材料科学基础第6讲 晶体学4

合集下载

(完整版)1《材料科学基础》第一章晶体学基础

(完整版)1《材料科学基础》第一章晶体学基础
一、晶向指数 二、晶面指数 三、六方晶系的晶向指数和晶面指数 四、晶带 五、晶面间距
晶向、晶
钯的PDF卡片-----Pd 89-4897
crystal system,space
图 2 CdS纳米棒的TEM照片(左)和 HRTEM照片(右)
图2 选区电子衍射图
图1. La(Sr)3SrMnO7的低 温电子衍射图
晶向、晶面、晶面间距
晶向:空间点阵中行列的方向代表晶体中原子排 列的方向,称为晶向。
晶面:通过空间点阵中任意一组结点的平面代表 晶体中的原子平面,称为晶面。
L M
P点坐标?
(2,2,2)或222
N
一、晶向指数
1、晶向指数:表示晶体中点阵方向的指数,由晶向上结点的 坐标值决定。
2、求法 1)建立坐标系。 以晶胞中待定晶向上的某一阵点O为原点,
联系:一般情况下,晶胞的几何形状、大小与对应的单胞是 一致的,可由同一组晶格常数来表示。
不区分 图示
晶 胞
空间点阵


•NaCl晶体的晶胞,对应的是立方面心格子 •晶格常数a=b=c=0.5628nm,α=β=γ=90°
大晶胞
大晶胞:是相对 于单位晶胞而言 的
例:六方原始格子形式的晶胞就是常见的大晶胞
① 所选取的平行六面体应能反映整个空间点阵的对称性; ② 在上述前提下,平行六面体棱与棱之间的直角应最多; ③ 在遵循上两个条件的前提下,平行六面体的体积应最小。
具有L44P的平面点阵
单胞表
3、单胞的表征
原点:单胞角上的某一阵点 坐标轴:单胞上过原点的三个棱边 x,y,z 点阵参数:a,b,c,α,β,γ
准晶
是一种介于晶体和非晶体之间的固体。准晶具有长程定向有 序,然而又不具有晶体所应有的平移对称性,因而可以具有 晶体所不允许的宏观对称性。

《材料科学基础》课件之第四章----04晶体缺陷

《材料科学基础》课件之第四章----04晶体缺陷

41
刃位错:插入半原子面,位错上方,原子间距变小, 产生压应变,下方原子间距变大,拉应变。过渡处 切应变,滑移面处有最大切应力,正应力为0。x NhomakorabeaGb
2 (1 )
y(3x2 (x2
y2) y2 )2
y
Gb
2 (1
)
y(x2 y2) (x2 y2)2
z ( x y )
x
xy
Gb
2 (1 )
21
刃位错b与位错线 垂直
螺位错b与位错线 平行
bb
l
l


b
b
右旋
左旋
任意一根位错线上各点b相同,同一位错只有一个b。
有大小的晶向指数表示
b a [uvw] 模 n
b a u2 v2 w2 n
22
Burgers矢量合成与分解:如果几条位错线在晶体内
部相交(交点称为节点),则指向节点的各位错的伯氏矢量 之和,必然等于离开节点的各位错的伯氏矢量之和 。
不可能中断于晶体内部(表面露头,终止与 晶界和相界,与其他位错相交,位错环)
半原子面及周围区域统称为位错
18
2. 螺位错
晶体在大于屈服值的切应力作用下,以某晶面为滑移面发生滑移。由于位错线周围 的一组原子面形成了一个连续的螺旋形坡面,故称为螺位错。
几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
d
34
六、位错应变能
位错原子偏移正常位置,产生畸变应力, 处于高能量状态,但偏移量很小,晶格为弹 性应变。
位错心部应变较大,超出弹性范围, 但这部分能量所占比例较小, <10%,可以近似忽略。
35
1. 理论基础:连续弹性介质模型

材料科学基础(第04章晶体结构)

材料科学基础(第04章晶体结构)
点阵常数:晶胞的棱边长度,可以采用X射线衍射分析求得。 原子半径:假设原子为刚性球,两个最近邻原子之间的距离就是 原子的半径之和。 面心立方结构:点阵常数为a,且21/2a=4R 体心立方结构:点阵常数为a,且31/2a=4R 密排六方结构:点阵常数为a和c,(a2/3+c2/4)1/2=2R

化学亲和力(电负性):化学亲和力越强,倾向于生成化合物而
不利于形成固溶体;生成的化合物越稳定则溶解度越小。只有电 负性详尽的元素才可能具有大的溶解度。

原子价因素:当原子尺寸因素较为有利时,在某些以一价金属为
基的固溶体中,溶质的原子价越高,其溶解度越小。
2.3 合金相结构
2.3.1 固溶体 2. 间隙固溶体: ① ② 溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙 固溶体。 影响间隙固溶度的因素
4.2 晶体学基础
4.2.1 空间点阵( lattice)和晶胞(cell) 1. 为了便于分析研究晶体中质点的排列规律性,可先将 实际晶体结构看成完整无缺的理想晶体并简化,将其 中每个质点抽象为规则排列于空间的几何点,称之为 阵点。 这些阵点在空间呈周期性规则排列并具有完全相同的 周围环境,这种由它们在三维空间规则排列的阵列称 为空间点阵,简称点阵。 具有代表性的基本单元(最小平行六面体)作为点阵 的组成单元,称为晶胞。同一空间点阵可因选取方式 不同而得到不相同的晶胞。
晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶 面。另外,在晶体内凡晶面间距和晶面上原子的分布完全相同,只 是空间位向不同的晶面可以归并为同一晶面族,以{h k l}表示, 它代表由对称性相联系的若干组等效晶面的总和。 正交点阵中一些晶面的面指数

4.2 晶体学基础

石德珂《材料科学基础》考点精讲6

石德珂《材料科学基础》考点精讲6

八、包申格效应
材料经预先加载产生少量塑性变形(小于 4%),而后同向加载则 σe升高,反向加载则 σe下降,此 现象称为包申格效应。
考点二:滑移和孪生(重要等级 ★★★★★)
[复习思路]掌握
金属发生塑性变形的主要方式 滑移和孪生的概念 滑移和孪生的异同点
滑移
{ 金属塑性变形的主要方式 孪生 晶界滑动(高温下) 滑移带—把试样抛光,适量的塑性变形后,在宏观或光学显微镜下看到的试样表面上平行或交叉 的细线。 滑移线—在电子显微镜下,可以看到滑移带是由更多的一组平行线组成,称为滑移线。
各向同性。
对于 α Fe多晶体其 E为 211400MN/m2
七、弹性模量在工程上的应用
对零(构)件进行刚度设计
σ

F A
=Eε→
F ε
=EA
EA(GA),代表零件的刚度,产生单位弹性应变所需载荷的大小。
在其它条件相同时,金属的弹性模量愈高,制成的零件或构件的刚度便愈高,即在外力作用时,保
持其固有形状、尺寸的能力愈强。
2.位错运动的点阵阻力
(1)位错的宽度
{越窄 界面能越低
位错宽度
→平衡宽度
越窄 单位体积弹性畸变能高
刃型位错的形成 刃型位错原子模型
偏离 =b/4(柏氏矢量)时,叫位错宽度 (2)位错运动的点阵阻力 晶体的滑移必须有外力作用→ 位错运动要克服阻力 →位错运动的阻力首先来自的点阵阻力
弹性变形是塑性变形的先行阶段,在塑性变形中还伴生着一定的弹性变形。可以从原子间结合
力的角度了解其物理意义。
发生弹性变形的难易程度取决于作用力 -原子间距曲线的斜率 S0
— 167—
S0 =ddFr=dd2ru2 σ =Sr00ε E =S0

材料科学基础I第四章

材料科学基础I第四章

材料科学基础I第四章材料科学基础I的第四章是关于凝固与结晶的内容。

凝固与结晶是材料研究中非常重要的过程,涉及到材料的晶体结构、凝固过程的动力学和热力学等方面。

本章内容主要包括晶体的构造、凝固动力学和凝固过程中的固态相变等方面。

首先,本章介绍了晶体的构造。

晶体是由原子、离子或分子等基本结构单元组成的有序排列的固体。

晶体的结构可以分为原子晶体、离子晶体和分子晶体。

在这些晶体中,晶胞是晶体的最基本的结构单元,晶胞的尺寸和形状决定了晶体的结构和性质。

接着,本章介绍了凝固动力学。

凝固动力学主要研究凝固过程中的相变行为和动力学规律。

凝固是物质由液态转变为固态的过程,涉及到原子或分子的排列、结构和运动等方面。

凝固动力学的研究可以揭示凝固过程中的速率、温度、成分和外界条件等因素对凝固行为的影响。

在凝固动力学的基础上,本章还介绍了凝固过程中的固态相变。

固态相变是指在凝固过程中晶体结构的变化。

固态相变可以分为等轴相变和等基相变两类。

等轴相变是指晶体结构在凝固过程中形状改变,而等基相变是指晶体结构在凝固过程中成分变化。

固态相变的研究可以为材料的制备和性能调控提供理论基础。

除了上述内容,本章还介绍了一些凝固过程中的热力学原理和数学模型,以及凝固过程中的一些特殊现象和应用。

例如,本章介绍了固态溶解度和晶体生长速率的计算方法、凝固过程中的界面作用和晶体缺陷等方面的内容。

此外,本章还简要介绍了一些凝固过程的应用,例如材料制备、晶体管技术和半导体材料等方面。

总之,凝固与结晶是材料科学中重要的研究领域。

通过对凝固动力学、固态相变和热力学原理的研究,人们可以深入理解材料的结构与性能之间的关系,为材料的制备和改性提供理论指导。

本章的内容涵盖了凝固与结晶的多个方面,对于学习材料科学的同学来说具有很强的实用性和重要性。

材料科学基础第六章

材料科学基础第六章

编辑课件
24
• 6.2.1.4 滑移时晶体的转动:晶体被拉伸而 产生滑移时,由于拉力共线的影响,晶面 位向会发生改变, 结果使滑移面和滑移方向 逐渐趋于平行于拉力轴线;而压缩时,晶 面改变的
• 结果使滑
• 移面逐渐
• 趋于与压
• 力轴线垂
• 直。
编辑课件
25
• 滑移面和滑移方向的改变必然导致斯密特 因子m的改变。
编辑课件
27
编辑课件
28
• 面心立方金属的滑移系为{111}<110>,4个{111} 面构成一个八面体。当拉力轴为[001]时,
• (1) 对所有{111}面, cosφ=02+02+12/(12+12+12·02+02+12)=1/3 φ=54.7º,
• (2) λ角对[101],[101] • [011],[011]也都为45º, • (3) 锥体底面上的两个 • <110>方向与[001]垂 • 直。
编辑课件
29
• 因此,八面体上有8个滑移系具有相同的取 向因子,当τ=τk时可以同时开动。但由于这 些滑移系有不同位向的滑移面和滑移方向 构成,滑移时有交互作用,产生交割和反 应,使滑移变得困难,产生较强的加工硬 化。
• 当两个以上的滑移
• 面沿同一方向滑移
• 便形成交滑移。
编辑课件
30
• 发生交滑移时, • 晶体表面会出现 • 曲折或波纹状的 • 滑移带。 • 最容易发生交滑 • 移的是体心立方 • 金属,滑移面为 • {110},{112}和{123},滑移方向总是<111>。 • 因滑移面不受限制,所以交滑移必是纯螺形位错,

材料科学基础课件:晶体学基础-晶向与晶面指数B-

材料科学基础课件:晶体学基础-晶向与晶面指数B-

三軸座標 存在問題?
!用三個指數表示晶面和晶 向,晶體學上等價的晶面和 晶向不具有類似的指數 。
為了使晶體學上等價的晶面或晶向具有類似的指數, 對六方晶體採用四指數表示。
17:31
1
♣ 六方晶系採用 a1,a2,a3 及c四個晶軸;
♣ a1,a2,a3之間的夾角 均為120°,表示晶體 的(六次)對稱性。
• {100}: 3組等價面
17:31
1
{110}=? {111}=?
17:31
1
晶面族:任意交換指數的位置和改變符號後的
所有結果(不同空間方位)。
• {110}: 6組等價面。
17:31
1
• {111}: 4組等價面。
(111), (111), (111), (111)
17:31
1
晶面(向)族:任意交換指數的位置和改變符號後的
17:31
1
六方晶體中常見的晶面
17:31
1
2、晶向指數
標定方法:
(1)平移晶向(或座標), 通過原點,取另一點 的座標uvtw。
(2)滿足u+v+t=0, 或t=-(u+v)。
(3)化成最小、整數比 u:v:t:w (4) 放在方方括號[uvtw],不加逗號,負號記在上方 。
17:31
1
用四軸分量表示一個向量的方法有無窮多種, 要附加限制條件。
第一節 晶體學基礎 basis of crystallographic
一、空間點陣和晶胞 Space lattice and unit cell
二、晶向與晶面指數
Indices of crystallographic orientation and plane

材料科学基础第6章

材料科学基础第6章
2 − 3cos θ + cos 3 θ 4
所以∆Ghet﹡ ﹤ ∆Ghom﹡ 由此可见,一般情况下,非均匀形核比均匀形核所需的形核功小, 且随润湿角的减小而减小。
(二)形核率 1、非均匀形核时在较小的过冷度下可获得较高的形核率 2、随过冷度的增大,形核速度值由低向高过渡较为平衡 3、随过冷度的增大形核速度达到最大后,曲线就下降并中断 4、最大形核率小于均匀形核
∆G = V ∆GV + σ A
∆G = 4 3 π r ∆GV + 4π r 2σ 3
r<r*时,晶胚长大将导致系统自由能的 增加,这种晶胚不稳定,瞬时形成,瞬时消失。 r>r*时,随晶胚长大,系统自由能降低, 凝固过程自动进行。 r=r*时,可能长大,也可能熔化,两种 趋势都是使自由能降低的过程,将r*的晶胚称 为临界晶核,只有那些略大于临界半径的晶核, 才能作为稳定晶核而长大,所以金属凝固时, 晶核必须要求等于或大于临界晶核。 极值点处
凝固:物质由液态至固态的转变。 6.2.1 液态结构 一、液态结构的特征: ① 液体中原子间的平均距离比固体略大 ② 液体中原子的配位数比密排结构的配位数减小(8~11范围内) ③ 结构起伏(相起伏) 二、结构起伏 不断变换着的近程有序原子集团,大小不等,时而产生,时而 消失,此起彼伏,与无序原子形成动态平衡,这种结构不稳定现象称 为结构起伏。 温度越低,结构起伏尺寸越大。
ϕ r = 1 − exp( − kt n )
图6.2 自由能随温度变化的示意图
液→固,单位体积自由能的变化∆ Gv为
∆ G V = G S − G L = H S − TS S − ( H = (H S − H L ) − T (S S − S L ) = − Lm − T (S S − S L )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BCC结构分析
0.287nm), Cr(0.288), Mo(0.315),W(0.317), Ta(0.330),Nb • 3)密度计算,致密度计算 • 4)间隙分析 • 5)晶面分析
HCP结构分析
• 1)HCP晶胞图 • 2)HCP金属:Mg(a=0.321nm, c=0.521), Ti(0.295, 0.468), Zr(0.323, 0.515), Zn(0.266, 0.495), Ru, Cd, Be • 3)密度计算,致密度计算 • 4)间隙分析 • 5)晶面分析
Diamond结构分析
• 1) 晶胞图 • 2)单质:C, Si, Ge, (Sn) • 3)间隙分析
晶体密堆方式
• FCC-abcabc • HCP-ababab
晶体学4-金属晶体结构
2016-10-12
本讲内容
• 金属晶体结构 1)FCC, BCC, HCP, Dia.结构特点 2) 致密度 3)间隙 4)面间距和面密度
金属晶体结构概述
• • • • • • 金属材料概述 金属晶体结构类型 1) FCC 2) BCC 3) HCP 4) Dia.
FCC结构分析
• 1 )晶胞图 • 2)FCC金属:Al(a=0.362nm), γ-Fe, Ni(0.352), Pd, Pt, Cu, Ag(0.409), Au(0.408), Co, Rh, Ir, Pb(0.495) • 3)密度计算,致密度计算 • 4)间隙分析: octahedral, tetrahedral • 5)晶面分析
相关文档
最新文档