80元的价格购进了衬衫500件,然后以每件120元的价格销售了400件,商场准备将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?17.某商店出售两件衣服,每件100元.其中一件赚10%,而另一件赔10%,那么这家商店是赚了还是赔了,或是不赚也不赔呢?18.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P=___(用含x的式子表示);(2)一天中剩余布所获利润Q=___(用含x的式子表示);(3)一天当中安排多少名工人制衣时,所获利润为11800元?19.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的九折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?20.超市促销,一次性购物不超过200元不优惠;超过200元,但不超过500元,按九折优惠;超过500元,超过部分按八折优惠,其中的500元仍按九折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物,若物品不打折,值多少钱?(2)此人两次购物共节省多少钱?(3)若将两次购物的钱合起来,一次购买相同的物品,是否更节省?说明理由.五个基本概念:进价、标价、售价、利润、利润率.三个基本公式:利润率=利润/进价×100%利润=售价-进价售价=标价×折扣打折销售的基本等量关系式:①标价=进价(1+利润率);②实际售价=标价×打折数;④销售额=销售价×销售量⑤销售利润=(销售价-成本价)×销售量思维导图习题精析打折销售(利润问题)3.(2016•潮南区模拟)某商场销售的一款空调机每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价?(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【思路点拨】(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【答案与解析】解:(1)设这款空调每台的进价为x元,根据题意得:3270×0.8﹣x=9%x,解得:x=2400,答:这款空调每台的进价为2400元;(2)商场销售这款空调机100台的盈利为:100×2400×9%=21600(元),答:商场销售了这款空调机100台,盈利21600元.【总结升华】解答此类问题时,一定要弄清题意.分清售价、进价、数量、利润之间的关系很重要.举一反三:【变式】(2015•滦平县二模)一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元【答案】D.解:设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50.4.(2015•怀柔区二模)列方程或方程组解应用题:周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每把定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.【思路点拨】由题意可知,在甲店买一把茶壶赠送茶杯一只,故需付5只茶壶的钱和x﹣5只茶杯的钱,已知茶壶和茶杯的钱,可列出付款关于x的式子;在乙店购买全场9折优惠,同理也可列出付款关于x的式子;若两种优惠办法付款一样,则两式子的值相等,计算出x的值即需购买茶杯的数目.【答案与解析】解:设购买茶杯x只,依题意得5x+125=4.5x+135,解得:x=20.所以购买茶杯20只时,两种优惠办法付款一样.【总结升华】本题考查了一元一次方程在经济问题中的运用以及买东西的优惠问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.举一反三:【变式】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示),求出李明上次所买书籍的原价.【答案】解:设李明上次购买书籍的原价为x元,由题意得:0.8x+20=x-12,解得:x=160.答:李明上次所买书籍的原价是160元.——打折销售问题(一)【例1】某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?【分析】相等关系:售价-进价=利润(14元).【解】设这种书包的进价是x元,其标价是(1+60%)x元,依题意,得(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.【练习1】一家商店将某种服装按成本提高15%后标价,又以标价的9折卖出,结果每件服装仍可获利7元,问:(1)这种服装每件的成本价是多少元?(2)成本提高15%后的标价是多少?。
应用一元一次方程——打折销售

6.林涛去文具店买练习本,营业员告诉他:如果超过 10 本,
那么超过 10 本的部分打七折.林涛买了 20 本,结果便宜了 1.8 元,
则原来每本练习本的价格是
元.
7.(2020·山西改编)2020 年 5 月份,太原开展了“活力太原·乐 购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满 600 元立减 128 元(每次只能使用一张).某品牌电饭煲按进价提高 50%后 标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家 电消费券后,又付现金 568 元.求该电饭煲的进价.
应用一元一次方程 ——打折销售
知识点 利用一元一次方程解决打折销售问题
1.一件标价为 300 元的棉袄,按七折销售仍可获利 20 元.设
这件棉袄的成本价为 x 元,下面所列方程正确的是( B )
A.300×7-x=20
B.300×0.7-x=20
C.300×0.7=x-20
D.300×7=x-20
B.盈利 20 元
C.盈利 10 元
D.亏损 20 元
10.为配合“我读书,我快乐”读书节活动,某书店推出一种
优惠卡:每张优惠卡售价为 20 元,凭优惠卡购书可享受八折优惠.小
慧同学到该书店购书,她先买优惠卡再凭优惠卡付款,结果节省了
10 元.若此次小慧同学不买优惠卡直接购书,则她需付( B )
A.140 元
解:设该电饭煲的进价为 x 元,
则该电饭煲的标价为
元,
该电饭煲的实际售价为
元.
由此,列出方程: 80%×(1+50%)x-128=568 .
解得 x= 580 .
80%×(1+50%)x
答:该电饭煲的进价为 580 元.
8.(2021·陕西)一家商店在销售某种服装(每件的标价相同)时, 按这种服装每件标价的八折销售 10 件的销售额,与按这种服装每件 的标价降低 30 元销售 11 件的销售额相等.求这种服装每件的标价.
一元一次方程的应用——打折销售教学设计

应用一元一次方程——打折销售教学内容应用一元一次方程——打折销售教学目标1.分析实际问题中关于打折销售的数量关系,建立方程解决问题。
2.进一步经历运用方程解决实际问题的过程,体会数学的应用价值。
教学重难点本节的重难点在与让学生在针对实际生活中的打折问题中,运用方程来解决,引导学生发现问题中的变量,以及根据变量来确定等量关系。
教学过程设计本节进一步让学生熟悉用方程解决实际问题的步骤和方法,选择的问题是销售问题,等量关系不再那么直接,需要结合具体问题寻找。
“打折销售”虽是生活中的常见现象,但学生这方面的经验不一定很多。
因此,学习本节内容之前,教师可提前一周布置学生去商场进行调查,了解商品打折的有关情况,以及商品利润等有关知识,这样既为本课的学习积累丰富的感性经验,又为课后练习打下坚实的基础,同时培养学生走向社会,适应社会的能力。
本节课开始播放了一些商家打折的图片,来引入本节课的主题。
学生在探索销售打折类的问题中,一般需要涉及成本、售价、标价、利润、利润率,他们之间的等量关系:利润=售价—成本,%100⨯=成本利润利润率往往是我们建立等量关系的关键。
通过本例题,教学过程中,教师引导学生发现其中的变量,并且根据变量构建等量关系:利润=售价—成本,通过小组探究的方式,让学生学会利用等量关系,建立数学模型来解决实际生活中,我们面临的问题,在教学时,我们可以让学生在读懂题意的基础上思考:本例中涉及那些量,那些是已知量,那些是未知量?这些量具有怎么样的等量关系?我们怎么样来设置未知数呢?在本节课的最后,教师一定需要对本节课的知识进行深华,本节课我们的经历了从实际问题中抽象出数学问题,并通过分析其中的已知量、未知量、等量关系来构建方程。
目标检测设计:1.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店( ).A .不盈不亏B .盈利10元C .亏损10元D .盈利50元 2.某件商品先按成本价加价50%后标价,再以九折出售,售价为135元,若设这件商品的成本价是x 元,根据题意,可得到的方程是( )A .()150%90%135x +⨯=B .()150%90%135x x +⨯=-C .()150%90%135x +⨯=D .()150%90%135x x +⨯=-3.2020年初新冠疫情肆虐,社会经济受到严重影响.地摊经济是就业岗位的重要来源.小李把一件标价60元的T 恤衫,按照8折销售仍可获利10元,设这件T 恤的成本为x 元,根据题意,下面所列的方程正确的是( )A .600.810x ⨯-=B .60810x ⨯-=C .600.810x ⨯=-D .60810x ⨯=-4.请欣赏一首诗:太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,鸭有多少请算清.根据诗的内容,设共有x只鸭子,可列方程:________________,得合并同类项,得________,两边乘________,得x ________.5.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.6.某服装每件进价为150元,由于换季滞销,若按标价打九折后,再降价6元销售,仍获利10%,则该服装每件的标价为________元.7.某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:(1)辣椒和蒜苗各批发了多少kg?(2)他当天卖完这些辣椒和蒜苗能赚多少钱?8.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.。
2023七年级数学上册第五章一元一次方程4应用一元一次方程——打折销售教案(新版)北师大版

错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍与“打折销售”内容相关的拓展知识,拓宽学生பைடு நூலகம்知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
3. 设计互动环节,让学生参与课堂讨论和游戏,增加学习的趣味性和互动性。
③重点知识点:
1. 打折销售的基本概念:原价、折数、售价。
2. 一元一次方程的表示方法:售价 = 原价 × 折数。
3. 一元一次方程的解法:求解售价、原价、折数等未知数。
4. 实际问题解决方法:从实际问题中建立一元一次方程,求解未知数。
7. 创新意识:通过解决打折销售问题,学生能够培养创新意识,能够从不同角度思考问题,寻找解决问题的多种途径。
8. 情感交流:在课堂上,学生能够积极思考和发表意见,与教师和同学进行有效的情感交流,增进师生之间的情感关系。
板书设计
①艺术性:
1. 使用清晰的字体和颜色,使板书内容一目了然,吸引学生的注意力。
反思改进措施
(一)教学特色创新
1. 引入实际案例:通过引入生活中的实际打折销售案例,让学生更加直观地理解一元一次方程的应用,提高学生的学习兴趣和参与度。
2. 互动式教学:采用小组讨论、角色扮演等互动式教学方法,激发学生的思考和交流,培养学生的合作精神和沟通能力。
3. 利用多媒体资源:运用多媒体资源,如图片、视频等,直观展示打折销售的场景,帮助学生更好地理解和记忆相关知识点。
情感升华:
结合“打折销售”内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
七年级数学上册教学课件《应用一元一次方程——打折销售》

分析: 设商品原价为x元
售价 成本 利润 80%x 1800 1800×10%
等量关系: 售价-成本=利润
80%x-1800=1800×10%.
探究新知
5.4 应用一元一次方程——打折销售
某商场将某种商品按原价的八折出售,此时商品的
利润率是10%.已知这种商品的进价为1800元,那么这种
商品的原价是多少?
解:设商品的原价是x元,根据题意,得
80%1x8−001800×100%=10% 解这个方程,得x=2475.
等量关系:
(售价-成本) ×100%=利润率 成本
答:这种商品的原价为2475元.
探究新知
5.4 应用一元一次方程——打折销售
归纳总结
1. 用一元一次方程解决实际问题的关键: (1) 仔细审题. (2) 找等量关系. (3) 解方程并验证结果.
则由题意得: x (1+25%)=135.
解这个方程, 得: x=108.
则第一件衣服盈利: 135-108=27(元).
设第二件衣服的成本价是y元,
由题意得: y(1-25%)=135.
解这个方程, 得: y=180.
则第二件衣服亏损: 180-135=45(元),
总体上约亏损了: 45-27=18 (元).
利润=售价-成本价 利润率:利润占成本的百分比. 利润率=利润÷成本×100% =(售价-成本) ÷成本×100%
探究新知
5.4 应用一元一次方程——打折销售
交流思考
①一个篮球成本是80元,售价是100元,则这个篮球的利润
是_2_0__元,利润率是_2_5_%__.
售价是120元呢?
利润=售价-成本价
连接中考
数学课件-5.4 应用一元一次方程——打折销售
3.小明和小丽需购买同一本经典名著书,小明到书店买打九折,小丽在网店买打八折,但需要 另外花10元的快递费,结果小丽比小明少花了2元钱,求这本经典名著的定价是多少?若设这 本经典名著的定价为x元,则可列方程为 0.9x-2=0.8x+10 .
知识点 2 销售中的折扣问题 4.某书店把一本书按进价提高 60%标价,再按七折出售,这样每卖出
解:设原来每本的价格是x元.根据题意,得 20x-10x-0.7×10x=1.8,解得x=0.6. 答:原来每本的价格是0.6元.
11.一家商店将某种商品按成本价提高50%后标价,又以八折优惠卖出,结果这种商品每件仍 可获利10元,那么每件这种商品的成本价是多少元?
解:设每件这种商品的成本价是x元.根据题意,得 ( 1+50% )x·80%-x=10,解得x=50. 答:每件这种商品的成本价是50元.
12.春节将至,市区两大商场均推出优惠活动: ①商场一全场购物每满100元返30元现金( 不是整百元不返 ); ②商场二所有的商品均按8折销售. 某同学在两家商场发现他看中的运动服的单价相同,书包的单价也相同,这两件商品的单价 之和为470元,且运动服的单价是书包的单价的7倍少10元. ( 1 )根据以上信息,求运动服和书包的单价; ( 2 )该同学要购买这两件商品,请你帮他设计出最佳的购买方案,并求出他所要付的费用.
13.情境:试根据图中信息,解答下列问题.
( 1 )购买6根跳绳需 150 元,购买12根跳绳需 240 元. ( 2 )小红比小明多买2根跳绳,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请 求出小红购买跳绳的根数;若没有,请说明理由. 解:( 2 )有这种可能.设小红购买跳绳x根.根据题意,得25×0.8x=25( x-2 )-5,解得x=11. 答:小红购买跳绳11根.
打折销售一元一次方程应用题讲解
一、打折销售一元一次方程应用题的相关概念1.1 打折销售的概念在日常生活中,我们经常会遇到各种各样的打折销售活动。
打折销售是商家为了促进产品的销售而采取的一种促销手段,通过给予用户一定比例的折抠,来吸引用户购物商品。
1.2 一元一次方程的概念一元一次方程是指一个未知数的一次方程,通常可以用类似“ax+b=c”的形式来表示,其中a、b、c分别代表已知的系数或常数,x代表未知数。
解一元一次方程就是求出这个未知数的值,使得方程等号成立。
1.3 打折销售一元一次方程的应用在打折销售中,经常会涉及到一元一次方程的应用。
用户在购物商品时,商家通常会给出原价和折抠率,用户需要根据这些信息来计算最终的价格。
而这个过程就可以用一元一次方程来进行建模和求解。
二、打折销售一元一次方程应用题的解题步骤2.1 理清题意,假设原价为x在遇到打折销售一元一次方程应用题时,首先要理清题意,明确原价和折抠率等信息。
然后假设原价为x,根据折抠率可以得到折抠后的价格为x*(1-折抠率),这就是我们需要求解的最终价格。
2.2 起一个未知数,建立方程接下来,我们可以起一个未知数,通常用y来表示折抠后的价格。
然后根据题目给出的信息,建立一元一次方程。
如果题目给出了原价为x,折抠率为p,折抠后的价格为d,那么我们就可以建立方程x-p*x=d,然后求解方程得到最终的价格。
2.3 检验解答是否合理我们要对求解出的结果进行检验,看看是否符合实际情况。
通常可以将求解出的y值代入原方程中,再用折抠率计算实际的折抠后价格,看两者是否相符。
如果相符,则说明求解无误。
三、打折销售一元一次方程应用题的实例3.1 实例一某商场举行打折促销活动,一件原价为200元的商品打八五折,求打折后的价格是多少?3.1.1 确定未知数和建立方程我们可以假设折抠后的价格为y,原价为200元,折抠率为85。
根据折抠率公式,可以得到打折后的价格的方程为200*0.85=y。
3.1.2 求解方程带入原方程计算可得y=170,所以打折后的价格为170元。
一元一次方程之打折销售类问题
一元一次方程之打折销售 类问题
这份演示将向大家展示如何解决一元一次方程中的打折销售类问题,让购物 更加省钱!
问题描述
问题情境
我们将在超市中买到很多不同的商品和打折信息。 你知道如何应对这些不同的情况用最小的钱买到我 们需要的商品吗?
问题类型
打折销售类问题是一类计算机基础问题,可以通过 数学方程式直接求解。
将求得的数值代入原来的题 目中进行验证。
练习题
练习题1
一个衣服原来的价格为102元,现在打7折出售,请 问现在的价格是多少钱?
练习题2
店家打算以95元售卖某鞋子,但是根据市场需求, 他必须打7.5折,应该以什么价格售卖这双鞋子?
结论和总结
结论
通过一元一次方程,我们可以轻松解决打折销售类 问题。
总结
2
例题2
某店正在搞促销,8%的折扣力度,原价500元的货物现在进行折扣销售,请问现 在的金额是多少?
解决打折销售类问题的步骤
步骤1 - 推导方程
将问题转化为数学方程式。 比如半价折扣等于商品价格 的50%。
步骤2 - 求解
通过解一元一次方程来求出 未知数的值。(如例题1中的 折扣力度为50%)
步骤3 - 验证答案
1 加减法
通过加或减两个方程化简 求解,消去一个变量的系 数。
2 乘除法
ห้องสมุดไป่ตู้
3 判别式
通过乘或除某个常数,将 一个未知数的系数化为一。
通过求出方程的判别式来 判断方程是否有唯一解、 无解或者无数解。
打折销售类问题的例题
1
例题1
某厂商对旗下的商品进行折扣销售,现在一件商品的原价是240元,进行了一次 半价折扣后的现价是120元,请问这种折扣所打的折扣力度是多少折扣?
初中数学北师大七年级上册第五章一元一次方程-打折销售
1x0=7 答:最多可以打7折
课堂小结
1.今天我们学习了哪些知识 ? 2.今天我们收获了哪些方法 ?
闯关大挑战 ☞
1.某商店出售两件衣服,每件60元,其 中一件赚25%,而另一件亏25%.问该商 店是赚了还是亏了,或是不赚也不亏?
闯关大挑战 ☞
2.某商店经销一种商品,由于进货价格 降低了6.4%,使得利润率提高了8%.求 原解来:此设种原进商价品a的元利,原润利率润. 率x.
利润率=
利润 成本
× 100%
小组讨论 ☞
成本、售价、利润率有哪些等量关系?
利润率=利润 成本源自× 100%小组讨论 ☞打折销售问题中的基本关系:
•
售价=标价×
折扣 10
• 利润=售价-进价
• 利润=利润率×成本
你能解释“ 薄利多销”
• 售价=进价×(1+利润率)吗?
• 销售额=销售单价×销售量
看谁答的快 ☞
情景引入 ☞
情景引入 ☞
进价
标价
售价
打折
看谁答的快 ☞
1.某商品的进价是15000元,售价是18000元,则 商品的利润为__3_0_0_0__元; 2.一件商品的进价为100元,要想获利20元,售价 应为_1_2_0___元; 3.一件商品的标价为100元,若打九折出售,则售 价为__9_0____元; 4为._一__件5_00商__ 品_1x0_的_元标;价为500元,若打x折出售,则售价 5.一件商品的进价为x元,提高20%标价,然后又 打8折,售价为 (12% 0x)0.8元.
探索新知 ☞
例1.一家商店将某种服装按进价提高 40%后标价,又以8折优惠卖出,结果 每件仍获利15元,那么这种服装每件 的进价是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解得:x=14.56.
答:这种商品每件销售价应为14.56元.
【想一想错在哪?】某原料供应商对购买其原料的顾客实行如 下优惠办法: (1)一次购买金额不超过1万元的不予优惠. (2)一次购买金额超过1万元,但不超过3万元的九折优惠. (3)一次购买金额超过3万元,其中3万元九折优惠,超过3万元的 部分八折优惠.
解得:x=240,即这种商品每件的进价为240元.
3.某种商品进价为800元,标价1200元,由于该商品积压,商店准 备打折销售,但要保证利润率不低于20%,则至少可以打( A.6折 B.7折 C.8折 D.9折 )
【解析】选C.设至少可以打x折,根据题意得 800×(1+20%)=1200×0.1x,解得x=8.
知识点
打折销售问题
【例】小王去新华书店买书,书店规定花20元办优惠卡后购书 可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价
格加上办卡费用比这些书的原价还少了10元钱,问小王购买这
些书的原价是多少?
【教你解题】
【总结提升】打折销售中常见的数量关系
1.利润=售价-成本价(或进价). 2.利润率= 利润 ×100%.
9.某商店先在广州以每件15元的价格购进某种商品10件,后来 又从深圳以每件12.5元的价格购进同种商品40件.如果商店销
售这些商品时,要获得12%的利润,那么这种商品每件的销售价
应该是多少元?
【解析】设每件商品的销售价为x元,由题意可得方程:
(15×10+12.5×40)×(1+12%)=(10+40)x,
成本价
3.利润=成本价×利润率. 4.售价=标价× 打折数 .
10
5.售价=成本价+利润=成本×(1+利润率). 6.售价-成本价=成本价×利润率.
题组:打折销售问题
1.如图是超市中某洗发水的价格标签,
一服务员不小心将墨水滴在标签上,使
得原价看不清楚,请你帮忙算一算,该
洗发水的原价为( A.22元 B.23元 ) C.24元 D.26元
【解析】选C.设洗发水的原价为x元,由题意得:0.8x=19.2, 解得:x=24.
2.(2012·牡丹江中考)某商品每件的标价是330元,按标价的 八折销售时,仍可获利10%,则这种商品每件的进价为( A.240元 B.250元 C.280元 D.300元 )
【解析】选A.设这种商品每件的进价为x元, 由题意得:330×0.8-x=10%x,
提示:利润=125-100=25(元),利润率= 25 ×100%=25%.
100
2.为尽快售出商品,要按标价的九折出售,此时的售价是多 少? 提示:售价=125×0.9=112.5有时称成本价). (1)进价:_____
售出 的价格(有时称成交价). (2)售价:在销售商品时的_____
7.某商店因换季销售打折商品,如果按定价6折出售,将赔20元, 若按定价的8折出售,将赚15元,问:这种商品定价多少元? 【解析】设这种商品定价为x元, 60%x+20=80%x-15, 解得x=175.
答:这种商品定价为175元.
8.某商品由于库存太多,公司决定对该商品打折销售,经核算, 如果打七五折赔25元,而打九折盈利20元,则这种商品的定价是 多少元? 【解析】设该商品的定价为x元,由题意得, 75%x+25=90%x-20,解得:x=300. 答:这种商品的定价为300元.
4 应用一元一次方程 ——打折销售
1.通过学生自主探讨,学会建立问题情境中的等量关系,能列方
程解决打折销售中的问题.(重点)
2.准确理解打折销售问题中的利润(利润率)、成本、售价之间
的关系.(难点)
问题:一件商品进价是100元,以125元的标价售出.
【思考】1.上述问题中的利润是多少?利润率是多少?
标出 的价格(有时称原价或定价). (3)标价:在销售时_____ (4)打折:销售时,按照标价乘十分之几或百分之几十,则称将标 几 折. 价打___
(打“√”或“×”)
(1)一件商品打8折,就是比原价少了80%.( × )
(2)进价5元的笔记本,售价6元,利润是1元.( √ )
(3)一种原价50元的书包,降价10%后的售价是40元.( × ) (4)两件售价均为30元的商品,一件盈利5元,另一件亏损 5元,则两件商品总体不赔不赚.( √ )
某厂因库存原因,第一次在该供应商处购买原料付款7800元,第 二次购买付款26100元. 如果他是一次性购买同样的原料,可少付款( A.1170元 C.4460元 B.1540元 D.2000元 )
提示:条件“超过3万元的部分八折优惠”理解有误.
6.某商场新进一批同型号的电脑,按进价提高40%标价(就是价
格牌上标出的价格),此商场为了促销,又对该电脑打8折销售
(8折就是实际售价为标价的80%),每台电脑仍可盈利420元,那
么该型号电脑每台进价为多少元.
【解析】设该型号电脑每台进价为x元, 根据题意列方程得:(x+40%x)×0.8-x=420, 解得:x=3500. 该型号电脑每台进价为3500元.
4.某电器按进价提高40%后标价,再打8折销售,售价为2240元, 则这种电器的进价为 元.
【解析】设这种电器的进价是x元. x×(1+40%)×0.8=2240, 解得x=2000. 答案:2000
5.某种商品每件的进价为180元,按标价的九折销售时,利润率 为20%,这种商品每件的标价是 【解析】设每件的标价是x元, 90%x-180=180×20%, x=240. 答案:240 元.