常数变易法在微分方程中的应用

合集下载

常数变易法在高中数学中的妙用

常数变易法在高中数学中的妙用

H = 1 ,求证:#43;H = 1消元代入化简证明,也
可采用常数变易法. —(% + 0 + z) 0; = % 0< + 0 0= + - 0C得
%(&」&) +0(&—&) +H 0P-0C) =0,
艮卩 % < + y'=; +z~CP =0.
若%=0,则yBP + + & =0,所以;,=,C三点共线,故
{ 二- - + 0 = 1, r = & 1
亠普,即{
时0等号,哙+
壬的最小值为3+2任
羊 或者这样变形—+寻=凹+2("严
--
3+2-b +
例J3 若 %>0,0>0,h>0,且 % + 0 + h = 1,求函数)=
(T-1)(十一1)(号一1 )的小值.
解 此题的 函数具有对称性,利用常数 法,用
!关键词】"数变易法
常数 法是微分方程中解线性微分方程的方法,就
是将齐次线性微分方程通解中的常数C变换为待定函数
+(%).不仅如此,它在中数学中也有着 的应用,用

一个常数,可以巧妙地解
.下
几种题
型加以阐述. 一、在解方程中的应用
例 1 解方程 /% +12% +40 + /% -12% +40 =20.
二、在不等式中的应用
例2
已知两正数-,b满足-+b
=
1,求— 1+2—的最 -
小值. 解 此题方法多,其中比较便捷的方法就是常数变易

常数变易法

常数变易法

常数变易法常数变易法是微积分的一种基本方法,它可以用来求解一类形如$y^{(n)}=f(x)$ 的高阶常微分方程。

常数变易法的核心思想是假设解为$y=y(x,c_1,c_2,\\cdots,c_n)$,其中 $c_1,c_2,\\cdots,c_n$ 是常数,然后将常数 $c_1,c_2,\\cdots,c_n$ 视为未知函数 $c_1(x),c_2(x),\\cdots,c_n(x)$ 的值,通过求解这些函数,得到实际的解。

下面以二阶常微分方程为例,介绍常数变易法的具体步骤:首先设二阶常微分方程为 $y''=f(x)$,假设解为 $y=y(x,c_1,c_2)$,其中$c_1,c_2$ 是常数。

将解代入方程,得到:$$\\begin{aligned}y''(x,c_1,c_2)&=f(x)\\\\\\frac{\\partial^2 y}{\\partial x^2}&=f(x)\\\\\\end{aligned}$$接下来将常数 $c_1,c_2$ 视为未知函数 $c_1(x),c_2(x)$ 的值,因此有$y=y(x,c_1(x),c_2(x))$。

将 $y$ 对 $x$ 求一阶和二阶导数,得到:\\begin{aligned}y' &= \\frac{\\partial y}{\\partial x}+\\frac{\\partial y}{\\partial c_1}\\frac{\\partial c_1}{\\partial x}+\\frac{\\partial y}{\\partial c_2}\\frac{\\partial c_2}{\\partial x}\\\\y'' &= \\frac{\\partial^2 y}{\\partial x^2}+2\\frac{\\partial^2y}{\\partial x \\partial c_1} \\frac{\\partial c_1}{\\partialx}+2\\frac{\\partial^2 y}{\\partial x \\partial c_2} \\frac{\\partialc_2}{\\partial x}+\\frac{\\partial^2 y}{\\partial c_1^2} (\\frac{\\partialc_1}{\\partial x})^2+\\frac{\\partial^2 y}{\\partial c_2^2} (\\frac{\\partial c_2}{\\partial x})^2+\\frac{\\partial^2 y}{\\partial c_1 \\partial c_2}\\frac{\\partial c_1}{\\partial x}\\frac{\\partial c_2}{\\partial x}\\\\ \\end{aligned}$$然后将上述导数代入原方程中,得到:$$\\begin{aligned}&\\frac{\\partial^2 y}{\\partial x^2}+2\\frac{\\partial^2 y}{\\partial x \\partial c_1} \\frac{\\partial c_1}{\\partial x}+2\\frac{\\partial^2 y}{\\partial x \\partial c_2} \\frac{\\partial c_2}{\\partial x}+\\frac{\\partial^2y}{\\partial c_1^2} (\\frac{\\partial c_1}{\\partial x})^2+\\frac{\\partial^2 y}{\\partial c_2^2} (\\frac{\\partial c_2}{\\partial x})^2+\\frac{\\partial^2 y}{\\partial c_1 \\partial c_2} \\frac{\\partial c_1}{\\partial x}\\frac{\\partial c_2}{\\partial x} = f(x)\\\\\\end{aligned}$$接下来,需要求解未知函数 $c_1(x),c_2(x)$,使得上述方程成立。

常数变易法在二阶常微分方程中的应用

常数变易法在二阶常微分方程中的应用

常数变易法在二阶常微分方程中的应用
在求解常微分方程的复杂问题时,经常会引入到与现有方法相比更容易解题的
变换方式----常数变易法。

本文就常数变易法在二阶常微分方程中的应用进行论述,供相关爱好者参考。

常数变易法即将原题中的变量同时变化形式改为变量与常数的乘积形式,然后
经过简便变化(取商)或拆解,获得解决方案。

二阶常微分方程式,也就是字面意思一个变量值随时间变化而变化的函数,它是表达不能简单运算的动态系统的表达式。

对于其解决方法,常数变易法可有效大大的减少解方程的时间,使得计算工作不再累苦变得轻松自如,有着成倍效率的提升。

该方法主要用于解给定某些常数求另一些常数或一组常数的不定积分,而各种解决方案则可用常数变易法求mean。

比如,给定了某个方程:
y''+4y'+4y = 5x
E(x):y''+4y'+4y=5x
设常数m^2,则有
y''+4y'+4(y+m^2)=5x
y+m^2介于左右两边,令其积分即可得到
y=-5/8x+m^2/2
可得m^2/2=-5x+y
m^2=-10x+2y
故,求的特解为
y=-5/8x- 5/4x+2y
显然,常数变易法在二阶常微分方程的解决中提供了科学的技术提示,能够有
效的完成工作,从而给出有效的解决方式。

总之,常数变易法作为在解常微分方程中的一种变易技术,被用于二阶常微分方程的解决中能够有不错的效果,极大地减少解题时间,更加便捷、深刻,从而成为解决复杂问题的有用工具。

常数变易法求解常微分方程

常数变易法求解常微分方程

常数变易法求解常微分方程常数变易法是采用求解常微分方程的一种重要方法,被普遍运用于应用数学中。

本文主要就常数变易法求解常微分方程,提出一些观点。

首先,需要明确一点,常数变易法只能用来求解线性微分方程。

线性微分方程即次微分方程为链式型,即满足一阶微分,二阶微分以及高于二阶之外,其中均不存在非线性项。

这一类方程一般被缩写为:$dy/dx+Py=Q$其中$P$ 和$Q$皆为常数,当$P≠0$时,本方程就是一个典型的线性微分方程。

接着,介绍常数变易法的基本思想。

基本思想是把微分方程$$dy/dx+Py=Q$$写成同一个微分方程的齐次方程形式。

齐次方程的解的特点是:将原方程的系数$P$和$Q$分别称为各自齐次方程的非齐次常数,在立解方程时,这两个非齐次常数它们可以看作是被变形了的“常量” 因此,解微分方程就可以把原来问题转换为求解一元一次齐次方程的问题,通过相应的简单数学方法求解,由此,把原来的复杂的微分方程变成了解决较为容易的一元一次齐次方程,因此,求解常微分方程就可以用常数变易法来解决。

最后,围绕常数变易法求解常微分方程,介绍具体求解步骤。

常数变易法求解常微分方程的步骤如下:(1)将原方程化为齐次方程。

(2)把非齐次常数纳入一般解,把两个非齐次常数作为一对参数。

(3)分别代入上述两个参数及所知条件来求得特解。

(4)求全解的思路,即将特解与一般解相加,把它们看成一个解而言。

(5)根据情况简化表达式或者进一步扩大解空间。

本文详细介绍了关于常数变易法求解常微分方程的思想和方法,也介绍了求解步骤。

它能帮助我们准确快速地求解常微分方程,从而达到更有效的结果。

随着计算机技术的进步,微分方程求解及计算的方法也会不断发展,提供更多的求解方法,从而解决困扰我们的难题。

微分方程中常数变易法的应用

微分方程中常数变易法的应用

微分方程中常数变易法的应用杨秀香【摘要】利用微分方程中常数变易法、线性代数以及微分方程理论,研究伯努利方程、二阶常系数非齐次线性微分方程、二阶变系数齐次线性微分方程、二阶变系数非齐次线性微分方程、n阶非齐次线性微分方程、非齐次线性微分方程组的解法,得到各类方程的通解与特解。

%Using the variation of constants in differential equation, the knowledge of linear algebra and theory of differentiale⁃quation to research Bernoulli equations, two order nonhomogeneous linear differential equations with constant coefficients, two order homogeneous linear differential equation with variable coefficient, two order variable coefficient linear differential equation, n order nonhomogeneous linear differential equations, and non-homogeneous linear differential equations, the general solution and special solution of equations are got.【期刊名称】《渭南师范学院学报》【年(卷),期】2016(031)008【总页数】6页(P9-13,30)【关键词】常数变易法;微分方程;求解;应用【作者】杨秀香【作者单位】渭南师范学院数理学院,陕西渭南714099【正文语种】中文【中图分类】O175.1常数变易法是解微分方程的一种很特殊的方法,常微分方程教材中是在求解一阶非齐次线性微分方程时提出的,这种方法指的是将一阶线性齐次微分方程通解中的常数变易成待定的函数,代入原方程从而确定方程的解。

微分方程的解法与常数变易法

微分方程的解法与常数变易法

微分方程的解法与常数变易法微分方程是数学中常见的一类方程,描述了函数与其导数之间的关系。

解微分方程是研究微分方程的重要问题之一。

常数变易法是解非齐次线性微分方程的一种常用方法。

本文将介绍微分方程的解法以及常数变易法的基本原理和应用。

一、微分方程的解法微分方程按照阶数可以分为一阶微分方程和高阶微分方程。

一阶微分方程是指方程中最高阶的导数为一阶导数的微分方程,高阶微分方程则是指方程中最高阶的导数大于一阶的微分方程。

解微分方程的一般步骤如下:1. 将微分方程转化为标准形式,确保方程的最高阶导数系数为1。

2. 求解齐次微分方程。

齐次微分方程是指方程中非零项的系数为0的微分方程。

通过假设解的形式为指数函数的乘积,并代入微分方程,得到解的通解表达式。

3. 求解非齐次微分方程。

非齐次微分方程是指方程中至少存在一个非零项的系数不为0的微分方程。

通过常数变易法,可求得非齐次微分方程的一个特解,并利用齐次微分方程的通解和特解得到非齐次微分方程的通解。

4. 利用初始条件确定常数。

通过已知的初值条件,将常数确定为具体的数值,得到微分方程的具体解。

二、常数变易法常数变易法是解非齐次线性微分方程的一种常用方法,基本原理是假设非齐次微分方程的解和齐次微分方程的解具有相同的形式,通过适当选择常数的变化方式,使得原非齐次微分方程的解满足初值条件。

常数变易法的一般步骤如下:1. 求解齐次微分方程。

齐次微分方程的解可以通过假设解的形式为指数函数的乘积,并代入齐次微分方程得到。

2. 选择常数的变化方式。

将非齐次微分方程的解中的常数看作变量,并逐步调整常数的值,使得解满足非齐次微分方程。

3. 确定常数的值。

通过已知的初值条件,将常数确定为具体的数值,得到非齐次微分方程的解。

常数变易法可以应用于一阶和高阶的非齐次线性微分方程,是解非齐次微分方程的重要方法。

三、常数变易法的应用举例以下是一个应用常数变易法解非齐次线性微分方程的例子:例:求解微分方程 y'' - y' - 2y = e^x步骤1:求解齐次微分方程 y'' - y' - 2y = 0假设解的形式为 y = e^rx,代入齐次微分方程,得到特征方程 r^2 - r - 2 = 0,解得 r1 = 2,r2 = -1。

微分方程常数变易法

微分方程常数变易法

微分方程常数变易法是指在求解微分方程时,通过将一些常数变量视为未知函数来解决常数条件不确定的问题。

这种方法主要用于解决常见的微分方程,如欧拉方程、拉普拉斯方程、伯努利方程等。

下面是一个例子,设$y(x)$ 是方程$\frac{dy}{dx} + p(x)y = g(x)$ 的解,其中$p(x)$ 和$g(x)$ 是已知的函数。

假设有一个常数$c$,使得$y(x_0) = c$ 对所有$x_0$ 都成立。

设$y_1(x)$ 为方程$\frac{dy}{dx} + p(x)y = g(x)$ 的另一解,则$y_1(x)$ 与$y(x)$ 的差值$y(x) - y_1(x)$ 是方程$\frac{dy}{dx} + p(x)y = 0$ 的解。

因此,可以设$y(x) - y_1(x) = k$,其中$k$ 是一个常数,令$k = c$,得到$y_1(x_0) = y(x_0) - k = y(x_0) - c$。

由此,可以得到方程$\frac{dy}{dx} + p(x)y = g(x)$ 的通解为$y(x) = y_1(x) + c$,其中$y_1(x)$ 是方程$\frac{dy}{dx} + p(x)y = g(x)$ 的任意一解,$c$ 是任意常数。

综上,微分方程常数变易法的过程如下:解决方程$\frac{dy}{dx} + p(x)y = 0$,求出它的通解设$y_1(x)$ 是方程$\frac{dy}{dx} + p(x)y = g(x)$ 的任意一解设$y(x) - y_1(x) = k$,其中$k$ 是一个常数令$k = c$,得到$y_1(x_0) = y(x_0) - c$,其中$x_0$ 为任意常数由此,可以得到方程$\frac{dy}{dx} + p(x)y = g(x)$ 的通解为$y(x) = y_1(x) + c$注意,在使用常数变易法求解微分方程时,需要满足以下条件:常数变易法适用于有常数条件的微分方程在使用常数变易法时,需要先求出方程$\frac{dy}{dx} + p(x)y = 0$ 的通解例如,解决方程$\frac{dy}{dx} + y = x^2$,且满足条件$y(0) = 0$ 的方法如下:首先,求出方程$\frac{dy}{dx} + y = 0$ 的通解,可以得到$y = c_1e^{-x}$设$y_1(x)$ 是方程$\frac{dy}{dx} + y = x^2$ 的任意一解,则$y_1(x) = x^2 + c_1e^{-x}$ 设$y(x) - y_1(x) = k$,其中$k$ 是一个常数令$k = 0$,得到$y_1(0) = y(0)$,即$y_1(0) = 0$由此,可以得到方程$\frac{dy}{dx} + y = x^2$,且满足条件$y(0) = 0$ 的通解为$y(x) = x^2$。

常数变易法的实质以及为什么可以用常数变易法解微分方程

常数变易法的实质以及为什么可以用常数变易法解微分方程

常数变易法的实质以及为什么可以用常数变易法解微分方程欲得到非齐次线性微分方程的通解,我们首先求出对应的齐次方程的通解,然后用待定系数法或常数变易法求出非齐次方程本身的一个特解,把它们相加,就是非齐次方程的通解。

同济版的实质就是变量代换u,然后变成可分离变量。

求出u,然后回代。

解出方程。

解微分方程的实质就是变量替换,然后化解为可分离变量。

然后回代。

待定系数法考虑以下的微分方程:对应的齐次方程是:它的通解是:由于非齐次的部分是(),我们猜测特解的形式是:把这个函数以及它的导数代入微分方程中,我们可以解出A:因此,原微分方程的解是:()常数变易法假设有以下的微分方程:我们首先求出对应的齐次方程的通解,其中C1、C2是常数,y1、y2是x的函数。

然后我们用常数变易法求出非齐次方程的一个特解,方法是把齐次方程的通解中的常数C1、C2换成x的未知函数u1、u2,也就是:y = u1y1 + u2y2。

(1)两边求导数,可得:y' = u1' y1 + u2' y2 + u1y1' + u2y2'。

我们把函数u1、u2加上一条限制:u1' y1 + u2' y2 = 0。

(4)于是:y ' = u1y1' + u2y2'。

(2)两边再求导数,可得:y" = u1' y1' + u2' y2' + u1y1" + u2y2"。

(3)把(1)、(2)、(3)代入原微分方程中,可得:u1' y1' + u2' y2' + u1y1" + u2y2" + pu1y1' + pu2y2' + qu1y1 + qu2y2 = f(x)。

整理,得:u1' y1' + u2' y2' + (u1y1" + pu1y1' + qu1y1) + (u2y2" + pu2y2' + qu2y2) = f(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常数变易法在微分方程中的应用
常数变易法是一种求解微分方程的方法,其基本思想是通过将常数变为变量,将微分方程转化为线性微分方程,从而简化求解过程。

在应用常数变易法时,首先需要将微分方程的解表示为某个未知函数的线性组合,然后将这个未知函数代入微分方程中,通过求解线性微分方程得到原微分方程的解。

具体来说,对于一阶线性微分方程 dy/dx + P(x)y = Q(x),我们可以将解表示为 y = e^[-∫P(x)dx]{∫Q(x)e^[∫P(x)dx]dx + C},其中 C 是常数。

然后
我们将这个解代入原微分方程中,得到一个关于 C 的线性微分方程,通过
求解这个线性微分方程可以得到原微分方程的解。

常数变易法在求解微分方程时具有很多优点,例如可以将非线性微分方程转化为线性微分方程,可以将高阶微分方程转化为低阶微分方程,可以求解某些无法直接求解的微分方程等。

因此,常数变易法在数学、物理、工程等领域中得到了广泛的应用。

相关文档
最新文档