2.2.4平面和平面平行的性质定理

合集下载

2.2.2.4 面面平行性质定理

2.2.2.4 面面平行性质定理

M、N分别为A1B和AC上的点, A1M=NA= 2 a , (1)求证:MN // 平面BB1C1C;
(2)求 MN 的长
3
如图,线段AB、CD所在直线是异面直线,E、 F、G、H分别是线段AC、CB、BD、DA的中 点,(1)求证: E、F、G、H共面并且所在平 面平行于直线AB和CD; (2)设P、Q分别是AB和CD上任意一点, 求证:PQ被平面EFGH平分。
面面平行性质2
a
a // b
β
α
b
两平行平面同时和第三个 平面相交,那么它们的交 线相互平行。
面面平行,线线平行
例1 求证:夹在两个平行平面间的两条 平行线段必相等.
问:夹在两个平行平面间的两条相等线段 必平行吗?
例2如图 // , A, C , B, D
且E,F分别是线段AB,CD的中点, 求证: EF //
空间四边形ABCD的对棱AD、BC成60°角,且 AD=BC=a,平行于AD和BC的截面分别交AB、 AC、CD、BD于E、F、G、H, (1)求证:四边形EFGH为平行四边形; (2)E 在AB的何处时截面EFGH的面积最大? 最大面积是多少?
A
39 50
M
F N E B
C
D
a, b为异面直线, a, b在平面 的两侧 且a // , b // ,端点分别在a , b上的线段
例5:
于E、F、G、H。 AD,AC,CB,DB分别交平面 求证:四边形EFGH为平行四边形。 A B
a
H F G D
E
C
b
在正方形ABCD-A1B1C1D1中,棱长为 a
A F N B E C k
D
M

2.2.4平面与平面平行的性质2

2.2.4平面与平面平行的性质2
(1):平面和平面的位置关系有哪些?
L
α∥β
α∩β= L
(2):平面和平面平行的判定定理是什么?
一个平面内的两条相 交直线与另一个平面平 行,则这两个平面平行。 如果一个平面内有 两条相交直线分别平行 于另一个平面内的两条 直线,那么这两 b
α
d
如果两个平 行平面同时与第三 个平面相交,那么 它们的交线平行。
是α上的点 ,线段AB、AC、AD交于E、F、G
点,若BD=4,CF=4,AF=5,求EG.
B C D
a
α
E
F
G
A
10
小结
面面平行判定定理: 线面平行
另一个平面,那么这两个平面平行。
面面平行 如果一个平面内有两条相交直线分别平行于
推论:
如果一个平面内有两条相交直线分别平行于
另一个平面内的两条直线,那么这两个平面平行
求证:MN∥平面PBC。
N D C
E
A B
M
7
已知ABCD是平行四边形,点P是平面 ABCD外一点,M是PC的中点,在DM上取一 点G,画出过G和AP的平面。
P
M
G
D
C
H
A
O
B
8
练习: 点P在平面VAC内,画出过点P作一个截面 平行于直线VB和AC。 V
F P G B H A
9
E
C
如图:a∥α,A是α另一侧的点,B、C、D
面面平行性质定理: 面面平行
线面平行 如果两个平行平面同时与第三个平面相交, 那么它们的交线平行。
11
课外作业: 1、已知α∥β,AB交α、β于A、B,CD交 α、β于C、D,AB∩CD=S,AS=8,BS=9,

线面平行 面面平行 的判定

线面平行 面面平行 的判定

2.2.3 直线与平面平行的性质 2.2.4 平面与平面平行的性质1.文字语言:一条直线与一个平面平行,则__过这条直线的任一平面与此平面的交线__与该直线平行.2.图形语言:3.符号语言:⎭⎪⎬⎪⎫a ∥α__a ⊂β____α∩β=b __⇒a ∥b 4.作用:线面平行⇒线线平行.要点二 面面平行的性质定理1.文字语言:如果两个平行平面同时和第三个平面__相交__,那么它们的交线__平行__.2.图形语言:3.符号语言:⎭⎪⎬⎪⎫α∥β__α∩γ=a ____β∩γ=b __⇒a ∥b 4.作用:面面平行⇒线线平行.要点三 平行关系性质的应用1.若平面α与平面β平行,则α上的任何直线与平面β的位置关系是__平行__. 2.若两个面互相平行,则分别在这两个平行平面内的直线的关系是__平行或异面__. 3.A 是异面直线a ,b 外一点,过A 最多可作__0或1__个平面同时与a ,b 平行. 4.过平面外一点能作__无数__条直线和这个平面平行.思考: 如果两个平面平行,那么分别位于两个平面内的直线也互相平行,这句话正确吗?为什么?提示 不正确,因为这两个平面平行,那么位于两个平面内的直线没有公共点,它们平行或异面.考点一线面平行、面面平行的性质定理定理可简记为“线面平行,则线线平行”“面面平行,则线线平行”.定理揭示了直线与平面平行中蕴涵着直线与直线平行,即通过直线与平面平行、平面与平面平行可得到直线与直线平行,这给出了一种作平行线的方法.【例题1】在下列命题中,正确的有__④__(填序号).①若α∩β=a,b⊂α,则a∥b;②若a∥平面α,b⊂α,则a∥b;③若平面α∥平面β,a⊂α,b⊂β,则a∥b;④平面α∥平面β,点P∈α,a∥β且P∈a,则a⊂α.思维导引:此类题一般是以符号语言为载体的判断题,熟悉相关定理是前提,全面分析是关键,一般通过合理利用模型及排除法解题.解析①若α∩β=a,b⊂α,则a,b可能平行也可能相交,①不正确;②若a∥α,b⊂α,则a与b异面或a∥b,②不正确;③若α∥β,a⊂α,b⊂β,则a∥b或a与b异面,③不正确;④若α∥β,点P∈α,知P∉β,所以过点P且平行于β的直线a必在α内,故④正确.【变式1】(1)若直线a,b均平行于平面α,那么a与b的位置关系是__平行、相交或异面__.(2)若直线a∥b,且a∥平面β,则b与β的位置关系是__b∥β或b⊂β__.(3)若直线a,b是异面直线,且a∥β,则b与β的关系是__b∥β或b⊂β或b与β相交__.解析(1)a∥α,b∥α,则知a,b与α无公共点,而a,b平行、相交、异面都有可能.(2)a∥b,a∥β知b∥β或b在β内.(3)b与β的三种位置关系都有可能.考点二线面平行的性质及应用利用线面平行的性质定理判断两直线平行的步骤:(1)先找过已知直线且与已知平面相交的平面;(2)再找两个平面的交线;(3)由定理得出结论.【例题2】如图,已知两条异面直线AB与CD,平面MNPQ与AB,CD都平行,且点M,N,P,Q依次在线段AC,BC,BD,AD上,求证:四边形MNPQ是平行四边形.思维导引:AB∥平面MNPQ,CD∥平面MNPQ→MN∥PQ,NP∥MQ→四边形MNPQ是平行四边形证明因为AB∥平面MNPQ,且过AB的平面ABC交平面MNPQ于MN,所以AB∥MN.又过AB的平面ABD交平面MNPQ于PQ,所以AB∥PQ,所以MN∥PQ.同理可证NP ∥MQ.所以四边形MNPQ为平行四边形.【变式2】如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于点F.求证:EF∥B1C.证明由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD 为平行四边形,从而B1C∥A1D,又A1D⊂平面A1DFE,B1C⊄平面A1DFE,于是B1C∥平面A1DFE.又B1C⊂平面B1CD1,平面A1DFE∩平面B1CD1=EF,所以EF∥B1C.考点三面面平行的性质及应用应用平面与平面平行的性质定理的基本思路:【例题3】在长方体ABCD-A1B1C1D1中,E为棱DD1上的点.当平面AB1C∥平面A1EC1时,点E的位置是__与D重合__.思维导引:平面AB1C∥平面A1EC1,且都与对角面BB1D1D相交,则交线平行.在平行四边形BB1D1D中再来论证平行线的位置.解析如图,连接B1D1,BD,设B1D1∩A1C1=M,BD∩AC=O.连接ME,B1O,因为平面AB1C∥平面A1EC1,平面AB1C∩平面BDD1B1=B1O,平面A1EC1∩平面BDD1B1=ME,所以B1O∥ME.又由长方体的性质可知四边形B1MDO为平行四边形,则B1O∥MD.故E与D重合.【变式3】已知三棱柱ABC-A′B′C′中,D是BC的中点,D′是B′C′的中点,设平面A′D′B∩平面ABC=a,平面ADC′∩平面A′B′C′=b,判断直线a,b的位置关系,并证明.解析直线a,b的位置关系是平行.如图所示,连接DD′.因为平面ABC∥平面A′B′C′,平面A′D′B∩平面ABC=a,平面A ′D ′B ∩平面A ′B ′C ′=A ′D ′, 所以A ′D ′∥a . 同理可证AD ∥b .又D 是BC 的中点,D ′是B ′C ′的中点,所以DD ′BB ′,又BB ′AA ′,所以DD ′AA ′,所以四边形AA ′D ′D 为平行四边形,所以A ′D ′∥AD ,所以a ∥b .考点四 空间平行关系的相互转换线线平行、线面平行、面面平行这三种关系是紧密相连的,可以进行转换.相互间的转换关系如下.【例题4】 如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别是AD 1,BD 的中点.(1)求证:PQ ∥平面DCC 1D 1; (2)求PQ 的长;思维导引:通过作辅助线构造平面,从而证得线面平行;或通过线线平行证得线面平行. 解析 (1)证明:方法一 如图,连接AC ,CD 1.AC 与BD 交于点Q .因为P ,Q 分别是AD 1,AC 的中点,所以PQ ∥CD 1. 又PQ ⊄平面DCC 1D 1, CD 1⊂平面DCC 1D 1, 所以PQ ∥平面DCC 1D 1.方法二 取AD 的中点G ,连接PG ,GQ , 则有PG ∥DD 1,GQ ∥DC ,且PG ∩GQ =G , 则平面PGQ ∥平面DCC 1D 1.又因为PQ ⊂平面PGQ ,则PQ ∥平面DCC 1D 1. (2)由(1)易知PQ =12D 1C =22a .【变式4】 如图,在正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F .求证:EF ∥平面ABCD .证明 过E 作EG ∥AB 交BB 1于点G ,连接GF ,则B 1E B 1A =B 1GB 1B.因为B 1E =C 1F ,B 1A =C 1B ,所以C 1F C 1B =B 1GB 1B .所以FG ∥B 1C 1∥BC ,又因为EG ∩FG =G ,AB ∩BC =B , 所以平面EFG ∥平面ABCD ,又因为EF ⊂平面EFG ,EF ⊄平面ABCD , 所以EF ∥平面ABCD .。

2.2.4面面平行的性质

2.2.4面面平行的性质
D1 A1 B1 C1
D
A B
C
问题3:若两个平面平行,则一个平面内的直 线a与另一个平面内的直线有什么位置关系?
a

b
异面、平行

已知: 平面,, , // , a
b求证:a // b 证明: a
b
{b
/
a
a, b没有公共点 a, b都在平面内
a // b
二、平面和平面平行的性质定理 如果两个平行平面同时和第三个平面相 交,那么它们的交线平行.
// 即: a a // b b
简记:面面平行 线线平行
例1. 求证: 夹在两个平行平面间的两条平行线段相等. 已知:平面//平面 ,AB和DC为夹在 、 D A 间的平行线段。求证:AB=DC.
证明:连接BC,取BC的中点E, 分别连接ME、NE, 则ME∥AC,∴ ME∥平面α, 又 NE∥BD, ∴ NE∥β, M 又ME∩NE=E,∴平面MEN∥ 平面α, ∵ MN平面MEN,∴MN∥α.
B A C
E
N D
例3 在正方体ABCD-A′B′C′D′中, 点M在CD′上,试判断直线B′M与平面 A′BD的位置关系,并说明理由.
C′ D′ M D C A A′ B B′
直线与直线平行
直线与平面平行
平面与平面平行
1、若两个平面互相平行,则其中一个平面 中的直线必平行于另一个平面; 2、平行于同一平面的两平面平行; 3、过平面外一点有且只有一个平面与这个
平面平行; 4、夹在两平行平面间的平行线段相等。
作业: P61练习:(做在书上) P63习题2.2B组:4(做在书上) P63习题2.2B组:3.

【高中数学必修二】2.2.4面面平行的性质

【高中数学必修二】2.2.4面面平行的性质
简记:面面平行 线线平行
例1. 求证: 夹在两个平行平面间的两条平行线段相等.
已知:平面//平面 ,AB和DC为夹在 、 A 间的平行线段。求证:AB=DC.
证明:
D

AB // DC ⇒过AB,CD可作平面 γ



//
AD BC


B
C
AB // CD
BC // AD
ABCD为平行四边形
AB CD
例2.如图,设平面α∥平面β,AB、CD是两异面直线, M、N分别是AB、CD的中点,且A、C∈α,B、 D∈β. 求证:MN∥α.
证明:连接DA,取DA的中点 E,分别连接ME、NE, 则NE∥AC, ∴ NE∥平面α, 又 ME∥BD, ∴ ME∥β, 又ME∩NE=E, ∴平面MEN∥平面α, ∵ 直线MN在平面MEN内, ∴MN∥α.
α
A E
C N D
M

β
B
练习
1. 已知: 三个平行平面 , , 与两条直线 l, m 分别相并于点A, B, C和点D, E , F . AB DE 求证 : = . P63第3题 BC EF
G
H
l
m
直线与直线平行
直线与平面平行
平面与平面平行
2.2.4 平面与平面平行的性质
问题
1、什么叫两平面平行? 2、两平面平行的判定定理是什么?
如果一个平面内有两条相交直线分别平 行于另一个平面,那么这两个平面平行.
β
b
a
α
问题
3、两平面平行的判定定理解决了 两平面平行的条件;反之,在两平面 平行的条件下,会得到什么结论?
问题探究

2.2.4平面与平面平行的性质

2.2.4平面与平面平行的性质

平面与平面平行的性质定理
展馆上下两层所在的平面与侧墙 所在的平面分别相交,它们的交线的位置关系 如何? (平行)
(1)文字语言:如果两个平行平面同时 和第三个平面相交,那么它们的交线平行. (2)符号语言:α ∥β ,α a∥b. (3)图形语言:如图所示. γ =a,β γ =b
【质疑探究】 (1)如何理解平面与平面平行的性质 定理?需要注意什么? (①该性质定理可以简述为:“面面平行,则线线平 行”,必须注意这里的“线线”是指同一平面与已 知两平行平面的交线.②关于两个平面平行的性质 还有如下的结论:两个平面平行,其中一个平面内 的直线必平行于另一个平面,即 “面面平行,则线面 平行”,此处的线是平面内的任一条直线)
跟踪训练 1 1:已知 a、b 表示直线,α 、β 、γ 表示平面,下列推理正确的是( (A)α β =a,b α )
a∥b (B)α β =a,a∥b b∥α 且 b∥β (C)a∥β ,b∥β ,a α ,b α α ∥β (D)α ∥β ,α γ =a,β γ =b a∥b
利用面面平行的性质定理证明线线 平行的技巧是什么? (利用面面平行的性质定理证明线线平行的关键 是把要证明的直线看作是平面的交线,所以构造 三个面是其应用中的主要工作:即二个平行面,一 个包含讨论直线的面,有时需要添加辅助面)
跟踪训练 2 1:已知如图所示,三棱柱 ABC A1B1C1 中, 点 D、D1 分别为 AC、A1C1 上的点.
(3)你能总结一下线线平行与线面平行、面面平 行之间的转化关系吗? (三种平行关系可以任意转化,其相互转化关系 如图所示:
)
如图所示,AB α ,CD β , 且α ∥β ,若 AC∥BD,求证:AC=BD.

数学必修2——2.2.3-2.2.4《直线与平面、平面与平面平行的性质》导学导练

高中数学必修2个人原创,版权所有,翻印必究,如需借用,QQ 索取密码 第1页 解密佛山吉红勇老师扣扣:一0七669八11高中数学必修二2.2.3《直线与平面平行的性质》2.2.4《平面与平面平行的性质》导学导练【知识要点】1、直线与平面平行的性质定理(重点)1)直线与平面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.2)符号语言描述:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα3)图形语言描述,如右图.2、平面与平面平行的性质(重点、难点)1)、两个平面平行的性质(1):如果两个平面平行,那么其中一个平面内的直线平行于另一个平面. 简言之,“面面平行,则线面平行.”2)、两个平面平行的的性质(2):如果两个平行平面同时和第三个平面相交,那么它们的交线平行.【范例析考点】考点一.线面平行性质的应用考点1:由“线面平行”证明“线线平行”例1、如图,已知异面直线AB 、CD 都与平面α平行,CA 、CB 、DB 、DA 分别交α于点E 、F 、G 、H .求证:四边形EFGH 是平行四边形.HGFEBADCα【针对练习】1.若直线a 不平行于平面α,则下列结论成立的是( )A .α内的所有直线都与直线a 异面B .α内不存在与a 平行的直线C .α内的直线都与a 相交D .直线a 与平面α有公共点2.直线a ∥平面α,P ∈α,过点P 平行于α的直线( )A .只有一条,不在平面α内B .有无数条,不一定在α内C .只有一条,且在平面α内D .有无数条,一定在α内 3.下列判断正确的是( )A .a ∥α,b α,则a ∥bB .a ∩α=P ,b α,则a 与b 不平行C .aα,则a ∥α D .a ∥α,b ∥α,则a ∥b4.直线和平面平行,那么这条直线和这个平面内的( )A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交 5、判断下列说法是否正确:①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何一条直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内。

面面平行的性质

B C Da
α E FG
A
练:A、B是不在直线l上的两点,则过点A、B 且与直线l平行的平面的个数是 ( D )
A.0个
B.1个
C.无数个 D.以上三种情况均有可能
小结与归纳
1、若两个平面互相平行,则其中一个 平面中的直线必平行于另一个平面;
2、平行于同一平面的两平面平行;
3、夹在两平行平面间的平行线段相等。
β
答:两条交线平行.
α
a
b
下面我们来证明这个结论
如图,平面α,β,γ满足α∥β,
α∩γ=a,β∩γ=b,
求证:a∥b
证明:∵α∩γ=a,
β∩γ=b
∴aα,bβ
a
α
∵α∥β ∴a,b没有公共点,
又∵ a,b同在平面γ内,
b
β
∴ a∥b
面面平行的性质定理: 如果两个平行平面同时和第三个平面相交,
那么它们的交线平行.
2.2.4 平面与平面 平行的性质
复习回顾:
平面与平面有几种位置关系?分别是什么?
(1)平行
(2)相交
α∥β
a
探究新知
探究1. 如果两个平面平行,那么一个平面 内的直线与另一个平面有什么位置关系?
a
异面直线
平行直线
探究2.如果两个平面平行,两个平面内的直 线有什么位置关系?
探究新知
探究3:当第三个平 面和两个平行平面 都相交时,两条交 线有什么关系?为 什么?
用符号语言表示性质定理:
/ /
a,
b
a//b
想一想:这个定理的作用是什么?
由平面与平面平行得出直线与直线平行
平行于同一个平面的两个平面平行.
已知:α∥γ,β∥γ 求证:α∥β

2.2.3-2.2.4_直线与平面,平面与平面平行的性质定理-悠


b α
内找出和直线a (2)已知直线 ∥平面 ,如何在平面 内找出和直线 )已知直线a∥平面α,如何在平面α内找出和直线 平行的一条直线? 平行的一条直线?
思考
如图, 直线A 如图,在长方体 ABCD-A1B1C1D1中,直线 1B1//面CDD1C1. 面
D1 A1
E
C1 由长方体性质,我们知道A1B1 // C1D1.
β b α a
⊂ β.
又因为a 又因为 ∥α, 所以a,b无公共点. 所以 , 无公共点. 无公共点 又因为a β 所以a∥ 又因为 ⊂ ,b ⊂β,所以 ∥b
back
已知平面外的两条平行直线中的一条平行于这个平面, 例 已知平面外的两条平行直线中的一条平行于这个平面, 求证另一条也平行于这个平面. 求证另一条也平行于这个平面.
α
(2)该定理作用:“线面平行⇒线线平行” 该定理作用: 线面平行⇒线线平行” 该定理作用 线面平行性质定理也是找平行线的重要依据. 线面平行性质定理也是找平行线的重要依据 (3)应用该定理,关键是经过直线找平面或作出平面与已知平面相 应用该定理,关键是经过直线找平面或作出平面与已知平面相 应用该定理 并找出两平面的交线. 交,并找出两平面的交线 (4)平面外的两平行线同平行于同一个平面 平面外的两平行线同平行于同一个平面. 平面外的两平行线同平行于同一个平面
O
C1
E
D
在 DBD1中,O为DB的中点,BD1 // OE. 所以点E为DD1的中点.
A
B
练习
三棱柱ABC-A1B1C1中,D是BC上的点,A1B//平面 上的点, 平面ADC1 . 三棱柱 是 上的点 平面 求证:点 为 的中点 的中点. 求证 点D为BC的中点

平面与平面平行的判定,性质

A
F M B P H G C E D
课堂小结
一个平面内的两条相交直线与另一个 平面平行,则这两个平面平行. 平面平行,则这两个平面平行. 符号语言: 符号语言:
a⊂β b⊂β a I b = P ⇒ β // α a // α b // α
定理的推论: 定理的推论: 如果一个平面内有两条相交直线分别 平行于另一个平面内的两条相交直线,那 平行于另一个平面内的两条相交直线, 么这两个平面平行. 么这两个平面平行.
α∩β=a
如何证明线面平行? 如何证明线面平行?
线线平行 线面平行
如何证明面面平行呢? 如何证明面面平行呢?
面面平行
关键: 关键:找平行线 面内 条件 面外 平行 线线平行 线面平行
模型1
a//β
α αα α a
β
模型2
• 如果一个平面内有两条相交直线分别平行于另一个平面, 那么这两个平面平行。
β
P M a b c d
α
A1
D1 N
E F M B1
C1
D A B
C
在正方体AC 分别是所在棱AB AB、 例4.在正方体AC′中,E、F、G、P、Q、R分别是所在棱AB、 在正方体AC′ BC、BB′ DD′的中点, BC、BB′、A′D′、D′C′、DD′的中点, Q D′ ′ C′ ′ 求证:平面PQR∥平面EFG PQR∥平面EFG。 求证:平面PQR∥平面EFG。
B
M
C
A1 N B1 F C1
而CF ⊂ 平面 1C1C, MN⊄ 平面 1C1C, 平面AA 平面AA ∴ MN∥平面 1C1C, ∥平面AA
2.2.2平面与平面 平面与平面 平行的判定
一、两个平面的位置关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α
a P b
β
Q
d
c
a b P c // d cd Q a // c, b // d
3、两平面平行的判定定理解决了 两平面平行的条件;反之,在两平面 平行的条件下,会得到什么结论?
问题讨论
1、若 // ,l , 则 l与 的位 置关系如何?该结论有何功能作用?
α
l
判定线面平 行的依据
β
2、若 // ,且 a, 则与 的位置关系如何?
设 b, 则直线a、b的位置 关系如何?为什么?
α β a
ቤተ መጻሕፍቲ ባይዱb γ
定理:两个平行平面同时和第三个 平面相交,那么它们的交线平行.
简记:面面平行,则线线平行
符号语言:
//
a , a // b b
个平面平行;
4、夹在两平行平面间的平行线段相等。
5、若 // ,A、B ,C、D , 且AC∥BD,则AC与BD的长度关系 如何?
α A B
βC
D
例2 P是长方形ABCD所在平面外的一点,AB、 PD两点M、N满足AM:MB=ND:NP。
求证:MN∥平面PBC。
P
N D E A M B C



a b
, ,满足 // 例1 如图,已知平面 , 且 a, b, 求证: a // b 。
证明
a, b, a ,b . //
所以a,b没有公共点

a b
a, b
a //b


面面平行的其它一些性质 1、若两个平面互相平行,则其中一个平面 中的直线必平行于另一个平面; 2、平行于同一平面的两平面平行; 3、过平面外一点有且只有一个平面与这
问题提出
1、什么叫两平面平行? 2、两平面平行的判定定理是什么?
判定定理: 如果一个平面内有两条 相交直线分别平行于另一个平面,那 么这两个平面平行. a a P b b a b P // a // b //

判定定理推论: 如果一个平面内的两条相交直线分别 平行于另一个平面内的两条直线,那么这 a 两个平面平行. b
相关文档
最新文档