超声波测距系统的应用设计

合集下载

基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现超声波测距系统是利用超声波传播速度较快的特性,通过发射超声波并接收其回波来测量距离的一种常见的测距方式。

在本文中,我们将介绍基于单片机的超声波测距系统的设计和实现。

一、系统设计原理超声波测距系统主要由超声波发射器、超声波接收器、单片机和显示器组成。

其工作原理如下:1.发送超声波信号:超声波发射器通过单片机控制,向外发射超声波信号。

超声波的发射频率通常在40kHz左右,适合在空气中传播。

2.接收回波信号:超声波接收器接收到回波信号后,将信号经过放大和滤波处理后送入单片机。

3.距离计算:单片机通过测量超声波发射和接收的时间差来计算距离。

以声速343m/s为例,超声波的往返时间与距离之间的关系为:距离=时间差×声速/2、通过单片机上的计时器和计数器来测量时间差。

4.数据显示:单片机将计算得到的距离数据通过显示器显示出来,实时展示被测物体与超声波传感器之间的距离。

二、系统设计步骤1.系统硬件设计:选择合适的超声波模块,其具有超声波发射器和接收器功能,并可通过接口与单片机连接。

设计好电源电路以及超声波传感器与单片机之间的连接方式。

2.系统软件设计:根据单片机的型号和编程语言,编写相应的程序。

包括超声波信号的发射和接收控制,计时和计数功能的编程,距离计算和数据显示的实现。

3.硬件连接和调试:将硬件连接好后,对系统进行调试。

包括超声波模块与单片机的连接是否正确,超声波信号的发射和接收是否正常,计时和计数功能是否准确等。

5.优化和改进:根据实际测试结果,对系统进行优化和改进。

如增加滤波和放大电路以提高信号质量,调整超声波模块的发射频率,改进显示方式等。

三、系统实现效果完成以上设计和实施后,我们可以得到一个基于单片机的超声波测距系统。

该系统使用简单,测距精度高,响应速度快,适用于各种距离测量的应用场景。

同时,该系统还可根据具体需求进行各种改进和扩展,如与其他传感器结合使用,增加报警功能等。

超声波测距系统的设计详解

超声波测距系统的设计详解

超声波测距系统的设计详解超声波测距系统是一种基于超声波测量原理进行距离测量的系统。

它利用超声波在空气中的传播速度较快且能够穿透一定程度的障碍物的特点,通过向目标物体发射超声波并接收反射回来的波形信号,从而计算出目标与传感器之间的距离。

下面将详细介绍超声波测距系统的设计过程。

首先,超声波测距系统的设计需要明确测量的范围和精度要求。

根据需求确定测量距离的最大值和最小值,以及所需的测量精度。

这将有助于选择合适的超声波传感器和测量方法。

其次,选择合适的超声波传感器。

超声波传感器一般包括发射器和接收器两部分,发射器用于发射超声波,接收器用于接收反射回来的波形信号。

传感器的选择应考虑其工作频率、尺寸、功耗等因素。

一般来说,工作频率越高,测距的精度越高,但传感器的尺寸和功耗也会增加。

接下来是超声波信号的发射和接收电路的设计。

发射电路负责产生超声波信号,并将其发送到目标物体上。

接收电路负责接收反射回来的波形信号,并将其转换成可用的电信号。

发射电路常采用谐振频率发射,以提高发射效率和功耗控制。

接收电路则需要设计合适的放大和滤波电路,以增强接收到的信号并去除噪声。

然后是超声波信号的处理和计算。

接收到的波形信号需要进行模数转换和数字信号处理,以获取目标物体与传感器之间的距离。

常见的处理方法包括峰值检测、时差测量、相位比较等。

峰值检测法通过检测波形信号的峰值来判断目标距离;时差测量法通过测量发射和接收信号之间的时间差来计算距离;相位比较法通过比较两个信号的相位差来测量距离。

最后是系统的校准和调试。

校准是调整测距系统的参数,使其达到预定的测量精度。

常见的校准方法包括距离校准和零位校准。

调试是对整个系统进行功能和性能测试,确保其正常工作。

在调试过程中需要注意测距系统与其他系统的干扰和噪声问题,并进行相应的抑制和滤波处理。

总之,超声波测距系统的设计涉及到传感器选择、电路设计、信号处理和系统调试等多个方面。

合理的设计和调试能够保证系统的稳定性和可靠性,从而满足测量的要求。

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计一、本文概述超声波测距技术因其非接触、高精度、实时性强等特点,在机器人导航、车辆避障、工业测量等领域得到了广泛应用。

STM32单片机作为一种高性能、低功耗的嵌入式系统核心,为超声波测距系统的设计提供了强大的硬件支持。

本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足不同应用场景的需求。

二、超声波测距原理本部分将介绍超声波测距的基本原理,包括超声波的产生、传播、接收以及距离的计算方法。

同时,分析影响超声波测距精度的主要因素,为后续系统设计提供理论基础。

三、系统硬件设计3、1在设计基于STM32单片机的高精度超声波测距系统时,我们遵循了“精确测量、稳定传输、易于扩展”的总体设计思路。

我们选用了STM32系列单片机作为系统的核心控制器,利用其强大的处理能力和丰富的外设接口,实现了对超声波发射和接收的精确控制。

在具体设计中,我们采用了回波测距法,即发射超声波并检测其回波,通过测量发射与接收之间的时间差来计算距离。

这种方法对硬件的精度和稳定性要求很高,因此我们选用了高精度的超声波传感器和计时器,以确保测量结果的准确性。

我们还考虑到了系统的可扩展性。

通过STM32的串口通信功能,我们可以将测量数据上传至计算机或其他设备进行分析和处理,为后续的应用开发提供了便利。

我们还预留了多个IO接口,以便在需要时添加更多的传感器或功能模块。

本系统的设计思路是在保证精度的前提下,实现稳定、可靠的超声波测距功能,并兼顾系统的可扩展性和易用性。

31、1.1随着物联网、机器人技术和自动化控制的快速发展,精确的距离测量技术在各个领域的应用越来越广泛。

超声波测距技术作为一种非接触式的距离测量方式,因其具有测量精度高、稳定性好、成本相对较低等优点,在工业自动化、智能家居、机器人导航、安防监控等领域得到了广泛应用。

STM32单片机作为一款高性价比、低功耗、高性能的嵌入式微控制器,在智能设备开发中占据重要地位。

毕业设计方案超声波测距仪的设计方案

毕业设计方案超声波测距仪的设计方案

毕业设计方案超声波测距仪的设计方案1. 引言超声波测距仪是一种常用的测量设备,可以通过发送超声波信号并接收回波来测量距离。

本文将介绍一种基于超声波的测距仪设计方案,用于毕业设计项目。

2. 设计目标本设计方案的主要目标是设计一种精确、稳定、成本效益高的超声波测距仪。

具体而言,设计要求如下:- 测距范围:至少10米- 测量精度:在0.5%以内- 响应时间:小于100毫秒- 成本:尽可能低廉- 可靠性:能够在不同环境条件下稳定工作3. 设计原理超声波测距仪的工作原理是利用超声波在空气中传播速度恒定的特性,通过测量超声波的往返时间来计算距离。

一般来说,超声波测距仪由发射模块和接收模块组成。

发射模块:发射模块用于发送超声波信号,通常由脉冲发生器和超声波发射器组成。

脉冲发生器用于产生短暂的高频脉冲信号,驱动超声波发射器将信号转换成超声波信号并发射出去。

接收模块:接收模块用于接收反射回来的超声波信号,并将其转换成电信号。

接收模块一般由超声波接收器和信号处理电路组成。

超声波接收器将接收到的超声波信号转换成电信号,并通过信号处理电路进行放大、滤波和波形整形等处理,得到可用的测量信号。

距离计算:通过测量超声波的往返时间,可以计算出距离。

超声波在空气中的传播速度约为340米/秒,因此距离可以通过距离等于速度乘以时间的公式来计算。

4. 硬件设计硬件设计是实现超声波测距仪的关键。

以下是硬件设计方案的主要组成部分:超声波发射器和接收器:选择适当的超声波发射器和接收器是关键。

一般来说,发射器和接收器的频率应该相同,常见的频率有40kHz和50kHz。

此外,发射器和接收器需要具有相匹配的电特性,以确保信号的传输和接收的准确性。

脉冲发生器:脉冲发生器的设计应考虑到发射模块的需求,需要产生高频、短暂的脉冲信号。

常用的脉冲发生器电路有多谐振荡电路和555定时器电路等。

信号处理电路:接收到的超声波信号需要进行处理,以便得到可用的测量信号。

基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计
超声波测距系统是一种常见的测距技术,它利用超声波的特性来测量物体与传感器之间的距离。

基于单片机的超声波测距系统是一种常见的应用,它可以广泛应用于工业自动化、智能家居、机器人等领域。

基于单片机的超声波测距系统主要由超声波传感器、单片机、LCD 显示屏和电源等组成。

超声波传感器是测距系统的核心部件,它可以发射超声波信号并接收反射回来的信号。

单片机是控制系统的核心部件,它可以对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。

LCD显示屏可以显示测量结果,方便用户进行观察和操作。

在设计基于单片机的超声波测距系统时,需要注意以下几点:
1.选择合适的超声波传感器。

传感器的频率和探测距离是选择传感器时需要考虑的重要因素。

2.选择合适的单片机。

单片机的处理速度和存储容量是选择单片机时需要考虑的重要因素。

3.编写合适的程序。

程序需要能够对传感器发射的信号进行处理,并计算出物体与传感器之间的距离。

同时,程序还需要能够将测量结果显示在LCD显示屏上。

4.进行系统测试。

在完成系统设计后,需要进行系统测试,确保系统能够正常工作,并且测量结果准确可靠。

基于单片机的超声波测距系统具有测量精度高、响应速度快、体积小等优点,可以广泛应用于各种领域。

在未来,随着技术的不断发展,基于单片机的超声波测距系统将会得到更广泛的应用。

基于单片机控制的超声波测距系统的设计

基于单片机控制的超声波测距系统的设计

基于单片机控制的超声波测距系统的设计一、概述。

超声波测距技术是一种广泛应用的测距技术,它能够非常精确地测量物体到传感器的距离。

本文介绍的基于单片机控制的超声波测距系统主要由控制模块、信号处理模块和驱动模块三部分组成。

其中,控制模块主要实现超声波信号的发射与接收,信号处理模块主要实现对测量结果的处理和计算,驱动模块主要实现对LED灯的控制。

二、硬件设计。

1.超声波发射模块:采用 SR04 超声波发射传感器,并通过单片机的PWM 输出控制 SR04 的 trig 引脚实现超声波信号的发射。

2.超声波接收模块:采用SR04超声波接收传感器,通过单片机的外部中断实现对超声波信号的接收。

3.控制模块:采用STM32F103单片机,通过PWM输出控制超声波发射信号,并通过外部中断接收超声波接收信号。

4.信号处理模块:采用MAX232接口芯片,将单片机的串口输出转换成RS232信号,通过串口与上位机进行通信实现测量结果的处理和计算。

5.驱动模块:采用LED灯,通过单片机的GPIO输出控制LED灯的亮灭。

三、软件设计。

1.控制模块:编写程序实现超声波信号的发射与接收。

其中,超声波发射信号的周期为 10us,超声波接收信号的周期为 25ms。

超声波接收信号的处理过程如下:(1)当 trig 引脚置高时,等待 10us。

(2)当 trig 引脚置低时,等待 echo 引脚为高电平,即等待超声波信号的回波。

(3)当 echo 引脚为高电平时,开始计时,直到 echo 引脚为低电平时,停止计时。

(4)根据计时结果计算物体到传感器的距离,将结果通过串口输出。

2.信号处理模块:编写程序实现接收计算结果,并将结果通过串口与上位机进行通信。

具体步骤如下:(1)等待串口接收数据。

(2)当接收到数据时,将数据转换成浮点数格式。

(3)根据测量结果控制LED灯的亮灭。

以上就是基于单片机控制的超声波测距系统的设计。

该系统能够通过精确测量物体到传感器的距离并对测量结果进行处理和计算,能够广泛应用于各种实际场合。

超声波测距设计方案

超声波测距设计方案1. 概述超声波测距是一种利用超声波传感器对目标物体进行距离测量的技术。

它具有非接触、精度高、速度快等优点,广泛应用于工业自动化等领域。

本设计方案旨在实现一个基于Arduino的超声波测距系统,可以测量距离在2cm~400cm之间的目标物体,并将结果显示在液晶屏上,以方便用户观察和使用。

2. 系统组成本系统由硬件和软件两部分组成,硬件系统包括超声波传感器、Arduino主控板、液晶屏、电源等部分;软件系统包括Arduino的程序。

2.1 超声波传感器超声波传感器是本系统中最关键的部分,它通过发射超声波信号并接收回波信号,测量目标物体与传感器的距离。

常用的超声波传感器有HC-SR04、JSN-SR04T等型号,本设计方案使用HC-SR04超声波传感器。

2.2 Arduino主控板Arduino是一种开源的嵌入式系统,具有方便、易用、可扩展等特点,可以实现各种各样的控制任务。

本设计方案使用Arduino UNO主控板,它是一种基于ATmega328P芯片的开发板,具有丰富的接口和较高的性能和稳定性。

2.3 液晶屏液晶屏是显示距离测量结果的部分,本设计方案采用16*2字符型液晶屏,能够显示2行16个字符,显示结果清晰、直观。

2.4 电源本系统采用外接直流电源供电,电压为5V,可以通过USB接口或外部电源插头供电。

3. 系统原理本系统的测距原理基于超声波传感器发射超声波信号并接收回波信号的原理。

当超声波传感器发射超声波信号后,信号会以声速传播在空气中,当遇到目标物体后,部分波信号会被目标物体反射回来,形成回波信号,超声波传感器接收到回波信号后,再通过计算超声波信号的来回时间、声速等参数,便可以计算出目标物体与传感器的距离。

4. 系统设计超声波传感器通过接口连接到Arduino主控板,并需要外接电源,具体接线图如下所示:超声波传感器 VCC -> Arduino 5V液晶屏 RW -> Arduino GND整个系统的软件设计主要包括两部分,一部分是超声波测距的程序,另一部分是液晶屏显示的程序。

超声波测距系统的设计

超声波测距系统的设计引言:一、硬件设计:1.选择传感器:超声波传感器是测距系统的核心部件,通常采用脉冲法进行测量。

在选择传感器时,应考虑工作频率、测量范围、精度和稳定性等参数,并根据实际需求进行选择。

2.驱动电路设计:超声波传感器需要高频信号进行激励,设计驱动电路时需要根据传感器的工作要求来设计合适的电路,保证信号稳定且能够满足传感器的工作需求。

3.接收电路设计:超声波传感器产生的脉冲回波需要经过接收电路进行信号放大和滤波处理,设计接收电路时需要考虑信号放大的增益、滤波器的截止频率以及抗干扰能力等因素。

4.控制板设计:控制板是超声波测距系统中的核心控制器,负责控制测距过程、数据处理以及通信等功能。

在设计控制板时,应根据系统的要求选择合适的微控制器或单片机,并设计合理的电路布局和电源电路。

二、软件编程:1.驱动程序开发:根据传感器的规格书和数据手册,编写相应的驱动程序,实现对超声波传感器的激励和接收。

2.距离计算算法开发:通过测量超声波的往返时间来计算距离,根据声速和时间的关系进行距离计算,并根据实际情况对计算结果进行修正。

3.数据处理和显示:根据实际需求,对测量得到的距离进行处理,并将结果显示在合适的显示设备上,如LCD屏幕或计算机等。

4.数据通信:如果需要将测量结果传输至其他设备或系统,则需要编写相应的数据通信程序,实现数据的传输和接收。

三、系统测试与优化:1.测试传感器性能:测试测距系统的稳定性、精度和灵敏度等性能指标,根据测试结果对系统参数进行优化和调整。

2.系统校准:超声波测距系统可能受到环境温度、湿度和声速等因素的影响,需要进行校准以提高测量精度。

3.系统集成与实际应用:将超声波测距系统与实际应用场景进行集成,进行实际测试和验证。

总结:超声波测距系统的设计包括硬件设计和软件编程两个方面,其中硬件设计主要包括传感器选择、驱动电路设计和接收电路设计等;软件编程主要包括驱动程序开发、距离计算算法开发、数据处理和显示以及数据通信等。

超声波测距设计毕业设计

超声波测距设计毕业设计一、引言距离测量在许多领域都具有重要的应用,如工业自动化、机器人导航、汽车防撞等。

超声波测距作为一种非接触式的测量方法,具有测量精度高、响应速度快、成本低等优点,因此在实际工程中得到了广泛的应用。

本次毕业设计旨在设计一种基于超声波的测距系统,实现对目标物体距离的准确测量。

二、超声波测距原理超声波是一种频率高于 20kHz 的机械波,其在空气中的传播速度约为 340m/s。

超声波测距的原理是通过发射超声波脉冲,并测量其从发射到接收的时间间隔,然后根据声速和时间间隔计算出目标物体与传感器之间的距离。

假设发射超声波脉冲的时刻为 t1,接收到回波的时刻为 t2,声速为c,距离为 d,则距离 d 可以通过以下公式计算:d = c ×(t2 t1) / 2三、系统硬件设计(一)超声波发射模块超声波发射模块主要由超声波换能器和驱动电路组成。

超声波换能器将电信号转换为超声波信号发射出去,驱动电路则提供足够的功率和电压来驱动换能器工作。

(二)超声波接收模块超声波接收模块主要由超声波换能器、前置放大器、带通滤波器和比较器组成。

换能器将接收到的超声波信号转换为电信号,前置放大器对信号进行放大,带通滤波器去除噪声和干扰,比较器将信号整形为方波信号。

(三)控制与处理模块控制与处理模块采用单片机作为核心,负责控制超声波的发射和接收,测量时间间隔,并计算距离。

同时,单片机还可以将测量结果通过显示模块进行显示,或者通过通信模块与上位机进行通信。

(四)显示模块显示模块用于显示测量结果,可以采用液晶显示屏(LCD)或数码管。

(五)电源模块电源模块为整个系统提供稳定的电源,包括 5V 和 33V 等不同的电压等级。

四、系统软件设计(一)主程序流程系统上电后,首先进行初始化操作,包括单片机的初始化、定时器的初始化、端口的初始化等。

然后进入主循环,不断地发射超声波脉冲,并等待接收回波。

当接收到回波后,计算距离,并进行显示或通信。

车用超声波测距系统设计与应用

车用超声波测距系统设计与应用随着科技的发展,车用超声波测距系统已经成为新一代车辆安全研发的主流方向。

相比传统的车辆安全系统,车用超声波测距系统拥有更高的精度和更广泛的适用性。

本文旨在介绍车用超声波测距系统的设计原理、重要组成部分以及应用场景。

一、设计原理车用超声波测距系统主要依靠声波探测器和控制器两大部分构成。

声波探测器通过发送一定频率的声波,利用回声信号来计算距离。

控制器则负责控制整个系统的工作,将探测器接收到的信号处理转换为实际距离值,并根据测距结果执行相应的动作。

在使用时,车用超声波测距系统通过探测器向前发送一定频率的声波,当声波遇到物体时会发生反射。

探测器接收到反射的声波信号,并计算出物体与车辆之间的距离。

控制器将测量出的距离值与预设距离进行比较,如果差距达到预设范围,则控制器会触发相应的报警或减速措施,确保车辆安全行驶。

二、重要组成部分1.声波探测器:声波探测器是车用超声波测距系统中最关键的部分,它能够探测到周围物体,并将信号传递给控制器。

声波探测器通常由发射器和接收器组成,使用时发射器会发送一定频率的声波,接收器则接收周围物体反射回来的声波信号。

2.控制器:控制器可以根据声波探测器接收到的信号计算出物体到车辆的距离,并将距离值转换为实际的距离数值。

控制器还可以根据测量结果触发相应的警报或减速机制,确保车辆安全行驶。

3.显示屏:车用超声波测距系统的显示屏可以用来显示测量结果以及警报信息,帮助驾驶员更加清晰地了解车辆周围的情况。

4.电源系统:电源系统负责为整个车用超声波测距系统提供稳定可靠的电源。

三、应用场景车用超声波测距系统的应用场景非常广泛,可以用于车辆的前、后、左、右四个方向的监测。

以下是车用超声波测距系统的几种常见应用场景:1.倒车雷达:倒车雷达是车用超声波测距系统最为常见的应用场景之一。

在倒车过程中,探测器会向后发送声波,并根据接收到的反射信号计算出距离,从而帮助驾驶员更加精准地掌握车辆距离障碍物的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录前言 (V)1. 超声波测距仪 (1)1.1检测技术 (1)1.1.1 检测系统的组成 (1)1.2传感器 (2)1.2.1 传感器的定义 (2)1.2.2 传感器的基本组成部分 (2)1.2.3 传感器的分类 (3)1.2.4 传感器的性能参数及要求 (3)1.3国内外超声波测距仪的现状 (4)1.3.1 国外测距仪的现状 (4)1.3.2 国内测距仪的现状 (4)2. 超声波测距仪测距原理及总体设计 (6)2.1超声波测距仪测距原理 (6)2.1.1 测距原理 (6)2.1.2 超声波测距仪的理论分析 (8)2.2超声波传感器工作原理 (10)2.2.1 超声波传感器基本结构及工作原理 (10)2.2.2 超声波传感器的工作方式 (11)2.3超声波测距仪的总体设计 (12)2.3.1 总体设计思想 (12)2.3.2 工作过程 (14)3. 系统结构及硬件设计 (15)3.1超声波测距仪的硬件设计思想 (15)3.28051单片机系统 (16)3.3复位电路设计 (17)3.4电源电路原理图 (18)3.5超声波发射电路设计 (19)3.5.1 超声波发射电路功能 (19)3.5.2 超声波发射电路原理图 (19)3.5.3 超声波驱动电路原理图 (20)3.6超声波接收电路 (23)3.6.1 超声波接收电路功能 (23)3.6.2 超声波接收电路原理图 (24)3.7微弱信号换向选通电路原理图 (27)3.874LS164静态显示电路原理图 (30)4. 测温电路原理 (32)4.1温度补偿目的 (32)4.2测温电路设计原理及原理图 (32)5. 软件设计 (34)5.1软件设计总体框图 (34)5.2软件程序设计 (37)5.2.1 延时模块 (42)5.2.2 数据处理模块 (43)5.2.3 显示模块 (44)5.2.4 测温模块 (44)6. 结论 (46)参考文献 (48)致谢 (50)前言随着社会生产和科学的发展,智能机器人的研究越来越受到社会各界的广泛重视。

机器人学包括控制、传感技术、视觉和人工智能等多方面的知识,我们仅在控制和传感技术方面进行了初步的尝试,对一台微型电动车进行了改装,模拟轮式移动机器人,设计出基于单片机控制的移动机器人超声波测距控制系统。

在现场生产中,在某一段距离上用机器运输一定的物料至指定地点,运送机器如果具有自动避障的功能,会节省很大的成本和人力资源,提高工作效率的作用。

在很多现场中具有自动运行功能的小车很多,但是在小车行进的过程中可能会遇到障碍,于是研究具有自动避障功能的小车就很有意义了。

要解决自动避障问题,首先小车的"眼睛"即检测系统要能很好的反应小车的距离及位置,常用的距离检测系统有红外检测,超声波检测,差动传感器系统等等[1]。

这里用到的是超声波检测系统。

超声波具有穿透性强,具有一定的方向性,传输过程中衰减较小,反射能力较强的优点。

这种采用微型单片机控制的自动避障小车具有一定的智能,能识别一般大小的障碍物体,并具有自动避障的能力,具有快速响应的能力。

1. 超声波测距仪1.1 检测技术1.1.1 检测系统的组成检测技术几乎已应用于所有的行业,它是多学科知识的综合应用,设计半导体技术、激光技术、光纤技术、声控技术、遥感技术、自动化技术、计算机应用技术,以及数理统计、控制论、信息论等近代新技术和新理论。

检测系统的最终目的就是从测量对象中获取反映其变化规律的有用信息,为了实现此目的,一个广义的检测系统一般由激励装置、测试装置、数据处理与记录装置所组成。

为了保证测量结果的准确性,上述各环节的输出量与输入量之间应保持一一对应和尽量不失真的关系,这种关系通常是线性关系,而且尽能地减少或消除各种干扰,使有用信号进入系统。

1.2 传感器1.2.1 传感器的定义传感器是信息检测的必要工具,是生产自动化、科学测试、计量核算、检测诊断等系统中必不可少的基础环节[6]。

通常是检测系统与被测对象之间的接口,处于检测系统的输入端,其性能直接影响着整个检测系统,对检测精确度起着主要作用。

一般来讲,自动检测装置中最初感受被测量并将它转换为可用信号输出的器件叫传感器,在工程上也称为探测器、换能器、测量头。

传感器也可定义为能把特定的被测信息(物理、化学、生物等)按一定的规律转换成某种可用信号输出的器件和装置。

1.2.2 传感器的基本组成部分传感器由敏感元件、转化元件和其他辅助元件组成。

1.2.3 传感器的分类传感器的分类由于工作原理、测量方法和被测对象的不同,传感器的分类方法也不同。

目前,采用较多的分类方法如下。

按信号变换的特征、用途、工作的物理基础、能量关系、测量方式、输出信号的形式等1.2.4 传感器的性能参数及要求传感器的优劣,一般通过若干主要性能指标来表示。

除了前面已在一般检测系统中介绍的特征参数如灵敏度、线性度、分辨率、准确度、频率特性等特性外,还常用阀值、漂移、过载能力、稳定性、可靠性、以及与环境相关的参数、使用条件等。

不同的传感器常常根据实际需要来确定其主要指标参数,有些指标可以低些或可不考虑。

下面简单介绍一下阀值、漂移、过载能力、稳定性、重复性的定义,可靠性的指标内容以及传感器工作要求。

1.3 国内外超声波测距仪的现状1.3.1 国外测距仪的现状国外测距仪表早期大多采用机械原理,但近年来随着电子技术的应用,逐步向机电一体化发展,并且总结了许多新的测量原理[8]。

在传统原理中也渗透了电子技术及微机技术,结构有了很大的改善,功能有了很大的提高。

从国外测距仪表发展的技术动向看,当前国外测距仪新技术普遍应用。

普遍采用电子设计自动化(EDA)、计算机辅助测试(CAT),数字信号处理(DSP)、专用集成电路(ASIC)等。

呈现出(1)智能化测距仪;(2)非接触测量方式的测距仪;(3)新原理的小型测距仪。

1.3.2 国内测距仪的现状国内的早期的测距仪也是基于机械原理的,但是随着世界的电子技术的发展,国内位移测距仪在各方面不甘落后,甚至在某一方面科技含量更高。

在国内有超声波测距仪,精度不高,而且用于多方向的测距仪也不多见,以下是几种超声波测距仪。

1)深圳莱德电子超声波测距仪测量范围:0.5m–13.0m测量精度:±(1cm+0.5%⨯距离)分辨率:1cm2)北京友邦公司Sonic Tape测量范围:0.6m-10m精确度:±05%分辨率:0.01m总结:综合国内外超声波测距仪,精度都不高,国内分辨率是lcm ,存在盲区,技术保密。

本文设计的测程较之前面所述的超声波测距仪稍短,但精确度高,误差为士3cm,分辨率是lemma,且没有盲区。

在测量原理中,激光测距仪测程远,但是在自动避障机器人中,受光线影响不适宜采用激光原理测距。

人工检尺方式不可能,雷达造价高,Y射线需事先定性定量,因此,在自动避障机器人中只能用超声波测距原理来设计测距仪。

2. 超声波测距仪测距原理及总体设计本章分析超声波测距仪的测距原理,及讲述几种检测方法。

重点完成对超声波测距仪的总体设计。

2.1 超声波测距仪测距原理2.1.1 测距原理距离公式: 距离(S)=时间(T)X速度(V)。

在设计时,实时得出时间和速度,再进行相乘运算,得出距离。

利用超声波测的时间方法有相位检测法、声波幅值检测法和渡越时间检测法等。

相位检测法虽然精度高,但检测范围非常有限,声波幅值检测法易受反射波影响。

本超声波测距仪采用渡越时间检测法。

超声波测量原理图如图2.1在超声波发射器两端输入10个40KHz脉冲串,脉冲电信号经过超声波内部振子,振荡出机械波,通过空气,介质传播到被测面;由被测面反射,由超声波接收器接收,在超声波接收器两端信号是毫伏级别的正弦波信号。

传播的渡越时间即为超声波发射器发出的超声波时刻与经介质反射传播到接收器时刻差。

如图2.1所示,测量发射点到被测物面到接收点距离2s,超声波的传播速度约为V=344m/s(20℃时),依据公式S=(1/2)V X T,得出距离S。

渡越时间测量法:1 直接计时法2 相位法2.1.2 超声波测距仪的理论分析超声波是机械波,在介质中传播是受介质影响的,下面介绍超声波在空气介质中的传播特点[2]。

声波概述如下:在弹性媒质中,如果波源所激起的纵波的频率在20Hz到20,OOOHz之间,就能引起人的听觉。

在这一频率范围内的振动称为声振动,声振动所激起的纵波称为声波。

超声波在实际介质中传播时,其能量将随距离的增大而逐渐减小,称为衰减。

引起衰减的原因大致有三个:1)由声束扩展引起的衰减。

2)由散射引起的衰减。

3)由介质的吸收引起的衰减。

由定性分析,超声波被混泥土等墙面反射,只需考虑反射波,不考虑透射波。

超声波方向性强,扩散少,多次被反射,但多次反射的反射波不易被超声波接收器接收,可以不予考虑。

折射波不会被接收,也不予考虑。

声波理论分析结论:超声波在传播过程中存在能量损耗,波束多种路径传播,存在着多种干扰信号,但接收器一般只能接收到被被测面垂直反射的信号,因为这个信号最强,因此,也就滤掉了其它回波等干扰信号。

使正确地接收正确信号成为可能。

时间由单片机定时器TO得到。

超声波测距仪己经应用于某些领域,与传统的测距仪相比,它具有原理简单,易于控制,且具有非接触测量、价格低廉等优点。

超声波测距仪的接收器可能接收到三种干扰信号:1)面反射的信号;2)侧面物体漫反射的信号;3)直达信号,即从超声波发射器直接接收信号。

当三种信号幅值足够大,放大后淹没了有用信号时,将会使处理器产生误解,输出错误结果。

因此,设计中需避免此类信号进入超声波接收器,或者进入接收器后滤掉,或者处理器及时辨识,不予处理。

处理方法在第六章抗干扰中介绍。

超声波测距仪理论分析结论:利用超声波传感器及设计的硬件电路,可以及时辨识有用的超声波回波信号,利用单片机计时,得时间,时间与速度相乘,得距离。

利用超声波测距方便快捷有效,具有可行性。

2.2 超声波传感器工作原理2.2.1 超声波传感器基本结构及工作原理利用超声波感知或检测物体,有非破坏性、遥控性、实时性、可穿透性等优点,在许多方面体现了独到之处。

很早以前,人们便掌握了超声波探伤与声纳的技术。

近年来,超声波的波长范围己达μm级,频率已扩大到GHz领域,分辨率达μm量级的超声波显微镜已实用化。

在这种频率范围,超声波敏感元件成为薄膜状,与传统的形状大相径庭,它的进步将对电子学的发展起重要作用。

人们为研究和应用超声波,己发明设计并制成了许多类型的超声波发生器:机械方式和电气方式产生超声波发生器。

实质上,超声波发生器即是超声波换能器,它将其它形式的能量转换成超声波的能量(发射换能器来完成)和使超声波的能量转换成其它易于检测的能量(接收换能器来完成)。

相关文档
最新文档