2015年高考数学模拟试卷(新课标)1
2015届普通高等学校招生全国统一考试(新课标全国卷Ⅰ)模拟数学(理)试题(河南卷)word版版 含答案

2015年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)模拟卷 理 科 数 学一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
请把答案填在答题卷的相应位置。
1.已知集合},01|{R x x xx A ∈≥-=,},12|{R x y y B x ∈+==,则=)(B A C R A.]1,(-∞ B. )1,(-∞ C. ]1,0( D. ]1,0[ 2.复数),(111为虚数单位i R a ia i z ∈++-=在复平面上对应的点不可能位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3、将一个长方体截掉一个小长方体,所得几何体的俯视图与侧视图如右图所示,则该几何体的正视图为A.B.C.D.4.已知各项均为正数的等比数列}{n a 中,13213a ,a ,2a 2成等差数列,则=++1081311a a a a A. 27B.3C.1-或3D.1或275. 如图所示的程序框图的运行结果为35S =,那么判断框中应填入的关于k 的条件是A .6>kB .6≥kC .7≥kD .7>k 6.给出下列四个结论:①若a ,b ∈[0,1],则不等式22a b +≤1成立的概率为4π;②由曲线y =3x 与y 0.5;③已知随机变量ξ服从正态分布N (3,2σ),若P (ξ≤5)=m ,则P (ξ≤1)=1-m ;④8的展开式中常数项为358.其中正确结论的个数为A .1B .2C .3D .47. 已知实数y x ,满足⎪⎩⎪⎨⎧≥--≥-≥02200y x y x y ,则1x y z x +=+的取值范围是( )A . 4[0,]3 B. 1[,2)2 C. 14[,]23 D. 1[,)2+∞ 8.定义在区间)](,[a b b a >上的函数x x x f cos 23sin 21)(-=的值域是]1,21[-,则a b -的最大值M 和最小值m 分别是A .,63m M ππ==B .2,33m M ππ==C .4,23m M ππ==D .24,33m M ππ==9. 对于任意实数x ,规定[]x 表示不大于x 的最大整数,则不等式[][]2436450x x -+<的充分不必要条件是 A. 315,22x ⎛⎫∈⎪⎝⎭B. 3,82x ⎛⎫∈⎪⎝⎭C. [)2,8x ∈D. [)2,7x ∈10.有5 盆不同菊花, 其中黄菊花2 盆、 白菊花2 盆、 红菊花1 盆,现把它们摆放成一排, 要求2 盆黄菊花必须相邻,2 盆白菊花不能相邻, 则这5 盆花不同的摆放种数是A .12B .24C .36D .4811、已知圆22:2C x y +=,直线:240l x y +-=,点00(,)P x y 在直线l 上.若存在圆C 上的点Q ,使45OPQ ∠=(O 为坐标原点),则0x 的取值范围是A 、[0,1]B 、8[0,]5C 、1[,1]2-D 、18[,]25-12.已知函数2|lg |0()10x x f x xx >⎧=⎨-≤⎩,则方程2(2)(0)f x x a a +=>的根的个数不可能为A .3B .4C .5D .6二、填空题:本大题共4小题,每小题5分,满分20分。
2015年高考理科数学(新课标全国卷1)(含解析)

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1z-=i ,则|z|= ( )A .1BCD .2 2.sin 20cos10cos160sin10︒︒︒︒-=( )A.BC .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2nn n ∀∈N 2,> B .2nn n ∃∈N 2,≤ C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212 xC y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A.( B.( C.( D.( 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[)21,e -B .43[,)23e -C .3[,)234e D .3[,)21e--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数()=(ln f x x x 为偶函数,则a =________.14.一个圆经过椭圆22=1164x y +的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i ωω=8i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围.1sin20cos10cos20sin10sin302+==,故选10<数学试卷第7页(共21页)数学试卷第8页(共21页)数学试卷第9页(共21页)数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)2exy,AB 的取值范围是(62,62)-+.11111111=235572123n b n n ⎡⎤⎛⎫⎛⎫⎛⎫++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=AC FG G=,⊥平面AFC⊂平面AEC3数学试卷第13页(共21页)数学试卷第14页(共21页)数学试卷第15页(共21页)数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)60(Ⅰ)连接AE 90, 90,90,∴DE 是圆1AE =,CE BE ,212x -,解得∴60ACB ∠=.90,可得1sin45=2.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。
2015年高考数学模拟试题及答案

(1)求数列 a n 的通项公式; (2)设 bn
1 ,数列 bn 的前 n 项和为 Tn ,求证: Tn 2 . 2 an
20. (本小题共 13 分) 若双曲线 E :
x2 y 2 1(a 0, b 0) 的离心率等于 2 ,焦点到渐近线的距离为 1,直线 y kx 1 与双 a 2 b2
D C
A.
3 10 10
B.
10 10
C.
5 10
D.
5 15
E
B A 7. 已知正四棱柱 ABCD A1B1C1D1 中,AB 2, CC1 2 2 ,E 为 CC1 的中点, 则直线 AC1 与平面 BED
的距离为 A.2 B.
3
C. 2
D.1
8.将甲、乙、丙等六人分配到高中三个年级,每个年级 2 人,要求甲必须在高一年级,乙和丙均不能在高 三年级,则不同的安排种数为
(2)由(1)可知 bn 20. (本小题共 13 分)
c a 2 1 2 解: (1)由 a 得 b2 1 b 1
设 A x1 , y1 , B x2 , y2 , 由
故双曲线 E 的方程为 x y 1
2 2
y kx 1 得 1 k 2 x 2 2kx 2 0 2 2 x y 1
x 1 0 , 则 A B x 3
2 3
D. (, 1)
A. (3, )
B. (1, )
2 3
C. ( ,3)
2
2. 设 x R , i 是虚数单位,则“ x 3 ”是“复数 z ( x 2 x 3) ( x 1)i 为纯虚数” 的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.某几何体的正视图和侧视图均如图 1 所示,则该几何体的俯视图不可能是
2015年高考理科数学全国卷1(含答案解析)

绝密★启用前 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1+z1z-=i ,则|z|=( ) A .1B .2C .3D .2 2.sin20cos10cos160sin10︒︒︒︒-=( )A .32-B .32C .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2n n n ∀∈N 2,>B .2n n n ∃∈N 2,≤C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212x C y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A .33()33-, B .33()66-, C .2222()33-, D .2323()33-, 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________A .3[)21,e-B .43[,)23e -C .3[,)234e D .3[,)21e第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数2()=()ln f x x a x x ++为偶函数,则a =________. 14.一个圆经过椭圆22=1164x y+的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω28i=1()ixx -∑28i=1()iωω∑-8i=1()()iiy x x y-∑-8i=1()()ii y y ωω--∑46.65636.8289.8 1.6 1 469108.8表中i ω=i x ,ω=188i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A 【解析】由1=i 1z z+-,得1i (1i)(1i)=i 1i (1i)(1i)z -+-+-===++-,故1z =,故选C . 【提示】先化简复数,再求模即可. 【考点】复数的运算. 2.【答案】D【解析】原式1sin 20cos10cos20sin10sin302=+==,故选D . 【提示】直接利用诱导公式以及两角和的正弦函数,化简求解即可. 【考点】三角函数的运算. 3.【答案】C【解析】命题的否定是:22n n n ∀∈≤N ,.【提示】根据特称命题的否定是全称命题即可得到结论. 【考点】命题. 4.【答案】A【解析】根据独立重复试验公式可得,该同学通过测试的概率为2233C 0.60.40.6=0.648.⨯+【提示】判断该同学投篮投中是独立重复试验,然后求解概率即可.【考点】概率. 5.【答案】A【解析】由题知12(F F ,,220012x y -=,所以222120000000(3,)(3,)331MF MF x y xy x y y =-----=+-=-<,解得0y <<,故选A . 【提示】利用向量的数量积公式,结合双曲线方程,即可确定0y 的取值范围. 【考点】双曲线. 6.【答案】B【解析】设圆锥底面半径为r ,则116238,43r r ⨯⨯=⇒=所以米堆的体积为 2111632035,4339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭故堆放的米约为320 1.6222,9÷≈故选B . 【考点】圆锥体积.【提示】根据圆锥的体积公式计算出对应的体积即可. 7.【答案】A【解析】由题知1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+【提示】将向量AD 利用向量的三角形法则首先表示为AC CD +,然后结合已知表示为AC AC ,的形式.【考点】向量运算. 8.【答案】D【解析】由五点作图知,1π42,53π42ωϕωϕ⎧+=⎪⎪⎨⎪+=⎪⎩解得ππ,4ωϕ==,所以π()cos π,4f x x ⎛⎫=+ ⎪⎝⎭令2ππ2ππ,,4k x k k π<+<+∈Z 解得1322,,44k x k k -<<+∈Z故()f x 的单调递减区间为132,2,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,故选D .【提示】由周期求出ω,由五点法作图求出ϕ,可得()f x 的解析式,再根据余弦函数的单调性,求得()f x 的减区间. 【考点】三角函数运算. 9.【答案】C【解析】执行第1次,0.01,1,t S ==10,0.5,2n m === 0.5,0.25,2mS S m m =-===1,0.50.01n S t ==>=,是,循环,执行第2次, 0.25,0.125,2mS S m m =-===2,0.250.01n S t ==>=,是,循环,执行第3次,0.125,0.0625,2mS S m m =-===3,0.1250.01n S t ==>=,是,循环,执行第4次,0.0625,0.03125,2mS S m m =-===4,0.06250.01n S t ==>=,是,循环,执行第5次,0.03125,0.015625,2mS S m m =-===5,0.031250.01n S t ==>=,是,循环,执行第6次,0.015625,0.0078125,2mS S m m =-===6,0.0156250.01n S t ==>=,是,循环,执行第7次,0.0078125,S S m =-=2mm =0.00390625=, 7,0.00781250.01n S t ==>=,否,输出7,n =故选C .【提示】由题意依次计算,当7,0.00781250.01,n S t ==>=停止由此可得结论. 【考点】程序框图. 10.【答案】C【解析】在25()x x y ++的五个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y ,故52x y 的系数为212532C C C 30,=故选C .【提示】利用展开式的通项进行分析,即可得出结论. 【考点】二项式展开式. 11.【答案】B【解析】由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱和球的半径都是r ,圆柱的高为2r ,其表面积为222214ππ2π225π41620π2r r r r r r r r ⨯+⨯++⨯=+=+,解得r=2,故选B .【提示】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可. 【考点】空间几何体的表面积. 12.【答案】D【解析】设()()e 21,,xg x x y ax a =-=-由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()e (21)xg'x x =+,所以当12x <-时,'()0g x <,当12x >-,()0,g'x >所以当12x =-时,12min [()]2e g x -=-.当0x =时(0)1g =-,(1)e 0g =>,直线y ax a =-恒过(1,0)且斜率a ,故(0)1a g ->=-,且1(1)3e g a a --=-≥--,解得312ea ≤<,故选D .【提示】设()()e 21,,xg x x y ax a =-=-,问题转化为存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,由导数可得函数的极值,数形结合可得(0)1a g ->=-且1(1)3e g a a --=-≥--,解关于a 的不等式组可得.【考点】带参函数.第Ⅱ卷二、填空题 13.【答案】1【解析】由题知ln(y x =是奇函数,所以22ln(ln(ln()ln 0x x a x x a +-=+-==,解得 1.a =【提示】由题意可得,()()f x f x -=,代入根据对数的运算性质即可求解 【考点】函数奇偶性.14.【答案】2232524x y ⎛⎫±+= ⎪⎝⎭【解析】设圆心为(,0)a ,则半径为4a -,则222(4)2,a a -=+解得32a =±, 故圆的标准方程为2232524x y ⎛⎫±+= ⎪⎝⎭.【提示】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程. 【考点】圆的标准方程. 15.【答案】3【解析】做出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点(1,3)与原点连线的斜率最大,故yx的最大值3.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定y x的最大值.【考点】线性规划问题.16.【答案】【解析】如下图所示:延长BACD ,交于点E ,则可知在△ADE 中,105DAE ∠=︒,45ADE ∠=︒,30,E ∠=︒∴设12AD x =,2AE x =,4DE x =,CD m =,2BC =,sin151m ⎫∴+︒=⎪⎪⎝⎭⇒m +=∴04x <<,而2AB m x +-,2x∴AB的取值范围是.【提示】如图所示,延长BACD ,交于点,设12AD x =,2AE x =,4DE x =,CD m =m +=AB 的取值范围. 【考点】平面几何问题. 三.解答题17.【答案】(Ⅰ)21n + (Ⅱ)11646n -+ 【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,221122n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{}n a 是首项为3,公差为2的等差数列,所以n a =21n +; (Ⅱ)由(1)知,1111(21)(23)22123n b n n n n ⎛⎫==- ⎪++++⎝⎭,所以数列{}n b 前n 项和为121111111=235572123n b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫+++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=11646n -+. 【提示】(Ⅰ)根据数列的递推关系,利用作差法即可求{}n a 的通项公式:(Ⅱ)求出11n n n b a a +=,利用裂项法即可求数列{}n b 的前n 项和.【考点】数列前n 项和与第n 项的关系,等差数列定义与通项公式. 18.【答案】(Ⅰ)答案见解析 【解析】(Ⅰ)连接BD ,设,BDAC G =连接EG FG EF ,,,在菱形ABCD 中,不妨设1GB =,由∠ABC=120°,可得AG GC ==由BE ⊥平面ABCD ,AB BC =,可知AE EC =, 又∵AE EC ⊥,∴EG EG AC =⊥,在Rt EBG △中,可得BE,故DF =在Rt FDG △中,可得FG =在直角梯形BDEF 中,由2BD =,BE,2DF =,可得2EF =, ∴222EG FG EF +=, ∴EG FG ⊥, ∵ACFG G =,∴EG ⊥平面AFC , ∵EG ⊂平面AEC , ∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得0,A (,(E,2F ⎛- ⎝⎭,C ,∴AE =,1,CF ⎛=- ⎝⎭.故cos ,3||||AE CFAE CF AE CF <>==-,所以直线AE 与CF .【提示】(Ⅰ)连接BD ,设BD AC G =,连接EG EF FG ,,,运用线面垂直的判定定理得到EG ⊥平面AFC ,再由面面垂直的判定定理,即可得到.(Ⅱ)以G 为坐标原点,分别以GB GC ,为x 轴,y 轴,GB 为单位长度,建立空间直角坐标系G xyz -,求得AE F C ,,,的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【考点】空间垂直判定与性质,异面直线所成角的计算.19.【答案】(Ⅰ)答案见解析 (Ⅱ)答案见解析 (Ⅲ)(i )66.32 (ii )46.24【解析】(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =先建立y 关于w 的线性回归方程,由于81821()()108.8=68,16()iii ii w w yy d w w ==--==-∑∑ ∴56368 6.8100.6.==c y d w -⨯=-∴y 关于w 的线性回归方程为=100.6+68y w ,y ∴关于x 的回归方程为y (Ⅲ)(i )由(Ⅱ)知,当49x =时,年销量y的预报值576.6y =, 年利润z 的预报值=576.60.249=66.32z ⨯-(ii )根据(Ⅱ)的结果知,年利润z 的预报值20.12z x =x +--,∴13.66.8,2=即46.24x =,z 取得最大值,故宣传费用为46.24千元时,年利润的预保值最大.【提示】(Ⅰ)根据散点图,即可判断出.(Ⅱ)先建立中间量w =y 关于w 的线性回归方程,根据公式求出w ,问题得以解决.(Ⅲ)(Ⅰ)年宣传费49x =时,代入到回归方程,计算即可. (ii )求出预报值得方程,根据函数的性质,即可求出.【考点】线性回归方程求法,利用回归方程进行预报预测. 20.【答案】0y a --=0y a ++=(Ⅱ)答案见解析【解析】(Ⅰ)由题设可得)Ma ,()N a -,或()M a-,)N a .∵12yx '=,故24x y =在x =C在)a 处的切线方程为y a x -=-0y a --=,故24x y =在x =-处的导数值为,C 在()a -处的切线方程为y a x -=+,0y a ++=0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设(0,)P b 为符合题意得点,11(,)M x y ,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,.将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴1212121212122()()()=y b y b kx x a b x x k a b k k x x x x a--+-+++=+. 当b a =-时,有12k k + =0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故OPM OPN ∠=∠,所以(0,)P a -符合题意.【提示】(Ⅰ)求出C在)a 处的切线方程,故24x y =在x =-即可求出方程.(Ⅱ)存在符合条件的点(0,)P b ,11(,)M x y,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,直线方程与抛物线方程联立化为2440x kx a --=,利用根与系数的关系,斜率计算公式可得12()=k a b k k a++=即可证明. 【考点】抛物线的切线,直线与抛物线位置关系. 21.【答案】(Ⅰ)34a =- (Ⅱ)答案见解析【解析】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-,因此,当34a =-时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,)+∞无零点. 当1x =时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h f g g ===,故1x =是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x在⎛ ⎝单调递减,在⎫⎪⎪⎭单调递增,故当x =()f x取的最小值,最小值为14f =.①若0f >,即304x -<<,()f x 在(0,1)无零点.②若0f =,即34a =-,则()f x 在(0,1)有唯一零点;③若0f <,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时, ()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.【提示】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=解出即可. (Ⅱ)对x 分类讨论:当(1,)x ∈+∞时,()ln 0g x x =-<,可得函数(1)min{(1),(1)}(1)0h f g g ===,即可得出零点的个数.当1x =时,对a 分类讨论利用导数研究其单调性极值即可得出.【考点】利用导数研究曲线的切线,分段函数的零点. 22.【答案】(Ⅰ)答案见解析 (Ⅱ)60ACB ∠=【解析】(Ⅰ)连接AE ,由已知得,AE BC AC AB ⊥⊥,,在Rt AEC △中,由已知得DE DC =,∴DEC DCE ∠=∠,连接OE ,OBE OEB ∠=∠, ∵90ACB ABC ∠+∠=, ∴90DEC OEB ∠+∠=,∴90OED ∠=,∴DE 是圆O 的切线.(Ⅱ)设1CE AE x ==,,由已知得AB =,BE =,由射影定理可得,2AE CE BE =,∴2x =x = ∴60ACB ∠=.【提示】(Ⅰ)连接AE 和OE ,由三角形和圆的知识易得90OED ∠=,可得DE 是O 的切线.(Ⅱ)设1CE AE x ==,,由射影定理可得关于x的方程2x =,解方程可得x 值,可得所求角度.【考点】圆的切线判定与性质,圆周角定理,直角三角形射影定理. 23.【答案】(Ⅰ)22cos 4sin 40ρρθρθ--+= (Ⅱ)12【解析】(Ⅰ)因为cos ,sin x y ρθρθ==, ∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4θπ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ12=MN ρρ-,因为2C 的半径为1,则2C MN △的面积111sin 45=22⨯.【提示】(Ⅰ)由条件根据cos sin x y ρθρθ==,求得12C C ,的极坐标方程.(Ⅱ)把直线3C 的极坐标方程代入22cos 4sin 40ρρθρθ--+=,求得12ρρ,的值,从而求出2C MN △的面积.【考点】直角坐标方程与极坐标互化,直线与圆的位置关系.24.【答案】(Ⅰ)22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)(2)+∞,【解析】(Ⅰ)当1a =时,不等式()1f x >化为1211x x +-->,等价于11221x x x ≤⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,∴不等式()1f x >的解集为22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21,03a A -⎛⎫⎪⎝⎭,(21,0)B a +,(,+1)C a a ,所以ABC △的面积为22(1)3a +, 由题设得22(1)63a +>,解得2a >,所以a 的取值范围为(2)+∞,. 【提示】(Ⅰ)当1a =时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。
2015年高考数学模拟试题及答案

2015年高考数学模拟试题及答案本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
第一卷1至2页,第二卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
考试时间120分钟。
第一卷(选择题 共60分)注意事项:1. 作答第一卷前,请考生务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米的签字笔填写在答题卡上,并认真核对监考员所粘贴的条形码上的姓名、考试证号是否正确。
2. 第一卷答案必须用2B 铅笔填涂在答题卡上,在其他位置作答一律无效。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
参考公式:三角函数的和差化积公式sin sin 2sincos22a b a ba b +-+= sin sin 2cossin22a b a ba b +--= cos cos 2cos cos22a b a ba b +-+=cos cos 2sinsin22a b a ba b +--=- 若事件A 在一次试验中发生的概率是p ,由它在n 次独立重复试验中恰好发生k 次的概率()C (1)kk n k n n P k p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均值一.选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设集合{}1,2A =,{}1,2,3B =,{}2,3,4C =,则()AB C =(A ){}1,2,3(B ){}1,2,4(C ){}2,3,4(D ){}1,2,3,4(2) 函数123()x y x -=+∈R 的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2xy -= (D )22log 3y x=- (3) 在各项都为正数的等比数列{}n a 中,首项13a =,前三项的和为21,则345a a a ++=(A ) 33(B ) 72(C ) 84(D ) 189(4) 在正三棱柱111ABC A B C -中,若2AB =,11AA =,则点A 到平面1A BC 的距离为(A )34(B )32(C )334(D )3(5) ABC △中,3A p=,3BC =,则ABC △的周长为 (A )43sin()33B p ++ (B )43sin()36B p++(C )6sin()33B p ++ (D )6sin()36B p++(6) 抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716(B )1516(C )78(D ) 0(7) 在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4 8.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A ) 9.4,0.484 (B ) 9.4,0.016 (C ) 9.5,0.04 (D ) 9.5,0.016(8) 设a 、b 、g 为两两不重合的平面,l 、m 、n 为两两不重合的直线,给出下列四个命题:① 若a g ⊥,b g ⊥,则//a b ;② 若m a ⊂,n a ⊂,//m b ,//n b ,则//a b ;③ 若//a b ,l a ⊂,则//l b ;④ 若l a b =,m b g =,n g a =,//l g ,则//m n . 其中真命题的个数是 (A ) 1(B ) 2(C ) 3(D ) 4(9) 设1,2,3,4,5k =,则5(2)x +的展开式中k x 的系数不可能...是 (A ) 10 (B ) 40(C ) 50(D ) 80(10) 若1sin()63p a -=,则2cos(2)3pa += (A )79-(B )13- (C )13(D )79(11) 点(3,1)P -在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为(2,5)=-a 的光线,经过直线2y =-反射后通过椭圆的左焦点,则这个椭圆的离心率为 (A )33 (B )13 (C )22(D )12 (12) 四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品放在同一仓库是危险的,没有公共点的两条棱所代表的化工产品放在同一仓库是安全的.现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 (A ) 96(B ) 48(C ) 24(D ) 0S 数学试题 第 3 页(共 4 页)第二卷(非选择题 共90分)注意事项:请用书写黑色字迹的0.5毫米的签字笔在答题卡上指定区域内作答,在试题卷上作答一律无效。
2015年高考数学模拟试卷 1

2015年高考数学模拟试卷1.若关于x 的方程2(1)--+x x m =0在[1,1]-上有解,则m 的取值范围是 ( )A .11-≤≤m B. C.1≤m2.设函数()f x 是定义在R 上的奇函数,且(3)2f -=,则(3)(0)f f +=( )A .3B .3-C .2D .2-3.1x 0(e 2x)dx +⎰等于( )A.1B.e-1C.e+1D.e4.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,, ≤则( )5.已知,则等于( ) A. B. C. D.6.下列求导运算正确的是( )A (x2x )′C (3)′=3log 3eD (x 2cos x )′=-2sin x7.使“1lg <m ”成立的一个充分不必要条件是 ( )A . ),0(+∞∈mB . (),10m ∈-∞C .()0,10m ∈D . {}1, 2m ∈8.如果函数()f x 对于任意实数x ,存在常数M ,使该不等式就称函数()f x 为有界泛涵,下面有4个函数:①()1f x = ②2()f x x =③()(cos sin )f x x x x =+( )A. ①②B. ②④C. ①③D. ③④9.曲线 在x=2处切线方程的斜率是( )A. 4B. 2C. 1D.10.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,则)2(-f 的值为 ( ) A .1 B .2 C .4 D .511.关于x 的函数y=log 21(a 2-ax)在[0,+∞)上为减函数,则实数a 的取值范围是( ). A .(-∞,-1) B .(-∞,0) C .(1-,0) D .(0,2]12.函数()f x 在定义域R 上的导函数是()f x ',若()()2f xf x =-,且当(),1x ∈-∞时,()()10x f x '-<,设()0a f =、、()2log 8c f =,则 ( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<13.曲线y=x 3在点(1,1)切线方程为___________________.14____________.15.若函数kxxe x f =)(在区间(1,1)-内单调递增,则k 的取值范围是____________.16.设函数()(1)()f x x x a =++为偶函数,则17.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且,()22f x x =+。
2015新课标高考模拟理数

绝密★启用前6月8日15:00—17:002015年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的23. 某程序框图如图所示,若该程序运行后输出的值是,则()4. 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种25. 若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为().B .C .D .6. 如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )A .B .C .D .8. 某几何体的三视图(单位:cm )如图所示,则该几何体最长的一条侧棱长度是( ).cm C . cmD .cm9. 设m ,n ∈R ,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切,则m+n 的取值范围是( ) . [1﹣,1+] B . (﹣∞,1﹣]∪[1+,+∞) C . [2﹣2,2+2]D . (﹣∞,2﹣2]∪[2+2,+∞)10. 设f (x )是连续的偶函数,且当x >0时f (x )是单调函数,则满足的所有x 之和为( ) . 3C . ﹣8D . 811. 已知双曲线的右焦点为F ,过F 且斜率为的直线交C 于A 、B 两点,若=4,则C 的离心率为( )A.65 B. 75 C. 85 D. 9512. f (x )是定义在(0,+∞)上的非负可导函数,且满足xf′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )本卷包括必考题和选考题,第13题~第21题为必考题,每个试题考生都必修作答。
浙江省2015高考数学模拟卷一1

浙江省2015高考数学模拟试卷(一)一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合{}|05A x x=∈≤≤N,}5,3,1{=BCA,则集合=B()A.{}4,2 B.{}4,3,2 C.{}3,1,0 D.{}4,2,02.已知∈ba,R,条件p:“ba>”,条件q:“122->ba”,则p是q的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件3,已知某四棱锥的三视图(单位:cm)如图所示,则该四棱锥的体积是()A383B33C343D33cm4.设,,l m n表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是()A.若l∥m,mα⊂,则l∥α;B.若,,,l m l n m nα⊥⊥⊂,则lα⊥;C.若l∥α,l∥β,mαβ=,则l∥m;D.若,,l m l mαβ⊂⊂⊥,则αβ⊥.5. 已知函数)0(sin3sin)(>-=ωωωxxxf的图象与x轴的两个相邻交点的距离等于2π,若将函数y=f(x)的图象向左平移6π个单位得到函数y=g(x)的图象,则y=g(x)是减函数的区间为 ( )A.)0,3(π- B.)4,4(ππ- C.)3,0(πD.)3,4(ππ6. 若函数()(01)x xf x ka a a a-=->≠且在(-∞,+∞)上既是奇函数又是增函数,则函数()log()ag x x k=+的图象是()7.已知O为原点,双曲线2221xya-=上有一点P,过P作两条渐近线的平行线,且与两渐近线的交点分别为,A B,平行四边形OBPA的面积为1,则双曲线的离心率为()A2 B35238.已知正方体1111ABCD A B C D-,过顶点1A作平面α,使得直线AC和1BC与平面α所成的角都为30,这样的平面α可以有()A.1个B.2个C.3个D.4个41 1 31正视图俯视图9.已知向量,,a b c 满足4,22,a b ==a 与b 的夹角为4π,()()1c a c b -⋅-=-,则c a -的最大值为(A 12(B 1(C(D 1 10.ABC ∆的BC 边上的高线为AD ,BD a =,CD b =,且a b <,将ABC ∆沿AD 折成大小为θ的二面角B AD C --,若cos abθ=,则此时ABC ∆是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.形状与a ,b 的值有关的三角形二、填空题(本大题共7小题,每小题4分,共28分)11.式子3log __ ___ 12. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若a =2b =,sin cos B B +=则角A 的大小为 . 13. 设等差数列{}na 的前n 项和为n S ,若675S S S >>,则满足01<+n n S S 的正整数n 的值为_______________14. 已知实数,x y 满足约束条件20x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩,若2z x y =+的最小值为3,实数b = .15. 在△ABC 中,B(10,0),直线BC 与圆Γ:x 2+(y -5)2=25相切,切点为线段BC 的中点.若△ABC 的重心恰好为圆Γ的圆心,则点A 的坐标为 .16.若1()1(1)f x f x +=+,当[0,1]x ∈时,()f x x =,若在区间(]1,1-内,()()g x f x mx m =--有两个零点,则实数m 的取值范围是 .17. 若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在△ABC 中,内角A,B,C 对边的边长分别是a,b,c .已知c=2,C=3π. (Ⅰ)若△ABC 的面积等于3,试判断△ABC 的形状,并说明理由; (Ⅱ)若sinC+sin(B-A)=2sin2A ,求△ABC 的面积.19.(本小题满分14分)如图,矩形ABCD 中,AB=2BC=4,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE (1)当平面A 1DE⊥平面BCD 时,求直线CD 与平面A 1CE 所成角的正弦值; (2)设M 为线段A 1C 的中点,求证:在△ADE 翻转过程中,BM 的长度为定值.20. (本小题满分14分)已知等比数列{}n a 的公比为q ()01q <<,且253491,88a a a a +==.(1)求数列{}n a 的通项公式;(2)设该等比数列{}n a 的前n 项和为n S ,正整数,m n 满足112n n S m S m +-<-,求出所有符合条件的,m n 的值.21. (本小题满分15分)如图,已知直线l与抛物线yx42=相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).(I)若动点M满足0||2=+⋅AMBMAB,求点M的轨迹C;(II)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.22. (本题满分15分)已知函数22()1,()2,.f x xg x x ax x R=-=++∈(Ⅰ)若不等式()0g x>的解集是{|2x x>或1x<},求不等式()()f xg x≤的解集;(Ⅱ)若函数()()()2h x f x g x=++在(0,2)上有两个不同的零点12,x x,求实数a的取值范围.浙江省2015高考数学模拟试卷(一)答案一、选择题DAACD,CCCDC 二、填空题41-, 6π, 12, 94, (0,15) 或 (-8,-1),1(0,]2, 5(,3][,)2-∞-+∞ 三、解答题:本大题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤.21解:(I )由22414x y y x ==得,.21x y ='∴∴直线l 的斜率为1|2='=x y ,(用点斜式0∆=)故l 的方程为1-=x y ,∴点A 坐标为(1,0),………….2分 设),(y x M ,则),1(),,2(),0,1(y x AM y x BM AB -=-==, 由0||2=+⋅AM BM AB 得 .0)1(20)2(22=+-⋅+⋅+-y x y x 整理,得.1222=+y x ∴点M 的轨迹为以原点为中心,焦点在x 轴上,长轴长为22,短轴长为2的椭圆 ……… 6分(II )如图,由题意知直线l 的斜率存在且不为零,设l 方程为y=k(x -2)(k ≠0)①将①代入1222=+y x ,整理,得0)28(8)12(2222=-+⋅-+k x k x k ,由△>0得0<k 2<21. 设E(x 1,y 1),F(x 2,y 2) 则⎪⎪⎩⎪⎪⎨⎧+-=+=+.1228,12822212221k k x x k k x x ②令||||,BF BE S S OBF OBE ==∆∆λλ则,.10,22,21<<--=⋅=λλλ且x x BF BE 由②知.∴△OBE 与△OBF 面积之比的取值范围是(3-22,1). …………..15分②若1≤x 1<x 2<2时2(1)1(2)0124240h h a a ≥⎧⎪>⎪⎪⎨<-<⎪⎪->⎪⎩即502110842626a a a a ora +≥⎧⎪+>⎪⎨-<<-⎪⎪<->⎩得:-5≤26a <-. ∴ 综上所述a 的取值范围为11262a -<<-法二:()()()[)222222145,0,1141432,1,2x x x x x x xa x x x x x x x ⎧----⎪=-∈----⎪==⎨----⎪⎛⎫=-+∈ ⎪⎪⎝⎭⎩()50,1,x x∈-单调递增,且值域为(),5-∞-;[)()31,2,2x k x x x ⎛⎫∈=-+ ⎪⎝⎭先增后减,()()()max 1115,22k k x k k =-==-=-作出上述函数图像,可得112a -<<-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年高考数学模拟试卷(新课标)1.已知集合},1|{2R x xy y M ∈-==,}2|{2x y x N -==,则=N M ( ) A. ),1[+∞- B. ]2,1[- C. ),2[+∞ D. φ 2.设0(s i n c o s )a x xd x π=+⎰,则二项式6(,展开式中含2x 项的系数是( ) A. 192- B. 192 C. -6 D. 63.已知,x y R ∈,i 为虚数单位,且(2)1x i y i --=-+,则(1)x y i ++的值为( ) A .4 B .一4 C .4+4iD .2i4.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C .4D . 55.公差不为0的等差数列{}n a 中, 2200520072009330a a a -+=,数列{}n b 是等比数列,且20072007b a =,则20062008b b =( )A .4B .8C .16D .36 6.阅读右侧程序框图,输出的结果s 的值为A.0B.23 C.3 D.23-7.某几何体的三视图如右图所示,则其侧面积为A .2.2.2.28.把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍 (纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为 A .2π-=x B .4π-=x C .8π=x D .4π=x9.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M ,,O 是坐标原点,则·=( ).A 2 .B 1 .C -1 .D -210.已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则12310a a a a ++++=( )A .0B .100-C .100D .1020011.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC ,若四面体P ABC -的体积为32,则该球的体积为 ( )A B .2π C . D .12.函数xxx y sin 2sin 3cos 42---=的最大值是( )A .37 B .3- C .37- D . 113.观察下列等式:12=1,12—22=—3,12—22+32=6,12—22+32—42=-10, …………………由以上等式推测到一个一般的结论:对于*n N ∈,12—22+32—42+…+(—1)n+1n 2=14.已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤≥0620y x x y y ,则目标函数y x z +=的最大值为15.某一排共12个座位,现甲、乙、丙三人按如下要求入座,每人左右两旁都有空座位,且三人的顺序是甲必须在另两人之间,则不同的座法共有16.设集合{}{}|01,|12A x x B x x =≤<=≤≤,函数2,()(),42,()x x A f x x x B ⎧∈=⎨-∈⎩ 0x A ∈ 且0[()]f f x A ∈, 则0x 的取值范围是17.已知在ABC V 中,A B C ∠∠∠﹑﹑所对的边分别为a ﹑b﹑c,若c o s c o s A bB a= 且sin cos C A =.(Ⅰ)求角A 、B 、C 的大小;(Ⅱ)设函数()()sin cos 222C f x x x A ⎛⎫=+-+ ⎪⎝⎭,求函数()f x 的单调递增..区间,并指出它相邻两对称轴间的距离. 18.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只; 取到的2只中至少有一只正品.19. 如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=°,O 为BC 中点. (Ⅰ)证明:SO ⊥平面ABC ; (Ⅱ)求二面角A SC B --的余弦值.20.已知椭圆22122:10)x y C a b a b+=>>(的右焦点为F ,上顶点为A ,P 为C 1上任一点,MN 是圆222:(3)1C x y +-=的一条直径,若与AF 平行且在y轴上的截距为3线l 恰好与圆2C 相切. (Ⅰ)已知椭圆1C 的离心率;(Ⅱ)若PM PN ⋅的最大值为49,求椭圆C 1的方程. 21.设函数21()ln ().2a f x x ax x a R -=+-∈(Ⅰ) 当1a =时,求函数()f x 的极值; (Ⅱ)当1a >时,讨论函数()f x 的单调性. (Ⅲ)(理科)若对任意(3,4)a ∈及OSBAC任意12,[1,2]x x ∈,恒有212(1)ln 2()()2a m f x f x -+>- 成立,求实数m 的取值范围. 22.(本小题满分10分)选修4-1:几何证明选讲.如图,⊙O 内切△ABC 的边于D 、E 、F ,AB=AC ,连接AD 交⊙O 于点H ,直线HF 交BC 的延长线于点G.BGC DH FAOE⑴证明:圆心O 在直线AD 上; ⑵证明:点C 是线段GD 的中点. 23.(本小题满分10分)选修4-4:坐标系与参数方程选讲. 在极坐标系中, O 为极点, 半径为2的圆C 的圆心的极坐标为(2,)3π. ⑴求圆C 的极坐标方程;⑵P 是圆C 上一动点,点Q 满足3O P O Q =,以极点O 为原点,以极轴为x 轴正半轴建立直角坐标系,求点Q 的轨迹的直角坐标方程. 24.(本小题满分10分)选修4-5:不等式选讲. 已知函数()|1||22|.f xx x =-++ ⑴解不等式()5f x >;⑵若不等式()()f x a a <∈R 的解集为空集,求a 的取值范围.参考答案1.B【解析】},1|{2R x x y y M ∈-==[1,),2]N =-+∞=,所以[1M N =-.2.A 【解析】00(s i n c o s )(c o s s i n )|1(1)2a x x d x x x ππ=+=-+=--=⎰,所以二项式的展开式通项为6632166(1)(1)2rrrrr r r rr T C xC x ----+=-=-,令3-r=2,则r=1,所以展开式中含2x 项的系数是1562192C -=-.3.B 【解析】(2)1,21,1,3,x i y i x y x y --=-+∴-=-=-∴==,则 42(1)(1)(2)4x y i i i ++=+==-.4.D【解析】设|PF 1|=m ,|PF 2|=n ,不妨设P 在第一象限,则由已知得2222(2)22m n am n c n c m -=⎧⎪+=⎨⎪+=⎩,∴5a 2-6ac+c 2=0,方程两边同除a 2得:e 2-6e+5=0,解得e=5或e=1(舍去),故选D . 5.D 【解析】2220052007200920072007200720072007330,6,0,6a a a a a b a a -+=∴==≠∴=,所以22200620082007636b b b ===. 6.B【解析】退出循环体时n=2012,所以234562011sins in s i ns in si n 3333333S πππππππ=+++++++, 234562011sin sin sin sin sin sin ...sin 3333333πππππππ=+++++++7.A 【解析】此几何体是一个四棱锥,其侧面积为11111121112222S =⨯⨯+⨯⨯+⨯⨯=侧. 8.A【解析】132s i n ()s i n (2)66y xy x πππ=+→=+→向右平移横坐标缩短到原来的倍sin[2()]sin(2)cos 2362y x x x πππ=-+=-=-,因为当2π-=x 时,cos 22y x =-=-,所以所得图象的一条对称轴方程为2π-=x .9.D【解析】圆心O 到直线Ax+By+C=0的距离1d ==,∴∠AOB=23π∴2||||cos 22cos 23OM ON OM ON AOB π⋅=⋅∠=⨯=-. 10.B 【解析】2222()()cos()(1)(n n n f n n n n n n π⎧-===-⋅⎨⎩为奇数为偶数)212()(1)(1)(1)(1)n n n a f n f n n n +=++=-+-+由221(1)[(1)](1)(21)n n n n n +=--+=-+得1231003579...199201250100a a a a ++++=-+-++-=-⨯=-11.D【解析】设该球的半径为R,22,AC R AC ∴, 则AB=2R ,由于AB 是球的直径,所以△ABC 在大圆所在平面内且有AC ⊥BC ,在Rt △ABC 中,由勾股定理得:BC 2=AB 2-AC 2=R , 所以Rt △ABC面积2122S BC AC R=⨯⨯= 又PO ⊥平面ABC ,且PO=R ,四面体P-ABC 的体积为32,213322P ABC V R R -∴=⨯⨯=,339,R ==所以该球的体积为34433V R ππ=⨯=⨯⨯=球. 12.A【解析】224cos 3sin 3sin 3sin ,2sin 2sin x x x xy x x--+-==--令2sin [1,3]x t -=∈, 所以23(2)3(2)11t t y t t t+---==+-在[1,3]t ∈上是增函数,所以当t=3即sinx=-1时,y 取得最大值,最大值为173133+-=.13.(1)(1)2nn n ⨯+-⨯. 【解析】由已知知等式:221(11)11(1),2⨯+==-⨯2232224222252(21)123(1),23(31)1236(1),24(41)123410(1),2...⨯+-=-=-⨯⨯+-+==-⨯⨯+-+-=-=-⨯ 由此我们可以推论出一个一般的结论:n N *∈,222212(1)1234...(1)(1)2n n n n n +⨯+-+-++-=-⨯. 14.4【解析】当直线z=x+y 经过直线y=x 与直线2x+y-6=0的交点(2,2)时,z 取得最大值,最大值为4. 15.112【解析】每人带一个座位,还有9个空座位,中间有8个空,从8个空中选出3个放甲、乙、丙,由于甲必须在另两人之间,所以382112C =.16.203log 12x << 【解析】∵0≤x 0<1,∴f (x 0)=2x 0∈[1,2 )=B,∴f[f (x 0)]=f (2x 0)=4-2•2x 0 ∵f[f (x 0)]∈A ,∴0≤4-2•2x 0<1,∴20log 1x x <≤,∵0≤x 0<1,∴203log 12x <<. 17.(Ⅰ)6A B π==,23C π=.(Ⅱ)单调递增区间为[,]()36k k k Z ππππ-+∈. 它的相邻两对称轴间的距离为2π. 【解析】(I)由cos cos A b B a =,根据正弦定理可得cos sin cos sin A BB A=,所以sin 2sin 2A B =,从而得到 A=B 或2A B π+=,然后再根据条件sin cos C A =分别研究,从而求出A 、B 、C 的值.(II)先根据三角恒等变换公式求出()sin(2)cos(2)2sin(2)636f x x x x πππ=++-=+,再借助正弦函数的单调增区间求出此函数f(x)的增区间.两相邻对称轴间的距离为周期的一半.(Ⅰ)由题设及正弦定理知:cos sin cos sin A BB A=,得sin 2sin 2A B =,∴22A B =或22A B π+= ,即A B =或2A B π+=.当A B =时,有sin(2)cos A A π-=, 即1sin 2A =,得6A B π==,23C π=; 当2A B π+=时,有sin()cos 2A ππ-=,即cos 1A =,不符题设,∴6A B π==,23C π=. …………………7分 (Ⅱ) 由(Ⅰ)及题设知:()sin(2)cos(2)2sin(2)636f x x x x πππ=++-=+; 当2[2,2]()622x k k k Z πππππ+∈-+∈时, ()2sin(2)6f x x π=+为增函数,即()2sin(2)6f x x π=+的单调递增区间为[,]()36k k k Z ππππ-+∈. ………11分它的相邻两对称轴间的距离为2π. ………12分 18.(Ⅰ)213243)()()()(1111=⨯===B P A P B A P C P .(Ⅱ)2718352344848482E ξ=⨯+⨯+⨯=. 【解析】(I )设该人参加科目A 考试合格和补考为时间A 1、A 2,参加科目B 考试合格和补考合格为时间B 1、B 2,事件A 1、A 2、B 1、B 2互为独立,设该人不需要补考就可以获得证书为事件C ,则C=A 1B 1,然后根据相互独立事件的概率乘法公式可求出所求;(II )ζ的取值可能为2,3,4,然后根据相互独立事件的概率乘法公式分别求出相应的概率,最后根据离散型随机变量的数学期望公式解之即可.设该人参加科目A 考试合格和补考为时间12A A 、,参加科目B 考试合格和补考合格为时间121A B B ,事件、、212A B B 、、相互独立.(Ⅰ)设该人不需要补考就可获得证书为事件C ,则C=11A B ,213243)()()()(1111=⨯===B P A P B A P C P . …………………4分 (Ⅱ)ξ的可能取值为2,3,4. 则P (3211279(2)43444816ξ==⨯+⨯==; P 312132311183(3)433443433488ξ==⨯⨯+⨯⨯+⨯⨯==; P 1312131131(4)443344334816ξ==⨯⨯⨯+⨯⨯⨯== . …………………9分所以,随即变量ξ的分布列为ξ2 3 4P2748 1848 348所以2718352344848482E ξ=⨯+⨯+⨯=. ………………12分19.(Ⅰ)见解析;(Ⅱ)二面角A SC B -- 【解析】(I)由于侧面SBC 为等边三角形,O 为BC 的中点,所以S O B C ⊥, 只需再取AC 的中点M ,连接SM ,则根据条件易证:,AC SOM SO AC ⊥∴⊥平面, 问题得证.(II )解决本小题的关键是找出二面角的平面角,具体做法是取SC 中点M ,连结AM OM ,,由(Ⅰ)知SO OC SA AC ==,,得OM SC AM SC ⊥⊥,.OMA ∠∴为二面角A SC B --的平面角.(Ⅰ)由题设AB AC SB SC ====SA ,连结OA ,ABC △为等腰直角三角形,所以OA OB OC ===,且AO BC ⊥,又SBC △为等腰三角形,SO BC ⊥,且2SO SA =,从而222OA SO SA +=. 所以SOA △为直角三角形,SO AO ⊥.又AO BO O =. 所以SO ⊥平面ABC .…………………6分(Ⅱ)解法一:取SC 中点M ,连结AM OM ,,由(Ⅰ)知SO OC SA AC ==,, 得OM SC AM SC ⊥⊥,.OMA ∠∴为二面角A SC B --的平面角. 由AO BC AO SO SO BC O ⊥⊥=,,得AO ⊥平面SBC .所以AO OM ⊥,又AM =,故sin AO AMO AM ∠===.所以二面角A SC B --的余弦值为3………………13分 解法二:以O 为坐标原点,射线OB OA ,分别为x 轴、y 轴的正半轴,建立如图的空间直角坐标系O xyz -.设(100)B ,,,则(100)(010)(001)C A S -,,,,,,,,.SC 的中点11022M ⎛⎫- ⎪⎝⎭,,,111101(101)2222MO MA SC ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭,,,,,,,,.00MO SC MA SC ⋅=⋅=∴,.故,MO SC MA SC MO MA ⊥⊥>,,<等于二面角A SC B --的平面角.……10分3cos 3MO MA MO MA MO MA⋅<>==⋅, 所以二面角A SC B --.………12分 20.(Ⅰ);22=e (Ⅱ)1163222=+y x . 【解析】(I)先求出直线l 的方程为0)23(=--+c cy bx ,然后根据因为直线与圆1)3(:222=-+y x c 相切,得到123322=++-=cb cc cd ,从而可得到a,c 的关系,进而求出e.(II) 在(I )的基础上,可把椭圆方程转化为22222x y c +=,这样根据条件建立关于c 的方程即可求出椭圆方程,因而设),(y x P 、圆2C 的圆心记为2C ,则22222222)((C PC C PC M C PC PM -=+⋅+=⋅2222(3)1(3)217()x y y c c y c =+--=-+++-≤≤,根据其最大值为49,可求出c 的值. (Ⅰ)由题意可知直线l 的方程为0)23(=--+c cy bx ,因为直线与圆1)3(:222=-+y x c 相切,所以123322=++-=c b cc cd ,即,222c a =从而;22=e …………………5分 (Ⅱ)设),(y x P 、圆2C 的圆心记为2C ,则122222=+cy c x (c ﹥0),又22222222)((C PC C PC M C PC PM -=+⋅+=⋅= )(172)3(1)3(2222c y c c y y x ≤≤-+++-=--+ . …………………8分当此时椭圆方程为解得时,,4,49217)(32==+=⋅≥c c c MAX 1163222=+y x ; 当但解得时,325,49217)3()(3022-==+++--=⋅<<c c c c MAX,3325>-=c 故舍去.综上所述,椭圆的方程为1163222=+y x . …………………12分 21.(Ⅰ) ()=(1)1,f x f ∴=极小值无极大值. (Ⅱ)当2a =时,()f x 在(0,)+∞上是减函数;当2a >时,()f x 在1(0,)1a -和(1,)+∞单调递减,在1(,1)1a -上单调递增; 当12a <<时,()f x 在(0,1)和1(,)1a +∞-单调递减,在1(1,)1a -上单调递增; (Ⅲ)1.15m ≥。