泛函分析9.4

合集下载

泛函分析课件

泛函分析课件

泛函分析课件泛函分析是数学中的一门重要学科,它研究的是无限维空间中的函数和算子。

在实际应用中,泛函分析广泛应用于物理学、工程学、经济学等领域。

本文将介绍泛函分析的基本概念和主要内容,以及其在实际应用中的一些例子。

一、泛函分析的基本概念泛函分析的基本概念包括向量空间、线性映射、内积、范数等。

向量空间是泛函分析的基础,它是一组满足一定条件的向量的集合。

线性映射是指将一个向量空间映射到另一个向量空间的函数,它保持向量空间的加法和数乘运算。

内积是向量空间中的一种运算,它是一个函数,将两个向量映射到一个实数。

范数是向量空间中的一种度量,它衡量向量的大小。

二、泛函分析的主要内容泛函分析的主要内容包括线性算子、连续性、紧性、谱理论等。

线性算子是指将一个向量空间映射到另一个向量空间的线性映射,它在泛函分析中起到了重要的作用。

连续性是指在一个向量空间中,如果两个向量足够接近,它们的映射也应该足够接近。

紧性是指一个映射将有界集映射到有界集,且将紧集映射到紧集。

谱理论是研究线性算子谱性质的一门学科,它对于解析和估计线性算子的特征值和特征向量具有重要意义。

三、泛函分析在实际应用中的例子泛函分析在实际应用中有许多例子,下面将介绍其中的几个。

首先是量子力学中的波函数,它是一个复数函数,描述了量子系统的状态。

泛函分析提供了一种理论框架,可以对波函数进行分析和计算。

其次是信号处理中的傅里叶变换,它将一个信号分解成一系列正弦和余弦函数的叠加。

泛函分析提供了一种数学工具,可以对信号进行分析和处理。

再次是优化问题中的拉格朗日乘子法,它是一种求解约束优化问题的方法。

泛函分析提供了一种理论基础,可以对优化问题进行建模和求解。

最后是经济学中的效用函数,它描述了个体对不同商品或服务的偏好程度。

泛函分析提供了一种数学工具,可以对效用函数进行分析和计算。

综上所述,泛函分析是一门重要的数学学科,它研究的是无限维空间中的函数和算子。

泛函分析的基本概念包括向量空间、线性映射、内积、范数等。

泛函分析简介

泛函分析简介

泛函分析简介什么是泛函分析泛函分析是数学的一个分支,主要研究无限维空间的线性算子及其性质。

它源于传统的分析学,特别是微分方程、积分方程和最优化理论等领域的发展。

通过研究空间中的点和函数,以及这些点和函数之间的映射关系,泛函分析提供了一种强大的工具用于解决各种实际问题。

在物理学、工程学、经济学和其他科学领域中,泛函分析有着广泛的应用。

泛函分析的基本概念线性空间线性空间(或称向量空间)是泛函分析的基础。

它由一组元素组成,这些元素可以通过向量加法和标量乘法进行组合。

形式上,若 (V) 是一个集合,满足以下条件,则 (V) 是一个线性空间:对于任意 (u, v V),则 (u + v V)(封闭性)。

对于任意 (u V) 和标量 (c),则 (c u V)(封闭性)。

存在零向量 (0 V),使得对于任意 (u V),有 (u + 0 = u)。

对于每个向量 (u V),存在一个对应的负向量 (-u V),使得 (u + (-u) = 0)。

向量加法满足交换律和结合律。

标量乘法满足分配律以及结合律。

拓扑空间拓扑空间是讨论连续性和极限的重要工具。

在泛函分析中,通常会结合线性空间与拓扑结构。

例如,一个拓扑向量空间需要具备以下性质:每个点都有邻域;任意多个开集的并集仍为开集;有限多个开集的交集仍为开集。

此时,可以引入收敛、限制、开集、闭集等概念,从而更深入地研究函数的性质。

巴拿赫空间与希尔伯特空间巴拿赫空间(Banach Space)是一类重要的完备线性空间,其定义为一个带有范数的线性空间,使得它是完备的。

也就是说,在这个空间中,每个柯西序列都收敛于某个元素。

范数是一个度量,用来描述向量之间的“距离”。

希尔伯特空间(Hilbert Space)则是一个完备的内积空间,是巴拿赫空间的一种特殊情况。

内积允许我们定义角度、正交性等概念,对于研究四维空间中的物理现象尤为重要。

主要定理与结果超平面定理与 Hahn-Banach 定理超平面定理指出,在有限维欧几里德空间中,任何非空闭子集至少可以由一个超平面相切。

大学数学泛函分析

大学数学泛函分析

大学数学泛函分析一、引言数学泛函分析是数学的一分支,研究数学空间中的函数和它们的性质。

本文将介绍大学数学泛函分析的基本概念、定理和应用,以帮助读者更好地理解和应用泛函分析知识。

二、范数空间与内积空间1. 范数空间范数空间是指一个向量空间上定义了范数的空间。

范数是一个函数,它将向量映射到非负实数。

我们要介绍的几个常见的范数包括:欧几里得范数、p-范数等。

2. 内积空间内积空间是指一个向量空间上定义了内积的空间。

内积是一个二元运算,它将两个向量映射到一个实数。

内积空间具有许多有用的性质,如共轭对称性、正定性等。

三、泛函分析的基本概念1. 线性算子线性算子是指将一个向量空间映射到另一个向量空间的线性映射。

我们要介绍的几类线性算子包括有界线性算子、紧线性算子等。

2. 连续性与收敛性在泛函分析中,我们关心函数序列的收敛性问题。

连续性和收敛性是泛函分析中的重要概念,它们可以帮助我们刻画函数的性质和行为。

3. 凸集与凸函数凸集是指包含所有连接两点的线段的集合。

凸函数是指定义在凸集上的函数,满足一定的凸性质。

凸集和凸函数在泛函分析中有着广泛的应用。

四、泛函分析的重要定理1. Banach不动点定理Banach不动点定理是泛函分析中的重要定理,它与函数的收敛性和连续性有密切关系。

该定理表明,在某些条件下,一个映射总能找到一个不动点。

2. Hahn-Banach定理Hahn-Banach定理是泛函分析中的核心定理,它在函数的延拓性和存在性方面有重要应用。

该定理表明,在一定条件下,我们可以将一个线性函数延拓到整个向量空间上。

3. Riesz表示定理Riesz表示定理是泛函分析中的经典定理之一,它将内积空间中的连续线性泛函表示为内积的形式。

该定理在量子力学等领域有着重要的应用。

五、泛函分析的应用泛函分析在科学和工程领域有着广泛的应用。

以下是几个典型的应用领域:1. 偏微分方程泛函分析在偏微分方程中有着重要的应用。

通过泛函分析的方法,我们可以研究偏微分方程的解的存在性、唯一性和稳定性等性质。

泛函分析,泛函分析简介

泛函分析,泛函分析简介

泛函分析,泛函分析简介泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。

它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。

它可以看作无限维向量空间的解析几何及数学分析。

泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

1概述泛函分析(FunctionalAnalysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。

泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。

使用泛函作为表述源自变分法,代表作用于函数的函数。

巴拿赫(StefanBanach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家维多·沃尔泰拉(VitoVolterra)对泛函分析的广泛应用有重要贡献。

2拓扑线性空间由于泛函分析源自研究各种函数空间,在函数空间里函数列的收敛有不同的类型(譬如逐点收敛,一致收敛,弱收敛等等),这说明函数空间里有不同的拓扑。

而函数空间一般是无穷维线性空间。

所以抽象的泛函分析研究的是一般的(无穷维的)带有一定拓扑的线性空间。

拓扑线性空间的定义就是一个带有拓扑结构的线性空间,使得线性空间的加法和数乘都是连续映射的空间。

巴拿赫空间这是最常见,应用最广的一类拓扑线性空间。

比如有限闭区间上的连续函数空间,有限闭区间上的k次可微函数空间。

或者对于每个实数p,如果p≥1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。

(参看Lp空间) 在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。

对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。

微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。

泛函分析

泛函分析
(2)若B在A中稠,则对任意的 0 ,必有
( x) A
xB
反之亦然
( x) 表示以x为中心,以 为半径的小球。
第一章 距离空间
可分性:
定义:距离空间R称为可分的,是指在E中存在一 个稠密的可列子集。
第一章 距离空间
问题:
1、写出三维空间的几种距离
2、距离空间中的开集、闭集?
( x(t ), y(t )) [a x(t ) y(t ) dt]
2
b
1/ 2
第一章 距离空间
例5:l 2 表示满足 | xi |2 的实数列的全体,则其
i 1
中任意两点
x ( x1 , x2 ,, xn ), y ( y1 , y2 ,, yn )
n
(c), (d)说明,在赋范线性空间中,线性运算对范 数收敛是连续的。
第二章 赋范线性空间
2.3 有限维赋范线性空间
1、定义:若赋范线性空间E存在有限个线性无关
的元素 e1 , e2 ,, en ,使任意的 x E
都有
x xi ei
i 1
n
则称E为有限维赋范线性空间,称 {e1 , e2 ,, en }
n
( x, y ) [ | xi yi |2 ]1/ 2
1 ( x, y) max | xi yi |
1i n
i 1
第二章 赋范线性空间
例2: C[ a ,b ]
其中可定义范数
|| x || max | x(t ) |
a i b
并由它导出距离
( x, y) max | x(t ) y(t ) |
a i b
第二章 赋范线性空间

泛函分析

泛函分析

泛函分析论文(数学与计算机科学学院数11 赵洁 1060211014036)摘要:本文简单介绍泛函分析方法的基本理论,以及其在力学和工程的若干应用,包括泛函观点下的结构数学理论、直交投影法等。

关键字:泛函分析1.引言泛函分析是研究拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。

它是20世纪30年代形成的。

从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法分析学的课题,可看作无限维的分析学。

2.泛函分析概述2.1泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段。

这就是由于欧几里得第五公社的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。

这些新的理论都为用同一观点把古典分析的基本概念和方法一般化准备了条件。

本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。

随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。

到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。

由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。

这种相似在积分方程论中表现的更突出了。

泛函分析的产生正是和这种情况有关,都存在着类似的地方。

非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。

这样,就显示出了分析和几何之间相似的地方,同时存在着把分析几何化的一种可能性。

这种可能性要求把几何概念进一步推广,以至最后把欧式空间扩充成无穷维数的空间。

这时候,函数概念被赋予了更为一般的意义,古典分析中的概念是指两个数集之间所建立的某种对应关系。

在数学上,把无限维空间到无限维空间的变换叫做算子。

研究无限维线性空间上的泛函数和算子理论,就生了一门新的分析数学,叫做泛函分析。

泛函分析答案(压缩版)

泛函分析答案(压缩版)

10.4.证明 Banach 空间 X 自反的充要条件是 X’自反。

证明:若 X 是 Banach 空间,则存在一个从 X 到 X’’的自然的等距同构映射 J : X  X '' , J (X ) 若 x x 这样定义的,若 x  X , 同构映射 为d  xn , xN   MX ', 则称 X 是自反的, 其中Jx 是an 1  n因此 xn  是有界点列。

an  supx  x'df  X ' , J ( x)( f )  f ( x) 为方便起见,记 X 到 X’’的自然的等距7.18.设 X 为完备度量空间,A 是 X 到 X 中映射,记 射 A 有唯一不动点。

证明:因n A x, A x   an   d  x, x  ,若 n1 ,则映n n ' 'J1 ( X ')  X ''' ,若 J o ( X )  X '' ,对任意 F  X ''' ,定义 f  X ' :若 x  X , f ( x)  F ( J o ( x)) , 对 任 意 x  X , ( J1 ( f ))( J o ( x))  J o ( x)( f )  f ( x)  F ( J o ( x)) 因'' ,因此 J则存在 F  X ''' , F 在 J ( X ) 上恒为零, F  1 , J (X ) X ' 使 而 但 ' ( X )  X '' , 1 o 有1J o ,X’到 X’’’的自然的等距同构映射为 J 1 ,我们要证明 J o ( x)  X '' 的充要条件(f)F, ,这就证明了d  A x, A x   a N d  x , xn ', 则 必 有 N , 使 aN  1 , 这 样 对 任 意 一'x, x '  XJo ( X )  X而J 必oJ1 ( X ')  X,''' ,反之,若 J对 任1( X ')  Xx X 这样由压缩映射原理, AN 有不动点 x* ,即 Ax  AN x* ,x1是 A 的任意不动点,即,若 *x  x' , 则''' ,, , 由于AN Ax*  AAN x*  Ax* , Ax* 也是 AN 的不动点, AN 的不动点是唯一的,因此*f X 'o使J1 ( f )  F1意x*  Ax* 即 xx*  x1是 A 的不动点。

《泛函分析》课程标准

《泛函分析》课程标准

《泛函分析》课程标准英文名称:Functional Analysis 课程编号:407012010适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。

二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。

《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。

它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。

该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。

2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。

学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。

《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。

需要师生共同努力去正确面对才能顺利完成本门课的教学任务。

为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。

3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。

首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。

然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。

在赋范空间上定义线性算子及线性泛函,并讨论相关性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为共轭算子。 3 性质:
A B
A
*
*
A* B*
A*
A
* *
A
2
A* A A
AA*
若 A, B B( X )
则 ( AB)* B* A*
教学目标:掌握 Riesz 表示定理及 Hilbert 空间上共轭算子的 定义及性质
教学重点: Riesz 表示定理及 Hilbert 空间上共轭算子的性质 教学难点:利用 Riesz 定理给出共轭算子的存在性
其名称和要求。 第 页
课程教案 教学内容及过程
注:是指通过对教学大纲、教材和主要参考资料的研析,确定本教学单元的课程 教学知识信息的总和。实践课还应注重其对实践环节的指导性,必要时应包含实 践步骤及其说明。
旁批
教学引入(可选) :
教学内容与教学设计:
注:此部分详略取决于教师教学经验多少、教学内容的熟悉程度;经验少、内容 较生疏的教师此部分应更详细。
一 Hilert 空间上的连续线性泛函 定理 1 (Riesz 定理) 设 X 是 Hilbert 空间,f 是 X 上连 续线性泛函,那么存在唯一的 z X ,使对每个 x X ,有
f ( x) x, z 并且 f z
注:定义
T : X X* z fz
(其中 f z ( x) x, z
教学方法:讲授
教学类型:新授课
作业布置:
注:作业、思考题、讨论题、实验实训报告、实作实训练习等
课后小结:
注:教师完成本教学单元教学后对教学设计、教学重难点把握、教学方法应用、 教学效果等课堂教学过程情况的总结与分析,为以后教学提供经验和素材

则 T 是 X 到 X *上保持范数不变的复共轭线性映射, 称为复 共轭同构。因此 X 与 X * 是复共轭同构的。 二 Hilbert 空间上有界线性算子的共轭算子 1 定理 设 X 和 Y 是两个 Hilbert 空间,A Β( X , Y ) , 那么存在 唯一的 A* Β(Y , X ) , , 使对任何 x X 及 y Y , 有 Ax, y x, A* y 并且。 A* A 2 定义 设 A 是 Hilbert 空间 X 到 HIlbert 空间 Y 中的有界 线性算子, 称 定理中的算子为 A 的 Hilbert 共轭算子, 简称
教学分组;注:指导教师及学生分组情况说明 安全事项;注:教学实践过程中的人身、设备、仪器及产品等安全;操作安全规范说明;或安全
隐患防范措施等。
教学条件;注:教学场地、设施、设备、软件等要求说明; 参考资料;注:是提供给学生课后参考,辅助其掌握课程教学内容,扩大知识面的资料 其它;注:指另行增加的要素项目,由各系、教研室根据不同专业不同课程的教学需要自行规定
教学单元教案格式 课程教案 授课题目:9.4 Hilbert 空间上的连续线性泛函
教学时数: 教学目的、要求:
ห้องสมุดไป่ตู้
授课类型:
□ 理论课
□ 实践课
注:指教学中要体现“课程的总体目标”和“章、节或实践教学单元的目标” 、预期达到的效果等。
注:指该章、节的重点和难点部分,学生必须掌握的知识点和技能。实践教学还包括实践操作训练 的主要指导要点;关键环节、关键技术指导方法等。
教学重点: 教学难点:
教学方法和手段:
注:是根据教学目的进行教学方式(讲授、演示、实验、实作、讨论、案例分析、仿真或真实现场 实作指导等) 、教学辅助手段(教具、模型、图表、实物、现代教学设施设备,以及特殊教学或实践 环境等) 、师生互动、板书等的设计。要能有效地调动学生的学习积极性,促进学生的积极思考,激 发学生的潜能。 注:以下内容按实际需要进行取舍
相关文档
最新文档