高考数学知识点总结之空间向量与立体几何
空间向量与立体几何知识总结(高考必备!)

y k iA(x,y,z)O jxz 空间向量与立体几何一、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k(单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律(1)若123(,,)a a a a = ,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(3)//a b b a λ⇔= 112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩三、空间向量直角坐标的数量积1、设b a ,是空间两个非零向量,我们把数量><b a b a ,cos ||||叫作向量b a ,的数量积,记作b a ⋅,即b a ⋅=><b a b a ,cos |||| 规定:零向量与任一向量的数量积为0。
高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP +=<=>)1(=++++=z y x OC z OB y OA x OP其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
b ;BA OA OB a b =-=-;)OP R λ= 运算律:⑴加法交换律:a b b a +=+3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中共面向量定理:如果两个向量,b 不共线,p 与向量,a ,x p xa yb =+。
四点共面:若A 、B 、C 、P 四点共面 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数,,x y z,使OP xOA yOB zOC=++。
6. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:,)y z,使中的坐,用{,,}i j k表示。
空间中任一向量(3)空间向量的直①若12(,,a a a=3),112233(,,)a b a b a b a b-=---,123(,,)()a a a a Rλλλλλ=∈,112233a b a b a b a b⋅=++,112233//,,()a b a b a b a b Rλλλλ⇔===∈,1122330a b a b a b a b ⊥⇔++=。
空间向量和立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x z y x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
高中数学必修2--空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r运算律:⑴加法交换律:a b b a ϖϖϖρ+=+⑵加法结合律:)()(c b a c b a ϖϖϖϖρϖ++=++⑶数乘分配律:b a b a ϖϖϖϖλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρϖ//。
(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x y x 其中 (4)与a 共线的单位向量为a±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b r r 不共线,p r与向量,a b r r 共面的条件是存在实数,x y 使p xa yb =+r r r。
(3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c r r r不共面,那么对空间任一向量p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r。
高三空间向量与立体几何知识点归纳总结

高三空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ϖϖϖρ+=+ ⑵加法结合律:)()(c b a c b a ϖϖϖϖρϖ++=++ ⑶数乘分配律:b a b a ϖϖϖϖλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作ba ρϖ//。
(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。
(3)三点共线:A 、B 、C三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中(4)与共线的单位向量为a ±4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数,x y 使p xa yb =+r r r 。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x z y x OP 其中5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考数学知识点总结之空间向量与立
体几何
一、考点概要:
1、空间向量及其运算
(1)空间向量的基本知识:
①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。
②空间向量基本定理:
ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ空间四点共面:设O、A、B、C是不共面的四点,则对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量(平行向量):
ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;
ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数,使。
④共面向量:
ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:如果直线OA平行于平面或在内,则说向量平行于平面,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:如果两个向量、不共线,则向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:已知两个非零向量、,在空间任取一点O,作,(两个向量的起点一定要相同),则叫做向量与的夹角,记作,且。
⑥两个向量的数量积:
ⅰ定义:已知空间两个非零向量、,则叫做向量、的
数量积,记作,即:。
ⅱ规定:零向量与任一向量的数量积为0。
ⅲ注意:两个向量的数量积也叫向量、的点积(或内积),它的结果是一个实数,它等于两向量的模与其夹角的余弦值。
ⅳ数量积的几何意义:叫做向量在方向上的投影(其中为向量和的夹角)。
即:数量积等于向量的模与向量在方向上的投影的乘积。
ⅴ基本性质:
ⅵ运算律:
(2)空间向量的线性运算:
①定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下:
②加法:
③减法:
④数乘向量:
⑤运算律:
ⅰ加法交换律:
ⅱ加法结合律:
ⅲ数乘分配律:二、复习点睛:
1、立体几何初步是侧重于定性研究,而空间向量则侧重于
定量研究。
空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。
2、根据空间向量的基本定理,出现了用基向量解决立体几何问题的向量法,建立空间直角坐标系,形成了用空间坐标研究空间图形的坐标法,它们的解答通常遵循三步:一化向量问题,二进行向量运算,三回到图形问题。
其实质是数形结合思想与等价转化思想的运用。
3、实数的运算与向量的运算既有联系又有区别,向量的数量积满足交换律和分配律,但不满足结合律,因此在进行数量积相关运算的过程中不可以随意组合。
值得一提的是:完全平方公式和平方差公式仍然适用,数量积的运算在许多方面和多项式的运算如出一辙,尤其去括号就显得更为突出,下面两个公式较为常用,请务必记住并学会应用:。
2、空间向量的坐标表示:
(1)空间直角坐标系:
①空间直角坐标系O-xyz,在空间选定一点O和一个单位正交基底,以点O为原点,分别以的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,点O叫做原点,向量叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz平面,zOx平面。
②右手直角坐标系:右手握住z轴,当右手的四指从正向x 轴以90角度转向正向y轴时,大拇指的指向就是z轴的正向;
③构成元素:点(原点)、线(x、y、z轴)、面(xOy平面,yOz 平面,zOx平面);
④空间直角坐标系的画法:作空间直角坐标系O-xyz时,一般使xOy=135(或45),yOz=90,z轴垂直于y轴,z轴、y 轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的一半;
(2)空间向量的坐标表示:
①已知空间直角坐标系和向量,且设为坐标向量(如图),由空间向量基本定理知,存在唯一的有序实数组叫做向量在此直角坐标系中的坐标,记作。
②在空间直角坐标系O-xyz中,对于空间任一点A,对应一个向量,若,则有序数组(x,y,z)叫做点在此空间直角坐标系中的坐标,记为A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标,写点的坐标时,三个坐标间的顺序不能变。
③空间任一点的坐标的确定:过P分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A、B、C三点,
│x│=│OA│,│y│=│OB│,│z│=│OC│,当与的方向相同时,x0,当与的方向相反时,x0,同理可确y、z(如图)。
④规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应。
⑤一个向量在直角坐标系中的坐标等于表示这个向量的有
向线段的终点的坐标减去起点的坐标。
设,,
则:
(3)空间向量的直角坐标运算:
⑦空间两点间距离:;
⑧空间线段的中点M(x,y,z)的坐标:;
⑨球面方程:
二、复习点睛:
4、过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位。
这三条轴分别叫做z轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴。
通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。
5、空间直角坐标系中的特殊点:
(1)点(原点)的坐标:(0,0,0);
(2)线(坐标轴)上的点的坐标:x轴上的坐标为(x,0,0),y 轴上的坐标为(0,y,0),z轴上的坐标为(0,0,z);
(3)面(xOy平面、yOz平面、zOx平面)内的点的坐标:平面上的坐标为(x,y,0)、平面上的坐标为(0,y,z)、平面上的坐标为(x,0,z)
6、要使向量与z轴垂直,只要z=0即可。
事实上,要使向量与哪一个坐标轴垂直,只要向量的相应坐标为0即可。
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
7、空间直角坐标系中,方程x=0表示yOz平面、方程y=0表示zOx 平面、方程z=0表示xOy平面,方程x=a表示平行于平面yOz的平面、方程y=b表示平行于平面zOx的平面、方程z=c 表示平行于平面xOy平面;
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
8、只要将和代入,即可证明空间向量的运算法则与平面向量一样;
9、由空间向量基本定理可知,空间任一向量均可以由空间不共面的三个向量生成.任意不共面的三个向量都可以构成空间的一个基底,此定理是空间向量分解的基础。