【最新】北师大版七年级上数学第四章:基本平面图形单元测试题
北师大版七年级数学上册第四章基本平面图形单元测试题含答案

北师大版七年级数学上册第四章基本平面图形单元测试题含答案一、选择题(每小题3分,共30分) 1.下面四个图形中,是多边形的是( )2.下列说法正确的是( )A.射线PA 和射线AP 是同一条射线B.射线OA 的长度是12 cmC.直线ab ,cd 相交于点MD.两点确定一条直线 3.两个锐角的和是( )A.锐角B.直角C.钝角D.以上都有可能 4.如图,C 是AB 的中点,D 是BC 的中点,则CD 的长等于( )A.CD =14AB B.CD =AD -BDC.CD =12(AB -BD )D.CD =12(AC -BD )5.如图,已知线段AB =10 cm ,点N 在AB 上,NB =2 cm ,M 是AB 的中点,那么线段MN 的长为( )A.5 cmB.4 cmC.3 cmD.2 cm6.如图,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方向角是( )A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°7.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形,则m,n的值分别为()A.4,3B.3,3C.3,4D.4,48.如图,∠AOB=30°,OB平分∠AOC,OC平分∠BOD,OD平分∠COE,则∠COE=()A.30°B.45°C.60°D.90°9.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB=7.8 cm,那么线段MN的长等于()A.5.4 cmB.5.6 cmC.5.8 cmD.6 cm10.将长方形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是()A.56°B.60°C.62°D.65°二、填空题(每小题4分,共20分)11.计算:(1)45°39′+65°41′=;(2)(雅安中考)1.45°=.12.植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是.13.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α=度.14.如图,点O是直线AD上一点,射线OC,OE分别是∠AOB,∠BOD的平分线.若∠AOC=28°,则∠COD =,∠BOE=.15.已知点A,B,C在直线l上,AB=4 cm,BC=6 cm,点E是AB中点,点F是BC的中点,16.则EF=三、解答题(共50分)16.(8分)如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.17.(8分)如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°,求∠COD 的度数.18.(10分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间距离是10 cm ,求AB ,CD 的长度.19.(12分)如图,B 是线段AD 上一动点,沿A →D 以2 cm/s 的速度运动,C 是线段BD 的中点,AD =10 cm ,设点B 运动时间为t 秒. (1)当t =2时:①AB =4cm ; ②求线段CD 的长度;(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.20.(12分)(焦作期末)如图,已知∠AOB=90°,以O为顶点,OB为一边画∠BOC,然后再分别画出∠AOC 与∠BOC的平分线OM,ON.(1)在图1中,射线OC在∠AOB的内部.①若锐角∠BOC=30°,则∠MON=45°;②若锐角∠BOC=n°,则∠MON=45°;(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数;(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变(如图3),求∠MON 的度数.参考答案一、选择题(每小题3分,共30分) 1.下面四个图形中,是多边形的是(D )2.下列说法正确的是(D )A.射线PA 和射线AP 是同一条射线B.射线OA 的长度是12 cmC.直线ab ,cd 相交于点MD.两点确定一条直线 3.两个锐角的和是(D )A.锐角B.直角C.钝角D.以上都有可能 4.如图,C 是AB 的中点,D 是BC 的中点,则CD 的长等于(A )A.CD =14AB B.CD =AD -BDC.CD =12(AB -BD )D.CD =12(AC -BD )5.如图,已知线段AB =10 cm ,点N 在AB 上,NB =2 cm ,M 是AB 的中点,那么线段MN 的长为(C )A.5 cmB.4 cmC.3 cmD.2 cm6.如图,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方向角是(B )A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°7.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形,则m,n的值分别为(C)A.4,3B.3,3C.3,4D.4,48.如图,∠AOB=30°,OB平分∠AOC,OC平分∠BOD,OD平分∠COE,则∠COE=(C)A.30°B.45°C.60°D.90°9.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB=7.8 cm,那么线段MN的长等于(A)A.5.4 cmB.5.6 cmC.5.8 cmD.6 cm10.将长方形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是(C)A.56°B.60°C.62°D.65°二、填空题(每小题4分,共20分)11.计算:(1)45°39′+65°41′=111°20′;(2)(雅安中考)1.45°=87′.12.植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是两点确定一条直线W.13.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α=120度.14.如图,点O 是直线AD 上一点,射线OC ,OE 分别是∠AOB ,∠BOD 的平分线.若∠AOC =28°,则∠COD =152°,∠BOE =62°.15.已知点A ,B ,C 在直线l 上,AB =4 cm ,BC =6 cm ,点E 是AB 中点,点F 是BC 的中点,则EF =5 cm 或1 cm.三、解答题(共50分)16.(8分)如图所示,直线l 是一条平直的公路,A 、B 是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C ,使A 、B 到C 的距离之和最小,请在图中找出点C 的位置,并说明理由.解:如图所示,理由:两点之间,线段最短.17.(8分)如图,已知OD 平分∠AOB ,射线OC 在∠AOD 内,∠BOC =2∠AOC ,∠AOB =114°,求∠COD 的度数.解:因为OD 平分∠AOB ,所以∠AOD =12∠AOB =12×114°=57°.因为∠BOC =2∠AOC ,∠AOB =114°,所以∠AOC =13∠AOB =13×114°=38°.所以∠COD =∠AOD -∠AOC =57°-38°=19°.18.(10分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间距离是10 cm ,求AB ,CD 的长度.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =6x -1.5x -2x =2.5x cm. 因为EF =10 cm ,所以2.5x =10,解得x =4. 所以AB =12 cm ,CD =16 cm.19.(12分)如图,B 是线段AD 上一动点,沿A →D 以2 cm/s 的速度运动,C 是线段BD 的中点,AD =10 cm ,设点B 运动时间为t 秒. (1)当t =2时:①AB =4cm ; ②求线段CD 的长度;(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.解:(1)②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)不变.理由:因为AB 中点为E ,C 是线段BD 的中点,所以EB =12AB ,BC =12BD ,所以EC =EB +BC =12(AB +BD )=12AD =12×10=5(cm ).20.(12分)(焦作期末)如图,已知∠AOB =90°,以O 为顶点,OB 为一边画∠BOC ,然后再分别画出∠AOC 与∠BOC 的平分线OM ,ON.(1)在图1中,射线OC 在∠AOB 的内部. ①若锐角∠BOC =30°,则∠MON =45°; ②若锐角∠BOC =n°,则∠MON =45°;(2)在图2中,射线OC 在∠AOB 的外部,且∠BOC 为任意锐角,求∠MON 的度数;(3)在(2)中,“∠BOC 为任意锐角”改为“∠BOC 为任意钝角”,其余条件不变(如图3),求∠MON 的度数.解:(2)因为∠AOB =90°,设∠BOC =α, 所以∠AOC =90°+α.因为OM ,ON 分别平分∠AOC ,∠BOC , 所以∠COM =12AOC ,∠CON =12BOC.所以∠MON =∠COM -∠CON =12(∠AOC -∠BOC )=12∠AOB =45°.(3)因为OM ,ON 分别平分∠AOC ,∠BOC , 所以∠COM =12AOC ,∠CON =12BOC.所以∠MON =∠COM +∠CON =12(∠AOC +∠BOC )=12(360°-90°)=135°.11。
七年级数学上册 第四章 基本平面图形 单元测试卷(北师版 2024年秋)

七年级数学上册第四章基本平面图形单元测试卷(北师版2024年秋)七年级数学上(BS版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.[新趋势跨学科综合2024杭州西湖区月考]《红楼梦》第57回有这么一句话,“自古道:‘千里姻缘一线牵’,管姻缘的有一位月下老儿,暗里只用一根红线,把这两个人的脚绊住.”请问,这里所说的“线”若是真的,则在数学中指的应是()A.直线B.射线C.线段D.以上都不对2.小明在设计黑板报时,想在黑板上画出一条笔直的参照线,由于尺子不够长,他想出了如下方法:①在一根长度合适的毛线上涂满粉笔末;②由两名同学分别按住毛线两端,并绷紧;③捏起毛线后松开,便可在黑板上弹出一条笔直的参照线.上述方法的数学依据是()A.两点之间,线段最短B.两点确定一条直线C.线段中点的定义D.两点间距离的定义3.如图,点B,D,C在直线l上,点A在直线l外,下列说法正确的是()(第3题)A.直线BD和直线CD表示的是同一条直线B.射线BD和射线CD表示的是同一条射线C.∠A和∠BAD表示的是同一个角D.∠1和∠B表示的是同一个角4.[教材P121观察·思考变式2023河北]淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()(第4题)A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向5.[新考向数学文化2024北京昌平区月考]东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与周长之间存在一定的比例关系.如图,将图中的半圆)向右水平拉直(保持M端不动),根据该古率,与拉直后铁丝N端的位置弧形铁丝(M最接近的是()(第5题)A.点A B.点B C.点C D.点D 6.[2024驻马店驿城区期末]如图,点A,B,C在直线l上,下列说法正确的是()(第6题)A.点C在线段AB上B.点A在线段BC的延长线上C.射线BC与射线CB是同一条射线D.AC=BC+AB7.[2024广州越秀区月考]下列说法正确的是()A.钟表现在的时间是10点30分,此时时针与分针所成的夹角是105°B.若经过某个多边形一个顶点的所有对角线,将这个多边形分成八个三角形,则这个多边形是九边形C.若AC=BC,则点C是线段AB的中点D.31.25°=31°15'8.[2024深圳南山区一模]如图①是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图②所示,它是以点O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为()(第8题)A.4.25πm2B.3.25πm2C.3πm2D.2.25πm29.如图,将一个三角尺60°角的顶点与另一个三角尺的直角顶点重合,∠1=27°40',则∠2的度数是()(第9题)A.27°40'B.62°20'C.57°40'D.58°20'10.[2024昆明三中月考]已知线段MN=10cm,P是直线MN上一点,NP=4cm,若E是线段MP的中点,则线段ME的长度为()A.3cm B.6cmC.3cm或7cm D.2cm或8cm二、填空题(每题3分,共24分)11.如图,从学校A到书店B最近的路线是①号路线,其中的道理是.(第11题)12.[2024滁州中学模拟]如图,比较图中∠BOC,∠BOD的大小:因为OB是公共边,OC 在∠BOD的内部,所以∠BOC∠BOD(填“>”“<”或“=”).(第12题)13.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,正h 边形的内角和为360°,则代数式h·(m-k)n=.14.[2024北京十二中期末]如图,D是AB的中点,E是BC的中点,BE=16AC=3cm,则线段DE=.(第14题)15.[教材P127习题T8变式2024西安高新一中期末]小明利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,小明到家时时针和分针夹角的度数是.16.将一张长方形ABCD纸片按如图所示的方式折叠,OE和OF为折痕,点B落在点B'处,点C落在点C'处,若∠BOE=35°,∠COF=30°,则∠B'OC'的度数为.(第16题)17.[情境题生活应用]由三门峡南开往北京丰台的G562次列车,运行途中停靠的车站依次是:洛阳龙门—郑州东—鹤壁东—安阳东—石家庄—保定东—涿州东,那么要为这次列车制作车票种.18.[2024郑州外国语中学月考]如图,∠AOC和∠BOD都是直角.固定∠BOD不动,将∠AOC绕点O旋转,在旋转过程中,下列结论正确的有.(第18题)①如果∠DOC=20°,那么∠AOB=160°;②∠DOC+∠AOB是定值;③若∠DOC变小,则∠AOB变大;④∠AOD=∠BOC.三、解答题(19,22,24题每题12分,其余每题10分,共66分)19.[教材P116习题T2变式2024绵阳涪城区期末]如图,在平面内有三点A,B,C.(1)利用尺规,按下面的要求作图.(要求:不写画法,保留作图痕迹)①作射线BA;②作直线BC;③连接AC,并在线段AC上作一条线段AD,使AD=AB,连接BD.(2)数数看,此时图中线段共有条.20.如图,一、二、三、四这四个扇形的面积之比为1∶3∶5∶1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?21.如图,OM平分∠AOB,ON平分∠COD,∠MON=90°,∠BOC=26°43',求∠AOD 的度数.22.如图,点C,D,E在线段AB上,AD=13DC,E是线段CB的中点,CE=16AB=2,求线段DE的长.23.如图,已知O是直线AB上的一点,∠AOC∶∠BOC=2∶7,射线OM是∠AOC的平分线,射线ON是∠BOC的平分线.(1)∠AOC=,∠BOC=;(2)求∠MON的度数;(3)过点O作射线OD,若∠DON=12∠AOC,求∠COD的度数.24.[新视角动态探究题2024合肥包河区月考]如图,M是线段AB上一点,AB=10cm,点C,D分别从M,B两点同时出发以1cm/s,3cm/s的速度沿直线BA向左运动(C在线段AM上,D在线段BM上).(1)当点C,D运动了1s时,这时图中有条线段;(2)当点C,D运动了2s时,求AC+MD的值;(3)若点C,D运动时,总有MD=3AC,求AM的长.参考答案一、1.C2.B3.A4.D5.A6.D7.D8.D9.C10.C二、11.两点之间,线段最短12.<13.50014.9cm15.165°16.50°17.3618.①②③④点拨:因为∠AOC=∠BOD=90°,∠AOC=∠AOD+∠COD,∠BOD=∠BOC+∠COD,所以∠AOC+∠BOD=∠AOD+∠COD+∠BOC+∠COD=180°,即∠AOD+∠COD+∠BOC=180°-∠COD,即∠AOB=180°-∠COD.当∠DOC=20°时,∠AOB=160°.故①正确;因为∠AOB=180°-∠COD,所以∠DOC+∠AOB=180°是定值.故②正确;因为∠AOB=180°-∠COD,所以若∠DOC变小,则∠AOB变大.故③正确;因为∠AOC=∠BOD=∠AOD+∠COD=∠BOC+∠COD,所以∠AOD=∠BOC.故④正确.三、19.解:(1)如图所示.(2)620.解:(1)因为一、二、三、四这四个扇形的面积之比为1∶3∶5∶1,所以各个扇形的面积分别占整个圆面积的110,310,12,110.所以一、二、三、四这四个扇形的圆心角的度数分别为110×360°=36°,310×360°=108°,12×360°=180°,110×360°=36°.(2)一、二、四这三个扇形的圆心角的度数之和是36°+108°+36°=180°. 21.解:因为OM平分∠AOB,ON平分∠COD,所以∠BOM=12∠AOB,∠CON=12∠COD.因为∠MON=90°,∠BOC=26°43',所以∠CON+∠BOM=∠MON-∠BOC=90°-26°43'=63°17'.所以12∠COD+12∠AOB=∠CON+∠BOM=63°17'.所以∠COD+∠AOB=126°34'.所以∠AOD=∠COD+∠BOC+∠AOB=126°34'+26°43'=153°17'.22.解:因为CE=16AB=2,所以AB=12.因为E是线段CB的中点,所以BC=2CE=4.所以AC=8.因为AD=13DC,所以DC=34AC=6.所以DE=DC+CE=8.23.解:(1)40°;140°(2)因为射线OM是∠AOC的平分线,射线ON是∠BOC的平分线,所以∠COM=12∠AOC=20°,∠CON=12∠BOC=70°.所以∠MON=∠COM+∠CON=20°+70°=90°.(3)易得∠DON=12∠AOC=20°.当射线OD在∠CON的内部时,如图①,则∠COD=∠CON-∠DON=70°-20°=50°;当射线OD在∠BON的内部时,如图②,则∠COD=∠CON+∠DON=70°+20°=90°.综上,∠COD的度数为50°或90°.24.解:(1)10(2)当点C,D运动了2s时,CM=2cm,BD=6cm.又因为AB=10cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(3)因为C,D两点的速度分别为1cm/s,3cm/s,所以BD=3CM.又因为MD=3AC,所以BD+MD=3CM+3AC,即BM=3AM.所以AM=14AB=14×10=2.5(cm).。
北师大版七年级数学上册第四章:基本平面图形 单元测试卷(含答案)

4.如图,对于直线 AB ,线段 CD ,射线 EF ,其中能相交的图是( )
A.
B.
C.
D.
5.如图,下列不正确的几何语句是( )
A.直线 AB 与直线 BA 是同一条直线 B.射线 OA 与射线 OB 是同一条射线 C.射线 OA 与射线 AB 是同一条射线 D.线段 AB 与线段 BA 是同一条线段
6.如图,点 B , O , D 在同一直线上,若∠1=15°,∠2=105°,则 AOC 的度数是
( )
A.75°
B.90°
C.105°
D.125°
7.已知点 C 是线段 AB 上的一点,不能确定点 C 是 AB 中点的条件是( )
A. AC = CB
B. AC = 1 AB C. AB =2 BC 2
14. 如图,一副三角尺放在桌面上且它们的直角顶点重合在点 O 处,若 AOD =150°,则 BOD 的度数为________.
15.已知 A 、 B 、 C 三点在同一直线上,其中点 A 与点 B 的距离等于 2.4 千米,点 B 与点 C 的距离等于 3.5 千米,那么点 A 与点 C 的距离等于________千米. 16.如图所示,点 C 是线段 AB 上一点, AC < CB , M 、 N 分别是 AB 、 CB 的中点, AC =8, NB =5, 则线段 MN = .
180°的角),其
余条件不变,请借助图 3 探究 EOF 的大小,直接写出 EOF 的度数.
20.(12 分)如图, AOB =90°, AOC =30°,且 OM 平分 BOC , ON 平分 AOC ,
(1)求 MON 的度数; (2)若 AOB = 其他条件不变,求 MON 的度数; (3)若 AOC = ( 为锐角)其他条件不变,求 MON 的度数;
北师大七年级数学上《第四章基本平面图形》单元测试含答案

第四章基本平面图形单元测试一、单选题(共10题;共30分)1、钟表在5点半时,它的时针和分针所成的锐角是()A、15°你B、70°C、75°D、90°2、下列说法正确的是()A、线段AB和线段BA表示的不是同一条线段B、射线AB和射线BA表示的是同一条射线C、若点P是线段AB的中点,则PA=ABD、线段AB叫做A、B两点间的距离3、如图,C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD为()A、1B、5C、2D、2.54、下列命题中的真命题是()A、在所有连接两点的线中,直线最短B、经过两点有一条直线,并且只有一条直线C、内错角互补,两直线平行D、如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直5、在海上有两艘舰A和B,测得A在B的北偏西60°方向上,则由A测得B的方向是()A、南偏东30°B、南偏东60°C、北偏西30°D、北偏西60°6、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()A、南偏西40度方向B、南偏西50度方向C、北偏东50度方向D、北偏东40度方向7、(•武安市期末)下面等式成立的是()A、83.5°=83°50′B、37°12′36″=37.48°C、24°24′24″=24.44°D、41.25°=41°15′8、七年级一班同学小明在用一副三角板画角时(即30°,60°,90°的一个,45°,45°,90°的一个)画出了许多不同度数的角,但下列哪个度数他画不出来()A、135°B、75°C、120°D、25°9、平面上有三点,经过每两点作一条直线,则能作出的直线的条数是()A、1条B、3条C、1条或3条D、以上都不对10、如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1, OA3平分∠AOA2, OA4平分∠AOA3,则∠AOA4的大小为()A、8°B、4°C、2°D、1°二、填空题(共8题;共24分)11、2700″=________ °.12、如图,公园里,美丽的草坪上有时出现了一条很不美观的“捷径”,但细想其中也蕴含着一个数学中很重要的“道理”,这个“道理”是________ ;13、如图,∠AOC可表示成两个角的和,则∠AOC=∠BOC+∠________ .14、往返甲乙两地的火车,中途还需停靠2个站,则铁路部门对此运行区间应准备________ 种不同的火车票.15、开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为________ .16、已知:线段a,b,且a>b.画射线AE,在射线AE上顺次截取AB=BC=CD=a,在线段AD上截取AF=b,则线段FD=________.17、下面四个等式表示几条线段之间的关系:①CE=DE;②DE= CD;③CD=2CE;④CE=DE= CD.其中能表示点E时显得CD的中点的有________.(只填序号)18、如图,C在直线BE上,∠A=m°,∠ABC与∠ACE的角平分线交于点A1,若再作∠A1BE、∠A1CE的平分线,交于点A2;再作∠A2BE、∠A2CE的平分线,交于点A3;依此类推,∠A为________.三、解答题(共6题;共46分)19、一个角是钝角,它的一半是什么角?20、如图,在直线a上求一点O,使它到点M、N的距离最小.21、如图,已知线段AB,①尺规作图:反向延长AB到点C,使AC=AB;②若点M是AC中点,点N是BM中点,MN=3cm,求AB的长.22、如图,OC是∠AOD的平分线,OE是∠DOB的平分线,∠AOB=130°,∠COD=20°,求∠AOE的度数.23、如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.24、怎样知道两名同学谁的铅球掷得远?体育课请进行实地操作.答案解析一、单选题1、【答案】 A【考点】钟面角、方位角【解析】【分析】先确定钟表在5点半时,它的时针在5和6之间,分针在6上,所以它们之间的夹角是半个大格,再计算求解.【解答】根据分析可知:时针和分针所成的锐角为×30°=15°.故选A.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,要知道钟表12个数字,每相邻两个数字之间的夹角为30度.2、【答案】C【考点】直线、射线、线段【解析】【解答】解:A、线段AB和线段BA表示的是同一条线段,故A错误;B、射线AB和射线BA表示的不是同一条射线,故错误;C、由线段中点的定义可知C正确.D、线段AB的长度叫做A、B两点间的距离,故D错误.故选:C.【分析】根据线段、射线的特点以及线段的中点和两点间的距离的定义回答即可.3、【答案】A【考点】两点间的距离【解析】【解答】解:∵线段DA=6,线段DB=4,∴AB=10,∵C为线段AB的中点,∴AC=BC=5,∴CD=AD﹣AC=1.故选A.【分析】由已知条件知AB=DA+DB,AC=BC=AB,故CD=AD﹣AC可求.4、【答案】B【考点】线段的性质:两点之间线段最短【解析】【解答】解:A、在所有连接两点的线中,线段最短,故A错误,B、经过两点有一条直线,并且只有一条直线,故B正确,C、内错角相等,两直线平行,故C错误,D、如果一条直线和两条平行线中的一条垂直,那么这条直线也和另一条垂直,故D错误.故选B.【分析】答题时首先理解直线、线段的定义,直线平行的定理,然后对各个选项进行判断.5、【答案】B【考点】钟面角、方位角【解析】【解答】解:如图:∵N1A∥N2B,∠2=60°,∴∠1=∠2=60°,由方向角的概念可知由A测得B的方向是南偏东60°.故选B.【分析】方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据定义,正确画出图形,利用平行线的性质就可以解决.6、【答案】A【考点】钟面角、方位角【解析】【解答】解:灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的南偏西40度的方向.故选A.【分析】方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据定义就可以解决.7、【答案】 D【考点】度分秒的换算【解析】【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.8、【答案】 D【考点】角的计算【解析】【解答】解:135°、75°、120°都是15°角的倍数.故选D.【分析】根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来.9、【答案】 C【考点】直线、射线、线段【解析】【解答】解:①当三点在同一直线上时,只能作出一条直线;②三点不在同一直线上时,每两点可作一条,共3条;故选:C.【分析】分两种情况:①三点在同一直线上时,只能作出一条直线;②三点不在同一直线上时,每两点可作一条,共3条.10、【答案】B【考点】角平分线的定义【解析】【解答】解:∵∠AOB=64°,OA1平分∠AOB,∴∠AOA1= ∠AOB=32°,∵OA2平分∠AOA1,∴∠AOA2= ∠AOA1=16°,同理∠AOA3=8°,∠AOA4=4°,故选B.【分析】根据角平分线定义求出∠AOA1= ∠AOB=32°,同理即可求出答案.二、填空题11、【答案】 0.75【考点】度分秒的换算【解析】【解答】2700″=2700÷60=45′÷60=0.75°,【分析】根据小的单位化大的单位除以进率,可得答案.12、【答案】两点之间,线段最短.【考点】线段的性质:两点之间线段最短【解析】【解答】连接两点之间的所有线中,线段最短.【分析】线段的基本事实,就是公理.13、【答案】AOB【考点】角的计算【解析】【解答】解:由图形可知,∠AOC=∠BOC+∠AOB.故答案为AOB【分析】根据图象OB把∠AOC分成两个角.14、【答案】 12【考点】直线、射线、线段【解析】【解答】解:由图知:甲乙两地的火车,中途还需停靠2个站,共有6条线段,∵往返是两种不同的车票,∴铁路部门对此运行区间应准备12种不同的火车票.故答案为:12.【分析】根据题意画出示意图,数出线段的条数,再根据往返是两种不同的车票,可得答案.15、【答案】两点确定一条直线【考点】直线的性质:两点确定一条直线【解析】【解答】解:根据两点确定一条直线.故答案为:两点确定一条直线.【分析】根据直线的确定方法,易得答案.16、【答案】 3a﹣b【考点】两点间的距离【解析】【解答】解:如图所示:DF=AD﹣AF=AB+CB+CD﹣AF=3a﹣b.故答案为:3a﹣b.【分析】先根据题意画出图形,然后根据线段间的和差关系进行计算即可.17、【答案】④【考点】两点间的距离【解析】【解答】解:①CE=DE并不能说明C、D、E在同一直线上,故①错;②DE= CD并不能说明C、D、E在同一直线上,故②错误;③CD=2CE并不能说明C、D、E在同一直线上,故③错误;故答案为:④【分析】根据中点的定义即可求出答案.18、【答案】【考点】角平分线的定义【解析】【解答】解:∵∠A1=∠A1CE﹣∠A1BC = ∠ACE﹣∠ABC= (∠ACE﹣∠ABC)= ∠A.依此类推∠A2= m,∠A3= m,∠A= .故答案为:【分析】根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.三、解答题19、【答案】锐角【考点】角的概念【解析】【解答】∵大于90°而小于180°的角叫钝角,∴它的一半是锐角.【分析】根据钝角的概念进行解答即可.20、【答案】解:∵两点之间线段最短,∴所求的点与M、N两点同线时,它到点M、N的距离最小,∴连接MN.MN与a的交点O即为所求.【考点】线段的性质:两点之间线段最短【解析】【分析】要使OM+ON的值最小,只需M、N、O三点共线即可.21、【答案】解:①如图,②如图1 ,由点M是AC中点,点N是BM中点,得MN= BM,MC= AC= AB.BC=2AB.MN= (BC﹣CM)= (2AB﹣ AB)= AB.∵MN=3,∴ AB=3,∴AB=4cm【考点】两点间的距离【解析】【分析】①根据尺规作图,可得C点;②根据线段中点的性质,可得MN、MC,根据线段的和差,可得关于AB的方程,根据解方程,可得答案.22、【答案】解:∵OC是∠AOD的平分线,OE是∠DOB的平分线,∠AOB=130°,∠COD=20°,∴∠AOD=40°,∴∠BOD=130°﹣40°=90°,∴∠DOE=45°,∴∠AOE=40°+45°=85°【考点】角平分线的定义【解析】【分析】根据角平分线的定义得出∠AOD的度数,进而得出∠BOD的度数,再根据角平分线的定义得出∠DOE的度数解答即可.23、【答案】解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+ (AB+CD)=2+ ×4=4cm【考点】比较线段的长短【解析】【分析】由已知条件可知,BC=AC+BD﹣AB,又因为E、F分别是线段AB、CD的中点,故EF=BC+ (AB+CD)可求.24、【答案】解:量出铅球投掷点与落地点之间的线段的长度,比较其长短,便可知这两名同学谁的铅球掷得远【考点】比较线段的长短【解析】【分析】根据实际生活中的操作即可得出答案.11 / 11。
北师大版 七年级数学上册 第四章 基本平面图形 综合测试卷(含答案)

北师版数学七年级上册第四章基本平面图形综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.关于直线、射线、线段的描述正确的是( )A.直线最长、线段最短B.射线是直线长度的一半C.直线没有端点,射线有一个端点,线段有两个端点D.直线、射线及线段的长度都不确定2.下列图形的几何语言表示正确的有( )A.3个B.4个C.5个D.6个3.下列关系中,与图示不符合的式子是( )A.AD-CD=AB+BCB.AC-BC=AD-DBC.AC-BC=AC+BDD.AD-AC=BD-BC4.已知∠AOB=30°.自∠AOB的顶点O引射线OC,若∠AOC∶∠AOB=4∶3,那么∠BOC等于( ) A.10°B.40°5.如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠AOC =76°,则∠BOM 等于( ) A .38° B .104° C .142° D .144°6. 如图所示,OA ,OB ,OC ,OD 是圆的四条半径,则图中以B 为端点的弧的条数为( ) A .6条 B .8条 C .2条 D .4条7.如图,长度为12 cm 的线段AB 的中点为M ,点C 将线段MB 分成的MC ∶MB =1∶3,则线段AC 的长度为( )A .2 cmB .6 cmC .8 cmD .9 cm8.如图,OA ,OC ,OB 是圆的三条半径,则图中扇形的个数为( ) A .3 B .4 C .5 D .69.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形,则m ,n 的值分别为( ) A .4,3 B .3,3 C .3,4 D .4,410.已知线段AB ,延长AB 到点C ,使BC=13AB ,D 为AC 的中点,若AB=9 cm ,则DC 的长为( )A.3 cmB.6 cm第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.工人师傅在用方地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据什么道理?_______________.12.下列命题中,正确的有_________.(填序号)①两点之间线段最短;②连接两点的线段,叫做两点间的距离;③角的大小与角的两边的长短无关;④射线是直线的一部分,所以射线比直线短.13.如图是一个时钟的钟面,7:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α=_________度.14.一个多边形从一个顶点最多能引出三条对角线,这个多边形是__________.15.如图,OA的方向是北偏东15°,OB的方向是北偏西40°,若∠AOC=∠AOB,则OC的方向是北偏东_________.16.(1)计算:50°-15°30′=__________;(2)两点半时钟面上时针与分针的夹角为__________.17. 将一张正方形的纸片,按图4-4的方式对折两次,相邻两条折痕(虚线)间的夹角为__________.18.如图,B,C两点在线段AD上. (1)BD=BC+______,AD=AC+BD-_______;(2)如果CD=4 cm,BD=7 cm,B是AC的中点,那么AB的长为______.三.解答题(共7小题,66分)19. (6分)如图所示,已知点A,B,请你按照下列要求画图(延长线都画成虚线):(1)过点A,B画直线AB,并在直线AB上方任取两点C,D;(2)画射线AC,线段CD;(3)延长线段CD,与直线AB相交于点M;20. (6分)如图,直线AB和CD相交于点O,∠DOE=90°,OD平分∠BOF,∠BOE=50°,求∠AOC,∠EOF,∠AOF的度数.21. (6分)如图,已知线段AD=16 cm,线段AC=BD=10 cm,点E,F分别是线段AB,CD的中点,求线段EF的长.22. (6分)(1)将31.24°化为用度、分、秒表示的形式;(2)将38°37′12″化成以度为单位的形式.23. (6分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24. (8分)抗日战争时期,一组游击队员奉命将A村的一批文物送往安全地带,他们从A村出发,先沿北偏东80°的方向前进,走了一段路程后突然发现A村南偏东50°的方向距离A村3 km处的B村出现了敌情,于是他们把文物就地隐藏,然后调转方向直奔B村增援,走了一段路程赶到B村消灭了敌人.战斗结束后,据游击队员们回忆,文物在B村北偏东25°的方向.根据上述信息,你能确定文物的大致位置点C吗?请以1 cm的长度表示1 km,画图说明文物的位置.25. (8分)如图,点C是线段AB上的一点,点D是线段AB的中点,点E是线段BC的中点.(1)当AC=8,BC=6时,求线段DE的长度;(2)当AC=m,BC=n(m>n)时,求线段DE的长度;(3)从(1)(2)的结果中,你发现了什么规律?请直接写出来.26. (10分)已知∠AOB=40°,∠AOC=100°,分别作∠AOB和∠AOC的平分线OM,ON,求∠MON的大小.27. (10分)如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD在数量上有何关系?说明理由.(2)若将这副三角尺按图乙所示摆放,三角尺的直角顶点重合在点O处.①∠AOD和∠BOC相等吗?说明理由.②∠AOC和∠BOD的以上关系还成立吗?说明理由.甲乙参考答案:1-5CCCDC 6-10ACDCB 11. 两点确定一条直线 12. ①③ 13. 150 14.六边形 15. 70°16. 34°30′,105° 17. 22.5°18.(1)CD ,BC (2)3 cm 19. 解:答案不唯一,如图所示.20. 解:∠AOC =∠BOD=90°- ∠BOE =40°, ∠EOF =90°+∠DOF= 90°+∠DOB =130°, ∠AOF =180°-∠BOF= 100°21. :因为AB =AD -BD =16-10=6, 同理可求CD =AB =6,所以BC =AD -AB -CD =16-6-6=4, 因为E 是AB 的中点,所以EB =12AB =12×6=3,因为F 是CD 的中点,所以CF =12CD =12×6=3,所以EF =EB +BC +CF =3+4+3=10(cm)22. 解:(1)31.24°=31°+0.24°×60=31°14.4′=31°14′+0.4′×60=31°14′24″ (2)38°37′12″=38°37′+12″÷60=38°37.2′=38°+37.2′÷60=38.62° 23. 解:(1)若以B 为原点,则C 表示1,A 表示-2, 所以p =1+0-2=-1;若以C 为原点,则A 表示-3,B 表示-1, 所以p =-3-1+0=-4(2)若原点O 在图中数轴上点C 的右边,且CO =28,所以p =-31-29-28=-88 24. 解:画法如下:(1)在平面中任取一点作为A 村(2)沿A 村的南偏东50°的方向画射线AM ,在AM 上截取AB =3 cm (3)沿A 村北偏东80°的方向画射线AN(4)沿B 村的北偏东25°的方向画射线BP ,BP 与AN 交于点C ,则C 点即为所求25. 解:(1)因为AC =8,BC =6,所以AB =14, 因为点D 是线段AB 的中点,所以AD =12AB =7,因为BC =6,点E 是线段BC 的中点,所以BE =12BC =3,所以DE =14-7-3=4(2)因为AC =m ,BC =n ,所以AB =m +n. 因为点D 是线段AB 的中点,所以AD =m +n2.因为BC =n ,点E 是线段BC 的中点,所以BE =n2,所以DE =m +n -m +n 2-n 2=m2(3)规律:DE 的长等于12AC 的长26. 解:如图1,因为∠AOB =40°,OM 平分∠AOB ,所以∠AOM =20°, 因为∠AOC =100°,ON 平分∠AOC ,所以∠AON =50°, 所以∠MON =70°;如图2,因为∠AOB =40°,OM 平分∠AOB ,所以∠AOM =20°, 因为∠AOC =100°,ON 平分∠AOC ,所以∠AON =50°, 所以∠MON =30°27. 解:(1)①∠AOD =90°+∠BOD ,所以∠AOD和∠BOC相等.②∠AOC+90°+∠BOD+90°=360°,所以∠AOC+∠BOD=180°;(2)①∠AOD=90°-∠BOD,∠BOC=90°-∠BOD,所以∠AOD和∠BOC相等.②成立.由∠AOC=90°+90°-∠BOD可知∠AOC+∠BOD=180°.。
北师大版七上第四章基本平面图形测评

七上第四单元测评挑战卷(90分钟100分)一、选择题(每小题3分,共30分)1.(2021·重庆期中)已知平面上有三点,经过其中的任意两点画直线,最多能把这个平面分成(D)A.4部分B.5部分C.6部分D.7部分【解析】同一平面内不在同一直线上的3个点,可画三条直线.最多能把这个平面分成7部分.2.把50°40′30″化成度的形式为(C)A.50.43°B.50.65°C.50.675°D.50.765°【解析】50°40′30″=50.675°.3.如图,不是凸多边形的是(C)【解析】图形不是凸多边形的是C.4.如图,用一副三角板画角,不可能画出的角的度数是(B)A.120°B.85°C.135°D.165°【解析】A.120°=90°+30°,故本选项不符合题意;B.85°不能写成90°,60°,45°,30°的和或差,故本选项符合题意;C.135°=90°+45°,故本选项不符合题意;D.165°=90°+45°+30°,故本选项不符合题意.5.(2021·深圳期末)下列说法正确的有(A)①两点之间,线段最短;②若AB=BC,则点B是线段AC的中点;③射线AB和射线BA是同一条射线;④直线比线段长.A.1个B.2个C.3个D.4个【解析】①两点之间,线段最短,正确;②若AB=BC,则点B是线段AC的中点,不正确,只有点B在线段AC上时才成立;③射线AB和射线BA是同一条射线,不正确,端点不同;④直线比线段长,不正确,直线不能度量.共1个正确.6.如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,则从灯塔P观测A,B两处的视角∠P的度数是(A)A.30°B.32°C.35°D.40°【解析】∵∠P AB=30°,∠ABP=120°,∴∠APB=180°-∠P AB-∠ABP=30°.7.如图,OC平分∠AOB,OD是∠BOC内的一条射线,且∠COD=1 2∠BOD,则∠AOB等于∠COD的(A)A.6倍B.4倍C.2倍D.3倍【解析】∵∠COD=12∠BOD,∴∠COB=3∠COD,∵OC平分∠AOB,∴∠AOB=2∠COB,∴∠AOB=6∠COD.8.两根木条,一根长20 cm,另一根长24 cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为(C)A.2 cm B.4 cm C.2 cm或22 cm D.4 cm或44 cm 【解析】设较长的木条为AB=24 cm,较短的木条为BC=20 cm,∵M,N分别为AB,BC的中点,∴BM=12 cm,BN=10 cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22 cm;②如图2,BC在AB上时,MN=BM-BN=12-10=2 cm.综上所述,两根木条的中点间的距离是2 cm或22 cm.9.(2021·西安期末)如图,A,B,C是一条公路上的三个村庄,A,B 间的路程为50 km,A,C间的路程为30 km,现要在A,B之间建一个车站P,若要使车站到三个村庄的路程之和最小,则车站应建在何处?(A)A.点C处B.线段BC之间C.线段AB的中点D.线段AB之间【解析】设P,C间的路程为x km,由题意,得如图1,当点P在点C的左侧,车站到三个村庄的路程之和为:30-x+x+20+x=x+50(km);如图2,当点P在点C的右侧,车站到三个村庄的路程之和为:30+x+x+20-x=x+50(km).综上所述:车站到三个村庄的路程之和为(x+50)km;因为x为非负数,即x≥0,所以,当x=0时,x+50最小.即当车站建在C处时,车站到三个村庄的路程之和最小.10.如图,在长方形ABCD中,AB∶BC=2∶1,AB=12 cm,点P 沿AB边从点A开始,向点B以2 cm/s的速度移动,点Q沿DA边从点D 开始向点A 以1 cm/s 的速度移动,如果P ,Q 同时出发,用t s 表示移动时间(0<t <6).在这运动过程中,下列结论:①当t =2 s 时,AP =AQ ;②当t =3 s 时,∠BPC =45°;③当t =2 s 时,PB ∶BC =4∶3;④四边形QAPC 的面积为36 cm 2. 其中正确的结论有( D )A .1个B .2个C .3个D .4个【解析】①当t =2 s 时AP =4 cm ,AQ =AD -DQ =6-2=4 cm ,故①正确;②当t =3 s 时,BP =AB -AP =12-3×2=6 cm ,∴BC =BP , 又∵∠B =90°,∴△BPC 是等腰直角三角形,故②正确;③当t =2 s 时,PB =AB -2×2=12-4=8 cm ,∵AB ∶BC =2∶1,AB =12 cm ,∴BC =6 cm ,∴PB ∶BC =8∶6=4∶3,故③正确;④t s 时,PB =AB -2t =12-2t ,DQ =t ,∴四边形QAPC 的面积=12×6-12 (12-2t)×6-12 ×12×t =72-36+6t-6t =36 cm 2,故④正确.所以正确的是①②③④共4个.二、填空题(每小题3分,共24分)11.(2021·宿州期末)时钟的时间是2点30分,时钟盘面上的时针与分针的夹角是__105°__.【解析】2点30分时,时针指向2与3的正中间,分针指向6,表盘上两个相邻数字间夹角为30°,故此时二者的夹角是3×30°+12×30°=105°.12.数轴上点A表示数a,点B表示数b,若|a|=7,|b|=4,则AB =__3或11__.【解析】∵|a|=7,|b|=4,∴a=±7,b=±4,当a=7,b=4时,AB =7-4=3;当a=-7,b=4时,AB=|-7-4|=11;当a=7,b=-4时,AB=|7+4|=11;当a=-7,b=-4时,AB=|-7+4|=3.故AB的长为3或11.13.计算:90°-52°22′=__37°38′__.【解析】90°-52°22′=89°60′-52°22′=37°38′.14.如图,已知∠AOC=90°,∠COB=α°,OD平分∠AOB,则∠COD等于__45°-12α°__.(用含α的代数式表示)【解析】∵∠AOC=90°,∠COB=α°,∴∠AOB=∠AOC+∠COB=90°+α°.∵OD 平分∠AOB ,∴∠BOD =12 (90°+α°)=45°+12 α°,∴∠COD =∠BOD -∠COB =45°-12 α°.15.如图,点C 、点D 在线段AB 上,E ,F 分别是AC ,DB 的中点,若AB =m ,CD =n ,则线段EF 的长为__m +n 2 __(用含m ,n 的式子表示).【解析】∵AB =m ,CD =n.∴AB -CD =m -n ,∵E ,F 分别是AC ,DB 的中点,∴CE =12 AC ,DF =12 DB ,∴CE +DF =12 (m -n),∴EF =CE +DF +DC =12 (m -n)+n =m +n 2 .16.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成__11__部分;圆的十九条弦最多可将圆分成__191__部分.【解析】一条弦将圆分成1+1=2部分,二条弦将圆分成1+1+2=4部分,三条弦将圆分成1+1+2+3=7部分,四条弦将圆分成1+1+2+3+4=11部分,…n 条弦将圆分成1+1+2+3+…+n =1+n (n +1)2部分, 当n =19时,1+n (n +1)2=191部分. 17.如图,将一张长方形纸片ABCD 分别沿着BE ,BF 折叠,使边AB ,CB 均落在BD 上,得到折痕BE ,BF ,则∠ABE +∠CBF =__45°__.【解析】由折叠得,∠ABE =∠DBE ,∠CBF =∠DBF ,∵∠ABE +∠DBE +∠CBF +∠DBF =∠ABC =90°,∴∠ABE +∠CBF =12 ∠ABC =12 ×90°=45°. 18.一副三角板AOB 与COD 如图1摆放,且∠A =∠C =90°,∠AOB =60°,∠COD =45°,ON 平分∠COB ,OM 平分∠AOD.当三角板COD 绕O 点顺时针旋转(从图1到图2).设图1、图2中的∠NOM 的度数分别为α,β,α+β=__105__度.【解析】如题图1,∵ON 平分∠COB ,OM 平分∠AOD.∴∠NOB =∠CON =12 ∠BOC =12 (45°+∠BOD),∠MOD =∠MOA =12 ∠AOD =12 (60°+∠BOD),∴∠MON =α=∠NOB +∠MOD -∠BOD =12 (45°+60°),如题图2,∵ON 平分∠COB ,OM 平分∠AOD.∴∠NOB =∠CON =12 ∠BOC =12 (45°-∠BOD),∠MOD =∠MOA =12 ∠AOD =12 (60°-∠BOD),∴∠MON =β=∠NOB +∠MOD +∠BOD =12 (45°+60°),∴α+β=45°+60°=105°.三、解答题(共46分)19.(6分)如图所示,OB 平分∠AOC ,且∠2∶∠3∶∠4=2∶5∶3.求∠2,∠3,∠4的度数.【解析】设∠2=2x ,∠3=5x ,∠4=3x ,根据OB 平分∠AOC ,故∠1=∠2=2x ,∴∠1+∠2+∠3+∠4=2x +2x +5x +3x =12x =360°,解得:x =30°, ∴∠2=2x =60°,∠3=5x =150°,∠4=3x =90°.20.(6分)如图,∠1=∠2=∠3,若图中所有角的和等于180°,求∠AOB的度数.【解析】如图,设∠1=∠2=∠3=x,∵∠AOC+∠AOD+∠AOB+∠COD+∠COB+∠DOB=180°,∴x+2x+3x+x+2x+x=180°,∴x=18°,∴∠AOB=3x=54°.21.(6分)如图,线段AB=10 cm,C是AB的中点,点D在CB上,DB=3 cm.求线段CD的长.【解析】由AB=10 cm,C是AB的中点,得BC=12AB=5 cm,由线段的和差,得CD=BC-BD=5-3=2(cm).22.(6分)已知A,B,C,D是直线上顺次四点,AB,BC,CD的长度比是1∶2∶3,点E,F分别是AB,CD的中点,且EF=8 cm,求AD的长.【解析】如图所示:∵AB,BC,CD的长度比是1∶2∶3,∴设AB =x ,则BC =2x ,CD =3x ,∵点E ,F 分别是AB ,CD 的中点,且EF =8 cm ,∴EF =12 x +2x +32 x =8,解得x =2,∴AD =x +2x +3x =6x =12 cm .23. (10分)(2021·宁波质检)如图,点A ,B 和线段CD 都在数轴上,点A ,C ,D ,B 起始位置所表示的数分别为-2,0,3,12;线段CD 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)当t =0秒时,AC 的长为________,当t =2秒时,AC 的长为________.(2)用含有t 的代数式表示AC 的长为________.(3)当t =________秒时AC -BD =5,当t =________秒时AC +BD =15.【解析】(1)当t =0秒时,AC =|-2-0|=|-2|=2;当t =2秒时,移动后C 表示的数为2,∴AC =|-2-2|=4.答案:2 4(2)点A 表示的数为-2,点C 表示的数为t ;∴AC =|-2-t|=t +2.答案:t +2(3)∵t 秒后点C 运动的距离为t 个单位长度,点D 运动的距离为t 个单位长度,∴C表示的数是t,D表示的数是3+t,∴AC=t+2,BD=|12-(3+t)|,∵AC-BD=5,∴t+2-|12-(t+3)|=5.解得:t=6.∴当t=6秒时AC-BD=5;∵AC+BD=15,∴t+2+|12-(t+3)|=15,t=11;当t=11秒时AC+BD=15.答案:61124.(12分)如图,∠AOB=90°,∠BOC=20°.(1)如图1所示,分别作∠AOC,∠BOC的平分线OM,ON,求∠MON 的度数;(2)如图2所示,若将(1)中的OC绕O点向下旋转,使∠BOC=2x°,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数?若能,求出其值;若不能,试说明理由;(3)如图3所示,∠AOB=90°,若将(1)中的OC绕O点向上旋转,使OC在∠AOB的内部,且∠BOC=2y°,仍然分别作∠AOC,∠BOC的平分线OM,ON,还能否求出∠MON的度数吗?若能,求出其值;若不能,说明理由.【解析】(1)∵∠AOB=90°,∠BOC=20°,∴∠AOC=∠AOB+∠BOC=110°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×110°=55°,∠NOC=12∠BOC=12×20°=10°,∴∠MON=∠MOC-∠NOC=55°-10°=45°.(2)能求出∠MON的度数,∠MON=45°.∵∠AOB=90°,∠BOC=2x°,∴∠AOC=∠AOB+∠BOC=90°+2x°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×(90°+2x°)=45°+x°,∠NOC=12∠BOC=12×2x°=x°,∴∠MON=∠MOC-∠NOC=45°+x°-x°=45°;(3)能求出∠MON的度数,∠MON=45°.∵∠AOB=90°,∠BOC=2y°,∴∠AOC=∠AOB-∠BOC=90°-2y°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×(90°-2y°)=45°-y°,∠NOC=12∠BOC=12×2y°=y°,∴∠MON=∠MOC+∠NOC=45°-y°+y°=45°.。
七年级上册数学单元测试卷-第四章 基本平面图形-北师大版(含答案)
七年级上册数学单元测试卷-第四章基本平面图形-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,如果射线OA表示在阳光下你的身影的方向,那么你的身影的方向是( )A.北偏东60°B.南偏西60°C.北偏东30°D.南偏西30°2、小明根据下列语句,分别画出了图形(a)、(b)、(c)、(d)并将图形的标号填在了相应的“语句”后面的横线上,其中正确的是()①直线l经过点A、B、C三点,并且点C在点A与B之间②点C在线段AB的反向延长线③点P是直线a外一点,过点P的直线b与直线a相交于点Q④直线l、m、n相交于点DA.①、②、③、④B.①、②、④C.①、③、④D.②、③3、如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°4、如果、、三点共线,线段,,那么、两点间的距离是()A.1B.11C.5.5D.11或15、对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A. B. C. D.6、如图,点D,E,F分别为△ABC各边的中点,下列说法正确的是( )A.DE=DFB.EF= ABC.S△ABD =S△ACDD.AD平分∠BAC7、下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴 D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴8、钟表在4点10分时,它的时针和分针所形成的锐角度数是()A.75°B.65°C.85°D.90°9、下列说法中正确的是()A.若|a|=﹣a,则 a 一定是负数B.单项式 x 3y 2z 的系数为 1,次数是6 C.若 AP=BP,则点 P 是线段 AB 的中点 D.若∠AOC= ∠AOB,则射线 OC 是∠AOB 的平分线10、下列说法:①两点之间,直线最短;②若AC=BC,且A,B,C三点共线,则点C是线段AB的中点;③经过一点有且只有一条直线与已知直线垂直;④经过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个11、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10 +5D.3512、如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πrB.2πrC.πrD.2r13、当分针指向12,时针这时恰好与分针成120°的角,此时是()A.9点钟B.8点钟C.4点钟D.8点钟或4点钟14、下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧15、如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC-DB,②CD= AB,③CD=AD-BC,④BD=2AD-AB.其中正确的等式编号是()A. B. C. D.二、填空题(共10题,共计30分)16、一列火车在A、B两站间往返行驶,之间还有4个车站,至多共有________种不同的价格的车票.17、如图,AB=24,点C为AB的中点,点D在线段AC上,且AD:DC=1:2,则DB的长度为________.18、如图,将一副直角三角板如图放置,若,则________度.19、[知识背景]:三角形是数学中常见的基本图形,它的三个角之和为180°.等腰三角形是一种特殊的三角形,如果一个三角形有两边相等,那么这个三角形是等腰三角形,相等的两边所对的角也相等.如图1,在三角形ABC中,如果AB=AC,那么∠B=∠C.同样,如果∠B=∠C,则AB=AC,即这个三角形也是等腰三角形.[知识应用]:如图2,在三角形ABC中,∠ACB=90°,∠ABC=30°,将三角形ABC绕点C 逆时针旋转α(0°<α<60°)度(即∠ECB=α度),得到对应的三角形DEC,CE交AB于点H,连接BE,若三角形BEH为等腰三角形,则α=________°.20、如果一个多边形从一个顶点出发的对角线将这个多边形分成7个三角形,则这个多边形共有________ 条对角线.21、在灯塔处观测到轮船位于北偏西的方向,同时轮船在南偏东的方向,那么的大小为________.22、,,________23、如图:若CD=4cm,BD=7cm,B是AC的中点,则AC的长为________.24、如图,点A、B、C是直线l上的三个点,图中共有线段条数是________25、如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM(________)∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=________∠AMN,∠FNM=________∠DNM (角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF(________)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对________角的平分线互相________.三、解答题(共5题,共计25分)26、计算:(1)13°29’+78°37‘(2)62°5’-21°39‘ (3)22°16′×5 (4)42°15′÷527、如图所示,军舰A在军舰B的正东方向上,且同时发现了一艘敌舰,其中A舰发现它在北偏东15°的方向上,B舰发现它在东北方向上,(1)试画出这艘敌舰的位置(用字母C表示).(2)求∠BCA=?28、如图,已知∠AOD和∠BOC都是直角,∠AOC=38°,OE平分∠BOD,求∠COE的度数。
七年级上册数学第四单元测试卷
新北师大版(2024)数学七年级上册第四单元平面基本图形章节测试卷一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D.1:42.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36B.37C.38D.393.已知A,B,C三点,,,则()A.8cm B.4cm C.8cm或4cm D.无法确定4.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间5.当式子|x+1|+|x﹣6|取得最小值时,x的取值范围为()A.﹣1≤x<6B.﹣1≤x≤6C.x=﹣1或x=6D.﹣1<x≤66.一个多边形最少可分割成五个三角形,则它是()边形A.8B.7C.6D.57.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.如图,点为线段外一点,点,,,为上任意四点,连接,,,,下列结论错误的是()A.以为顶点的角共有15个B.若,,则C.若为中点,为中点,则D.若平分,平分,,则二、填空题(每题3分,共15分)9.如图,在∠AOB的内部有3条射线OC,OD,OE.若∠AOC=51°,∠BOE=∠BOC,∠BOD=∠AOB,则∠DOE=°10.5时15分=时,4吨90千克=吨.11.一个六边形共有条对角线.12.计算(结果用度、分表示).13.同一条直线上有四点,已知:,且,则的长是.三、解答题(共7题,共61分)14.计算:(1)(2)15.如图扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD 长为20cm,求贴纸部分的面积.16.如图,已知三点A、B、C.(1)请读下列语句,并分别画出图形①画直线AB;②画射线AC;③连接BC.(2)在(1)的条件下,图中共有条射线.(3)从点C到点B的最短路径是,依据是.17.记长方形的长为a,宽为b(如图).(1)用直尺和圆规作长与宽的差.(2)比较a与2b的大小,并说明你是怎样比较的.18.如图所示,点P是线段AB上任意一点,AB=12cm,C,D两点分别从点P,B同时向点A运动,且点C的运动速度为2cm/s,点D的运动速度为3cm/s,运动时间为t s.(1)若AP=8cm:①两点运动1s后,求CD的长;②当点D在线段PB上运动时,试说明:AC=2CD;(2)当t=2时,CD=1cm,试探索AP的长.19.如图,已知∠AOB=90°,三角形COD是含有45°角的三角板,∠COD=45°,OE平分∠BOC.(1)如图1,当∠AOC=30°时,∠DOE=°;(2)如图2,当∠AOC=60°时,∠DOE=°;(3)如图3,当∠AOC=α(90°<α<180°)时,求∠DOE的度数(用α表示);(4)由前三步的计算,当0°<∠AOC<180°时,请直接写出∠AOC与∠DOE的数量关系为.20.阅读下列材料并填空:(1)探究:平面上有n个点(n≥2)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?我们知道,两点确定一条直线.平面上有2个点时,可以画=1条直线,平面内有3个点时,一共可以画=3条直线,平面上有4个点时,一共可以画=6条直线,平面内有5个点时,一共可以画条直线,…平面内有n个点时,一共可以画条直线.(2)运用:某足球比赛中有22个球队进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛?答案解析部分1.【答案】D2.【答案】B3.【答案】D4.【答案】A5.【答案】B6.【答案】B7.【答案】B8.【答案】B9.【答案】1710.【答案】5.25;4.0911.【答案】912.【答案】13.【答案】14cm或cm或cm14.【答案】(1)(2)15.【答案】解:设AB=R,AD=r,则有S贴纸=πR2﹣πr2=π(R2﹣r2)=π(R+r)(R﹣r)=(30+10)×(30﹣10)π=π(cm2);答:贴纸部分的面积为πcm2.16.【答案】(1)如图所示:直线AB、射线AC、线段BC即为所求.(2)6(3)CB;两点之间,线段最短17.【答案】(1)解:如图:以点D为圆心,AB的长为半径,在直线l上截取线段DF,以点D为圆心,BC的长为半径在在直线l上截取线段DE,则EF即为所求.(2)解:以点E为圆心,BC的长为半径,在直线l上截取线段EG,根据点G在点F的左侧即可判断a>2b.如图:18.【答案】(1)解:①当t=1时,CP=2×1=2(cm),DB=3×1=3(cm).因为AP=8cm,AB=12cm,所以PB=AB-AP=12-8=4(cm).所以CD=CP+PB-DB=2+4-3=3(cm).②因为AP=8cm,AB=12cm,所以PB=4cm,AC=(8-2t)cm.所以DP=(4-3t)cm.所以CD=DP+CP=4-3t+2t=(4-t)(cm).所以AC=2CD.(2)解:当t=2时,CP=4cm,DB=6cm.①当点D在点C的右边时,如图①所示,所以CB=CD+DB=1+6=7(cm).所以AC=AB-CB=12-7=5(cm).所以AP=AC+CP=5+4=9(cm).②当点D在点C的左边时,如图②所示,所以AD=AB-DB=12-6=6(cm).所以AP=AD+CD+CP=6+1+4=11(cm).综上所述,AP的长为9cm或11cm.19.【答案】(1)15(2)30(3)解:∵∠AOB=90°,∠AOC=α(90°<α<180°),∴∠BOC=∠AOC﹣∠AOB=α﹣90°,∵OE平分∠BOC,∴,∵∠COD=45°,∴;(4)∠AOC=2∠DOE20.【答案】(1)10;(2)解:某足球比赛中有22个球队进行单循环比赛(每两队之间必须比赛一场),一共要进行场比赛。
北师大版七年级上册第四章基本平面图形单元测试
北师大版七年级上册第四章基本平面图形单元测试一.选择题:〔四个选项中只要一个是正确的,选出正确选项填在标题的括号内〕1.以下各直线的表示法中,正确的选项是〔〕A.直线ab B.直线Ab C.直线A D.直线AB2.以下说法正确的选项是〔〕A.角的边越长,角越大B.在∠ABC一边的延伸线上取一点DC.∠B=∠ABC+∠DBC D.以上都不对3.如图,O是直线AB上一点,∠COB=26°,那么∠1=〔〕A.154° B.164° C.174° D.184°4.以下四个现象:①用两个钉子就可以把木条固定在墙上;②植树时,只需定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽能够沿着直线架设;④把弯曲的公路改直,就能延长路程。
其中可用〝两点之间,线段最短〞的是〔〕A.①②B.①③C.②④D.③④5.平面上有三点A,B,C,假设AB=8,AC=5,BC=3,以下说法正确的选项是〔〕A.点C在线段AB上B.点C在线段AB的延伸线上C.点C在直线AB外D.点C能够在直线AB上,也能够在直线AB外6.如图,C,D是线段AB上两点,假定CB=4cm,DB=7cm,且D是AC的中点,那么AC 的长等于〔〕A.3cm B.6cm C.11cm D.14cm7.如图,一艘轮船行驶在O处同时测得小岛A、B的方向区分为北偏东75°和西南方向,那么∠AOB等于〔〕A.100° B.120° C.150° D.135°8.如图,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,假设BD为∠A′BE的平分线,那么∠CBD=〔〕A.80° B.90° C.100° D.70°第6题图第7题图第8题图9.平面上有四点,经过其中的两点画直线,共可画〔〕A.1条直线B.6条直线C.6条或4条直线D.1条或4条或6条直线10.如图,圆的四条半径区分是OA,OB,OC,OD,其中点O,A,B在同一条直线上,假定∠AOD=90°,∠AOC=3∠BOC,那么圆被四条半径分红的四个扇形的面积的比是〔〕A .1:2:2:3B .3:2:2:3C .4:2:2:3D .1:2:2:1二.填空题:〔将正确答案填在标题的横线上〕11. 1周角=____平角=____直角=______度;12. 60.56°=______度_____分_____秒,28°28′12"=_________°;13. 8:30时针与分针所成的角度为_________;14.〔1〕如图,AB=12cm ,点C 为线段AB 上的一个动点,D 、E 区分是AC 、BC 的中点;①假定点C 恰为AB 的中点,那么DE=_______cm ;②假定AC=4cm ,那么DE=________cm ;〔2〕如图,点C 为线段AB 上的一个动点,D 、E 区分是AC 、BC 的中点;假定AB=a ,那么DE=_______;15.如图,∠AOB=120°,过角的外部任一点C 画射线OC ,假定OD 、OE 区分是∠AOC 、∠BOC 的平分线,那么∠DOE=______;第14题图 第15题图三.解答题:〔写出必要的说明进程,解答步骤〕16. 按要求作图:如图,在同一平面内有四个点A 、B 、C 、D ;〔1〕画射线CD ; 〔2〕画直线AD ;〔3〕衔接AB ;〔4〕直线BD 与直线AC 相交于点O ;〔5〕请说明AD+AB >BD 的理由.17.如图,点C 为线段AD 上一点,B 为CD 的中点,且AD=10cm ,BD=4cm ; 〔1〕图中共有多少条线段?写出这些线段;〔2〕求AC 的长;〔3〕假定点E 在直线AD 上,且AE=3cm ,求BE 的长;18.如图,将一副三角尺的直角顶点叠放在点C 处,∠D=30°,∠B=45°,求:〔1〕假定∠DCE=35°,求∠ACB 的度数;〔2〕假定∠ACB=120°,求∠DCE 的度数. 〔3〕猜想∠ACB 和∠DCE 的关系,并说明理由;19. 如图,O 是直线AB 上的一点,C 是直线AB 外的一点,OD 是∠AOC 的平分线, OE 是∠COB 的平分线.〔1〕∠1=23°,求∠2的度数;〔2〕无论点C 的位置如何改动,图中能否存在一个角,它的大小一直不变〔∠AOB 除外〕?假设存在,求出这个角的度数;假设不存在,请说明理由.20. 如图,∠AOB=90°,OM 是∠AOC 的角平分线,ON 是∠BOC 的角平分线; A D . 第17题图 . .C . B〔1〕当∠BOC=40°时,求∠MON 的大小?〔2〕当∠BOC 的大小发作变化时,∠MON 的大小能否发作改动?说明理由;七〔上〕第四章 基本平面图形 单元测试参考答案1~10 DDADA BCBDA11.2,4,360;12.60°33′36",28.47°;13.75°;14.〔1〕6,6;〔2〕2a ;; 15. 60°;16.〔1〕~〔4〕,如图,即为所求作;〔5〕AD+AB >BD 的理由是:两点之间线段最短;17. 〔1〕图中共有6条线段,区分是:线段AC ,AB ,AD ,CB ,CD ,BD ;〔2〕∵BD=4cm ,B 为CD 的中点,∴CD=2 BD=2×4=8〔cm 〕又∵AD=10 ∴ AC=AD -CD=10-8=2(cm)〔3〕点E 在直线AD 上有两种状况:①E 在线段AD 上,如图,∵ AB=AD -BD=10-4=6∴ BE= AB -AE=6-3=3(cm)②E 在线段DA 的延伸线上,如图的点E ′,由①知:AB=6∴ BE ′= AB +AE ′=6+3=9〔cm 〕综上可得: BE=3cm 或9cm ;18. 〔1〕由题意知:∠ACD=90°,又∠DCE=35° ∴∠ACE=∠ACD -∠DCE =90°-35°=55° ∴∠ACB=∠ACE +∠BCE=55°+90°=145°〔2〕假定∠ACB=120°,∴∠ACE=∠ACB -∠BCE =120°-90°=30°∴ ∠DCE=∠ACD -∠ACE =90°-30°=60°〔3〕∠ACB +∠DCE=180°;理由如下:∵∠BCE=∠ACD=90°∴∠BCD+∠DCE=90°,∠DCE+∠ACE=90°ABON MC∴∠ACB +∠DCE=∠ACE +∠DCE+BCD+∠DCE=90°+90°=180°19. 〔1〕∠2=67°;〔2〕∠DOE的大小一直不变,等于90°;20. 〔1〕∠MON=45°;〔2〕当∠BOC的大小发作变化时,∠MON的大小不发作改动;理由如下:∵OM是∠AOC的角平分线,ON是∠BOC的角平分线∴当∠BOC的大小发作变化时,∠MON=45°,大小不发作改动;。
北师大版七年级上册数学第四章基本平面图形单元测试(含答案)
七年级上册数学第四章单元测试一、选择题(每题3分,共30分)1.如图,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段(第1题)(第4题)2.已知三点A,B,C.画直线AB,画射线AC,连接BC.按照上述语句画图正确的是()3.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MNC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN4.如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD 的长为()A.6 B.4 C.2 D.55.如图,∠AOB是平角,∠AOC=40°,∠BOD=26°,OM,ON分别是∠AOC,∠BOD的平分线,则∠MON等于()A.66°B.114°C.170°D.147°(第5题)(第6题)(第8题)6.如图是某住宅小区的平面图,点B是小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路,从居民楼点A到“菜鸟驿站”点B的最短路径是()A.A-C-G-E-B B.A-C-E-BC.A-D-G-E-B D.A-F-E-B7.当时钟指向下午4:30时,时针和分针的夹角是()A.30°B.45°C.60°D.75°8.如图,OC是∠AOB的平分线,OD是∠COB的平分线,则下列各式正确的是()A.∠COD=12∠AOC B.∠AOD=23∠AOBC.∠BOD=13∠AOB D.∠BOC=23∠AOB9.如图,将一张长方形纸片ABCD沿对角线BD折叠,点C落在点E处,BE 交AD于点F,再将三角形DEF沿DF折叠,点E落在点G处,若DG刚好平分∠ADB,那么∠ADB的度数是()(第9题)A.18°B.20°C.36°D.45°10.已知点C在线段AB上,则共有三条线段:AB,AC和BC.若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”. 若AB =15,点C是线段AB的“巧点”,则AC的长为()A.5 B.7.5C.5或10 D.5或7.5或10二、填空题(每题3分,共15分)11.74°19′30″=________°.12.如图,甲从点A出发向北偏东62°方向走到点B,乙从点A出发向南偏西18°方向走到点C,则∠BAC的度数是__________.(第12题)(第13题)13.如图,小李同学在参加“几何小能手”社团活动时,制作了一副与众不同的三角尺,用它们可以画出一些特殊的角度.在①9°;②18°;③55°;④117°中,能用这副三角尺画出的角度是________(填序号).14.已知线段MN=12,点P在直线MN上,PM=3,点Q为MN的中点,则线段PQ的长为______________.15.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,则此多边形的边数为________.三、解答题(第16题10分,第17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.在如图所示的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?试着写出来.(第16题)17. 如图,已知线段a、b(a>b),用尺规作图法作一条线段,使其等于2a-b (不写作法,保留作图痕迹).(第17题)18.如图,已知∠AOB=130°,过∠AOB的内部任意一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,求∠DOE的大小.(第18题)19.如图,把一个圆分成四个扇形,请分别求出这四个扇形的圆心角的度数.若该圆的半径为2 cm,请分别求出它们的面积.(第19题)20.已知一条直线上有A,B,C,共3个点,那么这条直线上总共有多少条线段?小亮的思路是这样的:以A为端点的线段有AB,AC,共2条,同样以B为端点,以C为端点的线段也各有2条,这样共有3×2=6(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有3×22=3(条)线段.那么,如果一条直线上有6个点,则这条直线上共有________条线段.如果在一条直线上有n个点,那么这条直线上共有________条线段.(1)请你帮小亮计算,并填空;(2)你能用上面的思路来解决“10名同学参加班上组织的乒乓球比赛,比赛采用单循环制(即每两名同学之间都要进行一场比赛),那么一共要进行多少场比赛”这个问题吗?21.阅读材料并回答问题:数学课上,老师给出了如下问题:如图①,∠AOB=90°,OC平分∠AOB.若∠COD=65°,请你补全图形,并求∠BOD的度数.同学一:以下是我的解答过程(部分空缺).解:如图②.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=________.因为∠COD=65°,所以∠BOD=∠BOC+________=________.同学二:“符合题目要求的图形还有一种情况.”请你完成以下问题:(1)将同学一的解答过程空缺部分补充完整,能正确求出图②中∠BOD的度数.(2)判断同学二的说法是否正确,若不正确,请说明理由;若正确,请你在图①中画出另一种情况对应的图形,并求∠BOD的度数.(第21题)22.如图,P是线段AB上一点,AB=12 cm,M,N两点分别从P,B出发以1 cm/s、3 cm/s的速度同时沿直线AB向左运动(M在线段AP上,N在线段BP上),运动时间为t s.(1)当M,N运动1s时,且PN=3AM,求AP的长;(2)若M、N运动到任一时刻时,总有PN=3AM,AP的长度是否变化?若不变,请求出AP的长;若变化,请说明理由;(3)在(2)的条件下,Q是直线AB上一点,且AQ=PQ+BQ,求PQ的长.(第22题)23.阅读材料:如图①,将一副三角尺的直角顶点C叠放在一起,若∠DCE=35°,则∠ACB =________;若∠ACB=150°,则∠DCE=________.由此你能得到什么结论?解:因为∠ACD=90°,∠DCE=35°,所以∠ACE=90°-35°=55°,因为∠BCE=90°,所以∠ACB=∠ACE+∠BCE=55°+90°=145°;因为∠BCE=90°,∠ACB=150°,所以∠ACE=150°-90°=60°,因为∠ACD=90°,所以∠DCE=∠ACD-∠ACE=90°-60°=30°,所以能得到结论∠ACB+∠DCE =180°.故答案为:145°;30°∠ACB+∠DCE=180°.解决问题:(1)当图①变为图②时,∠ACB与∠DCE之间的数量关系还存在吗?为什么?(2)如图③,若将两个同样的三角尺的60°角的顶点A重合在一起,请你猜想∠BAD与∠CAE有何关系,请说明理由;(3)如图④,如果把任意两个锐角∠AOB,∠COD的顶点O重合在一起,设∠AOB=α,∠COD=β(α,β都是锐角),请你直接写出∠AOD与∠BOC的关系.(第23题)答案一、1.B 2.A 3.C 4.C5.D6.D7.B8.A9.C10.D二、11.74.32512. 136°13. ①②④14.3或915.6三、16.解:线段:线段AB、线段AC、线段BD、线段BE、线段CD、线段CF、线段DE、线段DF、线段EF.射线:射线AB、射线AC、射线BA、射线CA.直线:直线AB、直线AC.17.解:如图所示,线段OC即为所求.(第17题)18.解:因为OD,OE分别平分∠AOC和∠BOC,所以∠DOC=12∠AOC, ∠COE=12∠BOC,所以∠DOE=∠DOC+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB.又因为∠AOB=130°,所以∠DOE=12×130°=65°.19.解:扇形AOB的圆心角为360°×35%=126°.扇形BOC的圆心角为360°×10%=36°.扇形COD的圆心角为360°×25%=90°.扇形AOD的圆心角为360°×30%=108°.圆的面积为π×22=4π(cm2).所以扇形AOB的面积为4π×35%=1.4π(cm2).扇形BOC的面积为4π×10%=0.4π(cm2).扇形COD的面积为4π×25%=π(cm2).扇形AOD的面积为4π×30%=1.2π(cm2).20.解:(1)15;n(n-1)2.(2)把10名同学看成直线上的10个点,每两名同学之间的一场比赛看成一条线段,直线上10个点所构成的线段条数就等于比赛的场数,因此一共要进行10×(10-1)2=45(场)比赛.21.解:(1)45°;∠COD;110°.(第21题)(2)正确.如图.因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOC=45°.因为∠COD=65°,所以∠BOD=∠COD-∠BOC=20°.22.解:(1)当M,N运动1 s时,PM=1 cm,BN=3 cm.因为AB=12 cm,所以AM+PN=12-1-3=8(cm).因为PN=3AM,所以4AM=8 cm,所以AM=2 cm.所以AP=AM+PM=3 cm.(2)AP的长度不会变化.根据题意可知PM=t cm,BN=3t cm.因为AB=12 cm,所以AM+PN=(12-4t)cm.因为PN=3AM,所以4AM=(12-4t)cm,所以AM=(3-t)cm.所以AP=AM+PM=3-t+t= 3 cm.(3)由已知条件可知,点Q在线段BA的延长线上或在线段AP上时不符合题意,所以当点Q在线段PB上时,由(2)可知AP=3 cm,则BP=9 cm.所以AQ=PQ+BQ=BP=9 cm.因为AQ=AP+PQ,所以PQ=AQ-AP=6 cm.当点Q在线段AB的延长线上时,AQ=AB+BQ.因为AQ=PQ+BQ,所以PQ=AB=12 cm.综上所述,PQ=6 cm或12 cm.23.解:(1)存在.理由:因为∠ACD=90°,∠BCE=90°,所以∠ACD+∠BCE=180°.所以∠ACB+∠DCE=360°-(∠ACD+∠BCE)=360°-180°=180°. (2)∠BAD-∠CAE=120°.理由:因为∠CAD=60°,∠BAE=60°,所以∠BAD-∠CAE=∠CAD+∠CAE+∠BAE-∠CAE=∠CAD+∠BAE =60°+60°=120°.(3)∠AOD+∠BOC=α+β.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版七年级上数学第四章:基本平面图形单元测试题
一、填空题
1.通过画图判断:如果两条直线都和同一条直线垂直,这两条直线的位置关系是 .
2.平面上有四个点A ,B ,C ,D ,没有三个点在同一直线上,过其中每两点画直线,可以画________条直线.
3.时钟的分针每分钟转 度,时针每小时转________度.
4.如图,点A ,B ,C ,D 在同一直线上,以这四个点为端点的线段有______条,若AC =12,点D 是线段AB 的中点,点B 是线段CD 的中点,BD 则AB =________.
5.如图,已知∠BOA =90°,直线CD 经过点O ,若∠BOD ∶∠AOC =5∶2, 则∠AOC =_______,∠BOD =__________.
6.如图,将一张长方形纸对折,使OA 与OB 重合,
∠BOC 的度数是__________.
7.如图,将一张长方形纸按照如图所示的方法对折,两条
虚线为折痕,这两条折痕构成的角的度数是__________.
二、选择题
1.点A ,B ,P 在同一直线上,下列说法正确的是( ).
(A)若AB =2P A ,则P 是AB 的中点 (B)若AP =PB ,则P 是AB 的中点
(C)若AB =2PB ,则P 是AB 的中点 (D)若AB =2P A =2PB ,则P 是AB 的中点
2.如图,点C 是线段AB 上一点,点M 是AC 的中点,点N 是BC 的中点,如果MC 比NC 长2cm ,AC 比BC 长( ).
(A)1 cm (B)2 cm (C)4 cm (D)6 cm 3.平面内的6条直线两两相交,最多有( )个交点.
(A)12 (B)15 (C)16 (D)20
4.一个钝角的平分线和这个角的一边形成的角一定是( ).
(A)锐角 (B)钝角 (C)直角 (D)平角
5.如图,圆的四条半径分别是OA ,OB ,OC ,OD ,其中点O ,A ,B 在
同一条直线上,∠AOB =90°,∠AOC =3∠BOC ,那么圆被四条半径
分成的四个扇形的面积的比是( )
(A)1∶2∶2∶3 (B) 3∶2∶2∶3 (C) 4∶2∶2∶3 (D) 1∶2∶2∶1
A A
B
C M
N
A
三、解答题
1.点A,B,C三点在同一直线上,AB的中点是点E,BC的中点是点F,EF=12,求AC 的长度.(答案可能不止一个哟!)
2.如图,已知∠AOC=∠DOE=90°,OF平分∠AOD,OB平分∠COE,∠B OF度数是多少?说明理由.
3.如图,点B,D都在线段AC上,D是线段AB的中点,BD=3BC,AC是BC的多少倍?
4.如图,点O,A,B在同一直线上,OC平分∠AO D,OE平分∠FOB,∠COF=∠DOE =90°,求∠AOD.
三、画图题
在图中按要求画图并填空,并标上字母.
①画直线AB;
②过A点画直线a;
③过A点画射线AC,和直线BF交于点C;
④画线段AB的中点D;
⑤连接DC,比较线段AB和线段DC的长短;
⑥画∠ACF的角平分线CE.
A
B F
E A
A B C
D。