链表结构体定义
汇编语言 链表结构

汇编语言链表结构全文共四篇示例,供读者参考第一篇示例:汇编语言是一种底层编程语言,用于直接操作计算机硬件。
在汇编语言中,链表结构是一种常见的数据结构,用于存储和组织数据。
链表可以灵活地添加或删除元素,并且可以在任意位置访问元素,使其在编程中具有重要作用。
本文将介绍汇编语言中链表结构的实现及其运用。
在汇编语言中,链表通常由节点构成。
每个节点包含两部分:数据部分和指针部分。
数据部分用于存储实际数据,而指针部分用于指向下一个节点。
通过不断跟随指针,可以在链表中遍历所有节点。
链表的头节点通常用一个特殊的指针来表示,称为头指针。
在汇编语言中,创建链表时需要定义节点的结构。
以下是一个简单的示例:```assemblynode STRUCTdata DWORD ?next DWORD ?node ENDS```上面的代码定义了一个节点结构体,包含一个数据部分和一个指向下一个节点的指针。
在实际编程中,可以根据需要定义更复杂的节点结构。
创建链表时,首先需要初始化头指针为空。
然后逐个添加节点到链表中。
以下是一个示例代码:```assembly; 初始化链表mov DWORD PTR head, 0; 添加第一个节点push 1call addNodeaddNode PROC; 申请内存空间用于新节点pushadmov edx, 8call mallocmov esi, eaxpopad; 将数据部分赋值mov DWORD PTR [esi], eax; 将指针部分赋值mov DWORD PTR [esi + 4], DWORD PTR head; 将新节点设置为头节点mov DWORD PTR head, esiretaddNode ENDP```上面的示例代码演示了如何创建一个简单的链表并向其中添加节点。
在addNode过程中,首先申请内存空间用于新节点,然后将数据部分和指针部分填充,并将新节点设置为头节点。
通过调用addNode 过程,可以逐个向链表中添加节点。
c链表库函数

c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。
在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。
为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。
本文将介绍一些常见的C链表库函数及其用法。
一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。
数据域用于存放数据,指针域用于指向下一个节点。
链表的最后一个节点指针域为空(NULL),表示链表的末尾。
常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。
下面我们来看看C语言中常用的链表库函数。
二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。
```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。
常见的插入方式包括头部插入和尾部插入。
```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。
在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。
C++课件(南航皮德常)6

【6.1简略版】在main函数中输入一个学生的学号、姓名、性别、出生日期和3门课程的成绩,在另一函数print中输出这个学生的信息,采用结构体变函数参数。
void print( student );void main ( ){student John;// 定义一个结构体变量cin>> John.ID>> >> John.gender;cin>> John.birthday.year>> John.score[2];print(John);// 调用函数完成输出}void print( student s)// 输出参数s成员的值{cout<<"学号: " << setw(5) << s.ID<< endl;cout<< setw(5) << s.birthday.month<< endl;}使用结构体变量作函数参数效率较低,why? 可采用指向结构体变量的指针或引用作参数,例如:student *ps;student John;并且如下赋值:ps= &John;则:<=> ps->name <=> (*ps).name思考:如何将程序【例6.1】中的函数print改为传指针。
【例6.2】假设一个班级有5个学生,从键盘输入5个学生的学号、姓名、性别、出生日期和三门功课的成绩,编程输出个人平均分小于全班总均分的那些学生的信息。
struct date{int year, month, day;};struct student{int ID;char name[20];char gender;date birthday;double score[3];};void input( student*, int);double average( student *, int n); //求总的平均分void print( student*,int);const int studentNumber=5;int main ( ){student stud[5];input(stud,studentNumber);print(stud,studentNumber);return 0;}void input( student *ps, int n)// 输入函数{cout<<"请输入如下学生信息" << endl;for(int i=0;i<n; i++){cin>> ps->ID;cin>> ps->name;cin>> ps->gender;cin>> ps->birthday.year>> ps->birthday.month>> ps->birthday.day;cin>> ps->score[0] >> ps->score[1]>> ps->score[2];ps++;}}void print( student *ps, int n){ student *pStart;double averAll, averPerson;averAll=average(ps,n);cout<< "总均分: "<< averAll<<endl;for(pStart=ps;pStart<ps+n;pStart++){averPerson= (pStart->score[0]+pStart->score[1]+pStart->score[2])/3 ;if( averPerson< averAll){cout<<"\n个人均分:"<< averPerson<<endl;cout<<"学号: " << setw(5) << pStart->ID;cout<<“出生年: " << pStart->birthday.year;cout<<" 成绩: " << setw(4) << pStart->score[0];}}}double average( student stud[], int n) // 求总均分{double aver=0;for(int i=0; i<n; i++)for(int j=0;j<3;j++)aver += stud[i].score[j];aver /= n*3;return aver;}NODE *create( ) // 创建无序链表{ NODE *p1, *p2, *head;int a;cout<< "Creating a list...\n";p2 = head = initlist( );cout<< "Please input a number(if(-1) stop): ";cin>> a; // 输入第1个数据while( a != -1 ) // 循环输入数据,建立链表{ p1 = (NODE *) malloc(sizeof(NODE));p1->data = a;p2->next = p1;p2 = p1;cout<< "Please input a number(if(-1) stop): ";cin>> a; // 输入下一个数据}p2->next=NULL;return(head); // 返回创建链表的首指针}// 输出链表各结点值,也称为对链表的遍历void print( NODE *head ){NODE *p;让p指向第一个数据结点p=head->next; //if( p!=NULL ){cout<< "Output list: ";while( p!=NULL ){cout<< setw(5) << p->data;p=p->next;}cout<< "\n";}}// 查询结点数据为x的结点,返回指向该结点指针NODE * search( NODE *head, int x ){ NODE *p;p=head->next;while( p!=NULL ){if(p->data == x)return p; // 返回该结点指针p = p->next;}return NULL; // 找不到返回空指针}// 删除链表中值为num的结点,返回值: 链表的首指针NODE * delete_one_node( NODE *head, int num ) {NODE *p, *temp;p=head;while(p->next !=NULL && p->next->data != num) p=p->next;temp=p->next;if(p->next!=NULL){p->next=temp->next;free(temp);cout<< "Delete successfully";}else cout<< "Not found!";return head;}// 释放链表void free_list( NODE *head ) {NODE *p;while(head){p=head;head=head->next;free(p);}}// 插入结点,将s指向的结点插入链表,结果链表保持有序NODE * insert(NODE*head, NODE *s){NODE *p;p=head;while(p->next!=NULL && p->next->data < s->data) p=p->next;s->next=p->next;p->next=s;return head;}// 创建有序链表。
数据结构程序填空题

数据结构程序填空题一、题目描述:编写一个程序,实现一个简单的链表数据结构,并完成以下操作:1. 初始化链表2. 在链表末尾插入节点3. 在链表指定位置插入节点4. 删除链表指定位置的节点5. 获取链表长度6. 打印链表中的所有节点二、解题思路:1. 定义链表节点结构体Node,包含一个数据域和一个指向下一个节点的指针域。
2. 定义链表结构体LinkedList,包含一个头节点指针和一个记录链表长度的变量。
3. 初始化链表时,将头节点指针置为空,链表长度置为0。
4. 在链表末尾插入节点时,先判断链表是否为空,若为空,则将新节点作为头节点;若不为空,则找到链表最后一个节点,将其指针指向新节点。
5. 在链表指定位置插入节点时,先判断插入位置的合法性,若位置超出链表长度范围,则插入失败;否则,找到插入位置的前一个节点,将新节点插入到其后面。
6. 删除链表指定位置的节点时,先判断删除位置的合法性,若位置超出链表长度范围,则删除失败;否则,找到删除位置的前一个节点,将其指针指向要删除节点的下一个节点,并释放要删除节点的内存空间。
7. 获取链表长度时,直接返回链表结构体中记录的长度变量。
8. 打印链表中的所有节点时,从头节点开始遍历链表,依次输出每个节点的数据域。
三、代码实现:```c#include <stdio.h>#include <stdlib.h>// 定义链表节点结构体typedef struct Node {int data; // 数据域struct Node* next; // 指针域} Node;// 定义链表结构体typedef struct LinkedList {Node* head; // 头节点指针int length; // 链表长度} LinkedList;// 初始化链表void initLinkedList(LinkedList* list) {list->head = NULL; // 头节点指针置为空list->length = 0; // 链表长度置为0}// 在链表末尾插入节点void insertAtEnd(LinkedList* list, int value) {Node* newNode = (Node*)malloc(sizeof(Node)); // 创建新节点newNode->data = value; // 设置新节点的数据域newNode->next = NULL; // 设置新节点的指针域为NULL if (list->head == NULL) {list->head = newNode; // 若链表为空,将新节点作为头节点} else {Node* current = list->head;while (current->next != NULL) {current = current->next; // 找到链表最后一个节点}current->next = newNode; // 将最后一个节点的指针指向新节点}list->length++; // 链表长度加1}// 在链表指定位置插入节点void insertAtPosition(LinkedList* list, int value, int position) {if (position < 0 || position > list->length) {printf("插入位置不合法!\n");return;}Node* newNode = (Node*)malloc(sizeof(Node)); // 创建新节点newNode->data = value; // 设置新节点的数据域if (position == 0) {newNode->next = list->head; // 若插入位置为0,将新节点作为头节点 list->head = newNode;} else {Node* current = list->head;for (int i = 0; i < position - 1; i++) {current = current->next; // 找到插入位置的前一个节点}newNode->next = current->next; // 将新节点的指针指向插入位置的节点 current->next = newNode; // 将插入位置的前一个节点的指针指向新节点}list->length++; // 链表长度加1}// 删除链表指定位置的节点void deleteAtPosition(LinkedList* list, int position) {if (position < 0 || position >= list->length) {printf("删除位置不合法!\n");return;}Node* temp;if (position == 0) {temp = list->head; // 记录要删除的节点list->head = list->head->next; // 将头节点指向下一个节点} else {Node* current = list->head;for (int i = 0; i < position - 1; i++) {current = current->next; // 找到删除位置的前一个节点}temp = current->next; // 记录要删除的节点current->next = current->next->next; // 将删除位置的前一个节点的指针指向删除位置的后一个节点}free(temp); // 释放要删除节点的内存空间list->length--; // 链表长度减1}// 获取链表长度int getLength(LinkedList* list) {return list->length;}// 打印链表中的所有节点void printLinkedList(LinkedList* list) { Node* current = list->head;while (current != NULL) {printf("%d ", current->data);current = current->next; // 遍历链表 }printf("\n");}int main() {LinkedList list;initLinkedList(&list);insertAtEnd(&list, 1);insertAtEnd(&list, 2);insertAtEnd(&list, 3);printf("链表中的节点:");printLinkedList(&list); // 链表中的节点:1 2 3insertAtPosition(&list, 4, 1);printf("链表中的节点:");printLinkedList(&list); // 链表中的节点:1 4 2 3deleteAtPosition(&list, 2);printf("链表中的节点:");printLinkedList(&list); // 链表中的节点:1 4 3int length = getLength(&list);printf("链表的长度:%d\n", length); // 链表的长度:3 return 0;}```四、测试结果:运行以上代码,输出结果为:```链表中的节点:1 2 3链表中的节点:1 4 2 3链表中的节点:1 4 3链表的长度:3```五、总结:通过以上程序的实现,我们成功地完成了一个简单的链表数据结构,并实现了初始化链表、在链表末尾插入节点、在链表指定位置插入节点、删除链表指定位置的节点、获取链表长度以及打印链表中的所有节点等操作。
408数据结构算法题的结构体定义

408数据结构算法题的结构体定义408数据结构算法题的结构体定义【导言】在考研中,数据结构与算法是一个重要的科目。
其中,408考试是中国计算机科学与技术学科专业硕士研究生全国联考的一部分,因其考察的题型广泛而知名。
在408数据结构算法题中,掌握合适的结构体定义是解题的基础。
本文将综合讨论和总结408算法题中常见的结构体定义,以助于考生全面、深入地理解问题,为未来的408算法题做好准备。
【1. 结构体的定义与应用】结构体是C语言中一种自定义的数据类型,将不同类型的数据成员组合在一起,形成一个新的数据类型。
在数据结构与算法题中,结构体定义常用于构建复杂的数据结构,如链表、树等。
在408算法题中,结构体的定义要灵活、具体,并能满足问题的需求。
【2. 链表的结构体定义】链表是一种基本的数据结构,由节点组成,每个节点包含一个数据元素和指向下一个节点的指针。
在408算法题中,常见的链表结构体定义如下:```ctypedef struct ListNode {int val; // 数据元素struct ListNode* next; // 指向下一个节点的指针} ListNode;```上述代码中,定义了一个名为ListNode的结构体,包含一个整型数据元素val和一个指向下一个节点的指针next。
该结构体可以用于构建单链表,每个节点存储了一个整数值和指向下一个节点的指针。
【3. 树的结构体定义】树是一种重要的数据结构,由节点组成,每个节点可以有零个或多个子节点。
在408算法题中,常见的树结构体定义如下:```ctypedef struct TreeNode {int val; // 数据元素struct TreeNode* left; // 左子节点struct TreeNode* right; // 右子节点} TreeNode;```上述代码中,定义了一个名为TreeNode的结构体,包含一个整型数据元素val和左右子节点的指针left和right。
华三笔试题

H3C华三技术有限公司[笔试题]2013-09-25注:笔试题根据面试者回忆记录,仅供参考;以下题目都是在小端结尾的32位x86 CPU上面运行的代码:一.编程题1. 请实现一个函数,对于给定的整型参数N,该函数能够打印出自然数中的头N 个质数(15分)。
#include <stdio.h>#define N 10000void find_zs(int num){int i;int j;printf("%d以前的质数是:",num);for (i=2;i<num;i++){for (j=2;j<i;j++){if (0 == i%j){break;}if (i-1 == j){printf("%d ",i);}}}}int main(){find_zs(N);return 0;}2.链表节点结构体定义struct node{int data;struct node *prev;struct node *next;}假设已经构建完毕的一个双向链表有节点A-B-C-D-E-F,从中截断,以C为截断点,传入节点C的指针,截断后重新连接的链表变为C-D-E-F-A-B的形式,写出实现这一功能的C语言代码,返回新链表的头节点指针。
(10分)#include <stdio.h>#include <stdlib.h>struct node{int data;struct node *prev;struct node *next;};int main(){//形成A-B-C-D-E-F的双向链表用1-2-3-4-5-6来表示int i;node * head = (node *)malloc(sizeof(node));head->data = 1;head->next = NULL;head->prev = NULL;node * p = head;node * q = head;for (i=0;i<5;i++){q = (node *)malloc(sizeof(node));q->data = i + 2;p->next = q;q->prev = p;q->next = NULL;p = q;}//打印链表中的data,确认双向链表生成p = head;q = head;for (i=0;i<6;i++){printf("%d-",p->data);q = p->next;p = q;}printf("\n");//找到C(3)节点,并把指针放到tmp_head,同时把p,q指向链表尾p = head;q = head;node * tmp_head = head;while(NULL != p->next){if (3 == p->data){tmp_head = p;}q = p->next;p = q;}//把A-B节点挪到F节点后面p->next = head;head->prev = p;q = head->next;q->next = NULL;//打印当前链表,验证结果是否正确p = tmp_head;q = tmp_head;for(i=0;i<6;i++){printf("%d-",p->data);q = p->next;p = q;}printf("\n");return 0;}二.问答题(每题4分)1.请写出float x 与“零值”比较的if 语句:#define EPSINON 1e-6if(x<= EPSINON && x>=- EPSINON)2. 用预处理指令#define声明一个常数,用来表示一年有多少秒(忽略闰年问题) #define N (365*24*3600)ul3. void GetMemory(char *p){p = (char *)malloc(100);}void Test(void){char *str = NULL;GetMemory(str);strcpy(str, "hello world");printf(str);}请问运行Test函数会有什么样的结果?程序崩溃这其实是一个参数传递的问题.修改变量值需要传递该变量类型的一级指针;修改一级指针指需要传递对应类型的二级指针./view/948185300b4c2e3f572763a1.html 4. char *GetMemory(void){char p[] = "hello world";return p;}void Test(void){char *str = NULL;str = GetMemory();printf(str);}请问运行Test函数会有什么样的结果程序执行后结果未知,可能是hell。
数据结构c语言版创建单链表的代码

数据结构c语言版创建单链表的代码单链表作为常用的线性结构之一,常常用于解决以链式方式存储数据的问题。
创建单链表需要掌握一些基础的数据结构知识以及对C语言的熟练运用。
接下来,本文将分步骤地阐述数据结构C语言版创建单链表的代码。
第一步,定义单链表结构体并定义节点类型。
在C语言中,我们可以通过结构体的方式定义单链表,其中结构体中包含两个成员变量,分别为存储数据的data和指向下一个节点的指针next。
对于节点类型,我们可以使用typedef对节点类型进行定义,例如:```struct ListNode {int data;struct ListNode *next;};typedef struct ListNode ListNode;```在以上代码中,我们首先定义了一个结构体ListNode作为单链表的元素类型,其中包含存储数据的data和指向下一个元素的指针next。
接着我们使用typedef将结构体ListNode定义为仿函数ListNode,从而使其更加方便使用。
第二步,初始化单链表。
在创建单链表之前,我们需要先将单链表的头指针初始化为NULL,表示当前链表为空。
具体代码如下:```ListNode *createLinkedList() {ListNode *head = NULL;return head;}```以上代码中,函数createLinkedList用于创建并初始化单链表,其中head表示单链表头指针,我们将其初始化为NULL。
第三步,向单链表中添加元素。
在单链表中添加元素需要借助于指针的指向关系。
具体来说,我们需要先创建新的节点,将其数据添加到节点中,然后将新节点的next指针指向之前的头节点,最后将头指针指向新节点。
具体过程如下:```ListNode *addListNode(ListNode **head, int val) {ListNode *newNode = (ListNode *)malloc(sizeof(ListNode)); newNode->data = val;newNode->next = *head;*head = newNode;return *head;}```在以上代码中,函数addListNode接收一个指向头指针的指针head,以及需要添加的元素值val。
c语言单链表尾插法

C语言单链表尾插法1. 简介单链表是一种常用的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
单链表尾插法是一种在链表尾部插入新节点的方法,通过将新节点插入到链表尾部,可以方便地实现链表的动态扩展和插入操作。
本文将详细介绍C语言中单链表尾插法的实现方法,包括链表结构的定义、节点的插入操作、遍历和释放链表等。
2. 链表结构定义在C语言中,我们可以通过结构体来定义链表的节点。
每个节点包含两个部分:数据域和指针域。
typedef struct Node {int data; // 数据域struct Node* next; // 指针域,指向下一个节点} Node;在上述代码中,我们定义了一个名为Node的结构体,其中data表示节点的数据,next表示指向下一个节点的指针。
通过typedef关键字,我们将struct Node重命名为Node,方便后续使用。
3. 节点的插入操作3.1 创建新节点在进行节点的插入操作之前,我们需要先创建一个新的节点。
可以通过动态内存分配函数malloc来分配内存,并使用free函数释放内存。
Node* createNode(int data) {Node* newNode = (Node*)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败\n");exit(1);}newNode->data = data;newNode->next = NULL;return newNode;}上述代码中,我们定义了一个名为createNode的函数,该函数接受一个整数参数data,用于初始化新节点的数据域。
首先使用malloc函数分配内存,并将返回的指针强制转换为Node*类型。
然后,我们检查内存分配是否成功,如果失败,则打印错误信息并调用exit函数退出程序。
接着,我们将新节点的数据域设置为传入的data值,指针域设置为NULL,最后返回新节点的指针。