弹塑性力学第一章
弹性与塑性力学基础 第1章 应力分析

1 1 2 2 1 2 1 2 2 4
2
(1-7)
应力圆:任一截面正应力与剪应力关系图 确定任一截面上 的 和。 坐标系: - 圆 半 应力圆 心: 轴上点 径:
1 ( 1 2 ) 2
1 ( 1 2 ) 2
单 向 拉 伸 时 轴 与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
为了便于研究,通常将任意方向
截面上的应力分解为两个分量:
σ-垂直于截面的分量(正应力) τ-平行于截面的分量(剪应力)
即:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
1 cos2 2 sin 2
(1-4)
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 沿a-a方向,力的平衡方程为:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
任一截面上 的 和 确定方法:
取任一截面上法向 和 的值。第一主应力截面法向夹角的二倍 2 ,由 轴逆时针旋转,应力圆上对应于2点的轴上的 和
弹性与塑性力学基础
哈工大(威海) 材料学院
第 一 章
应 力 分 析
弹性与塑性 力 学 基 础
第一章 应力分析
1.1.1 应力定义
哈工大(威海) 材料学院
[工学]第1章 岩土弹塑性力学
![[工学]第1章 岩土弹塑性力学](https://img.taocdn.com/s3/m/e84c57aedd88d0d233d46ae4.png)
(9)传统塑性理论中,材料的弹性系数与塑性变形无关,称为弹塑 性不耦合。而岩土塑性理论中,有时要考虑弹塑性耦合,即弹性 系数随塑性变形发展而减少
岩土塑性力学的基本内容
(1)岩土类材料的塑性本构关系理论与模型 (2)岩土类材料的极限分析理论 (3)它们在岩土工程设计和施工中的应用
弹性本构关系的基本特征
岩石力学性质
弹性 塑性 粘性
体力和面 力Fi,Ti
位移ui
平衡
本构关系
相容性 (几何)
应力ij
应变ij
固体力学问题解法中各种变量的相互关系
§1-2 应力状态
1 应力张量
•应力状态——一点所有截面应力矢量的集合。
x xy xz 11 12 13
ij yx y yz 21 22 23
塑性阶段:研究材料在塑性阶段内的受力与变形,这阶 段内的应力应变关系要受到加载状态、应力水平、应力 历史与应力路径的影响。 差别:在应力与应变之间的物理关系不同,即本构关系 不同。 本质差别:在于材料是否存在不可逆的塑性变形
弹性阶段:应力与应变之间的关系是一一对应的,这种应力和 应变之间能建上一一对应关系的称全量关系
第一章 岩土弹塑性力学
弹塑性力学第01章

学习目的
弹性力学的研究方法决定了它是一门基础理论课程,而 且理论直接用于分析工程问题具有很大的困难。原因主要是 它的基本方程-偏微分方程边值问题数学上求解的困难。由 于经典的解析方法很难用于工程构件分析,因此探讨近似解 法是弹性力学发展中的特色。近似求解方法,如差分法和变 分法等,特别是随着计算机的广泛应用而发展的有限元方法, 为弹性力学的发展和解决工程实际问题开辟了广阔的前景。 弹性力学课程的主要学习目的是使学生掌握分析弹性体 应力和变形的基本方法,为今后进一步的研究实际工程构件 和结构的强度、刚度、可靠性、断裂和疲劳等固体力学问题 建立必要的理论基础。
钱学森,著名科学家。我国 近代力学事业的奠基人之一。 在空气动力学、航空工程、 喷气推进、工程控制论、物 理力学等技术科学领域做出 许多开创性贡献。为我国火 箭、导弹和航天事业的创建 与发展做出了卓越贡献,是 我国系统工程理论与应用研 究的倡导人。1991年10月 16日,国务院、中央军委 授予钱学森"国家杰出贡献 科学家"荣誉称号和一级英 雄模范奖章。
粘弹性?
§1-2 弹塑性力学的研究内容
弹塑性力学是固体力学的一个重要分支, 是研究弹性和弹塑性物体变形规律的一门学 科,它推理严谨,计算结果准确,是分析和 解决许多工程技术问题的基础和依据。
目录
CH1 绪论 CH2 弹性力学基本理论 CH3 弹性力学平面问题 CH4 弹性力学空间问题 CH5 薄板的小挠度弯曲 CH6 弹性力学问题的变 分解法 CH7 简单应力状态下的弹 塑性问题 CH8 应力应变分析和屈服 条件 CH9 塑性本构关系 CH10 简单弹塑性问题 CH11 理想刚塑性体的平 面应变问题 CH12 结构的塑性极限分 析
弹塑性力学01ppt课件

第1章 绪论1-2
线性弹性力学的发展,出现了许多分支学科,
如薄壁构件力学、薄壳力学、热弹性力学、 粘弹性力学、各向异性弹性力学等。
37
弹性力学解法也得到不断发展
数值解法 微分方程的差分解 [迈可斯(1932)] 有限单元法 [1946年]
第1章 绪论1-2
复变函数(20世纪30年代)萨文和穆斯赫利什维利 作了大量的研究工作,解决了许多孔口应力集中等 问题。
14
固体材料的弹塑性简单 说明(简单拉伸性能)
弹性极限(屈服 极限)
比例极限
弹性 阶段
塑性阶段(强化)
第1章 绪论
卸加载 (弹性)
弹性应变 塑性应变
低碳钢试件简单拉伸试 验应力—应变曲线图
弹性应变
15
第1章 绪论
• “完全弹性”是对弹性体变形的抽象。
完全弹性使得物体变形成为一种理想模型。 完全弹性是指在一定温度条件下,材料的应力 和应变之间一一对应的关系。 这种关系与时间无关,也与变形历史无关。
38
钱伟长
钱学森
胡海昌 徐芝伦
39
§1-2 弹性力学中的几个基本概念
一、体力
分布在物体体积内的力(重力、惯性力) z
大小: 平均集度
体力
lim F f V 0 V
O
x
fz V
F f
fy
fx
P
y
图11a 40
§1-2 弹性力学中的几个基本概念
方向 f的方向就是ΔF的极限方向
矢量f在坐标轴x、y、z上的投影fx、 f y、 fz ,称为
材料的应力和应变关系通常称为 本构关系
——物理关系或者物理方程
• 线性弹性体和非线性弹性体
弹塑性力学第一章弹塑性力学绪论资料

1、弹塑性本构关系
本构关系是指材料内任意一点的应力-应变之间的关 系,是材料本身的物理特性所决定的。弹性本构关系 是广义胡克定律,而塑性本构关系远比弹性本构关系 复杂。在不同的加载条件下要服从不同的塑性本构关 系。塑性本构关系有增量理论和全量理论。
6
2.研究荷载作用下物体内任意一点的应力和变形 在荷载作用下,物体内会产生内力,因此通常
广泛地探讨了许多复杂的问题,出现了许多边缘分支:
各向异性和非均匀体的理论,非线性板壳理论和非线性
弹性力学,考虑温度影响的热弹性力学,研究固体同气
体和液体相互作用的气动弹性力学和水弹性理论以及粘
弹性理论等。磁弹性和微结构弹性理论也开始建立起来。
此外,还建立了弹性力学广义变分原理。这些新领域的
发展,丰富了弹性力学的内容,促进了有关工程技术的
弹塑性力学
1
第一章 绪 论
§1-1 弹塑性力学基本概念和主要任务 §1-2 弹塑性力学的发展史
§1-3 基本假设及试验资料 §1-4 简化模型
2
1.1 弹塑性力学基本概念和主要任务
一、弹性(塑性)变形,弹性(塑性)阶段
可变形固体在外力作用下将发生变形。根据变形 的特点,固体在受力过程中的力学行为可分为两个明 显不同的阶段:当外力小于某一极限值(通常称为弹 性极限荷载)时,在引起变形的外力卸除后,固体能 完全恢复原来的形状,这种能恢复的变形称为弹性变 形,固体只产生弹性变形的阶段称为弹性阶段;外力 超过弹性极限荷载,这时再卸除荷载,固体将不能恢 复原状,其中有一部分不能消失的变形被保留下来, 这种保留下来的永久变形就称为塑性变形,这一阶段 称为塑性阶段。
10
在这个时期,弹性力学的一般理论也有很大的发展。
弹塑性力学1

n = n1 e1 + n2 e 2 + n3 e3 = ni ei
ni = n ⋅ ei = cos(n, ei ) dSi = cos(n, ei )dS = ni dS
dS dS3
第一章 应力与平衡
一、固体中的应力状态
• 任意斜面上应力矢量的Cauchy应力公式
dSi = cos(n, e i )dS = ni dS
与
σ ij
的关系
′
(σ ij = σ ⋅ e j )
(i )
σ i′j′ = σ (i ) ⋅ e j′
= e i′ ⋅ σ ⋅ e j′ = e i′ ⋅ (σ mn e m e n ) ⋅ e j ′ = (α i′i e i ) ⋅ (σ mn e m e n ) ⋅ (α j′j e j ) = α i′iα j ′jσ mnδ imδ nj = α i′iα j′jσ ij
一点应力状态
σ = n ⋅ σ (n) σ j = niσ ij
(n)
t = n ⋅ σ t j = niσ ij
第一章 应力与平衡
二、应力张量
u
u = ui e i
ui
u1 u2 u 3
σ 11 σ 12 σ 13 σ 21 σ 22 σ 23 σ σ 32 σ 33 31
σ 11 − σ 0 σ 12 σ 13 0 σ 22 − σ σ 23 → σ 21 σ σ 32 σ 33 − σ 0 31 S11 S12 S13 = S 21 S 22 S 23 应力偏(斜)张量 S S32 S33 31
• 一点应力状态与应力标号
弹塑性力学第一章绪论

*
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
5.1 力学中常用的物理量
1.标量:
只有大小、没有方向性的物理量,与坐标系选择无关。 用字母表示,如温度T、时间t、密度 等。标量无下标。
诌脱揣刻迂釜斌谬痔垫会弘猜签伞汉相驶菱慈珠妙萌惦枣肘扯撕砾络眉洋《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论
参考书目
碉自冯冯伦瀑瓣且柄愤烯桃珊骡逆谩焰舆缀隆坯汾烂样鬼彼邱护堤狰轿讳《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论
*
*
§1-1 弹塑性力学的任务和对象
第一章 绪论
§1-2 基本假设和基本规律
§1-3 弹性力学的研究方法
§1-4 弹性力学的发展梗概(略)
§1-5 笛卡尔坐标系下的矢量、张 量基本知识
*
*
§1-2 基本假设和基本规律
假设3:小变形假设。物体在外因作用下,物体产生的变形与其本身几何尺寸相比很小。
假设4:应力与应变关系为线性。此假设适用于线弹性理论。
墒拐疙交峨扳令毯阻仙宛零盾蹿偏由净砒辈爱孵寨碧酣剥低麻针把雷体踏《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论
*
*
§1-2 基本假设和基本规律
数学方法:精确解法(解析解)、近似解法、 数值解法。 实验方法:电测方法、光测方法等。
§1-4 弹性力学的发展梗概(略)
今奶椽四拌怪鳞蕉姜谷菠颁功怨宗萤驮眯澜欠绸张懒龚菇喜然烤鸯弗啡棵《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论
*
*
§1-5 笛卡尔坐标系下的矢量、张 量基本知识
由 ij 定义及哑标、自由标定义,可得:
北驮藻稗热椿簇痔逛匪拎烧曲承倦彰砚滋尽孽揩轰俐碱失瓜轧搪疟贮市活《弹塑性力学》第一章 绪论《弹塑性力学》第一章 绪论
弹塑性力学第一章

1. INTRODUCTION1.1. Elasticity and plasticityEssential properties of deformable bodies subjected to external force or other external action are elastic and plastic behavior. As discussed in the discipline of mechanics of materials, that is, if the external forces producing deformation do not exceed a certain limit, that is so called yield criteria, the deformation disappears with the removal of the forces, then we consider this properties as elasticity. Otherwise, the deformation do not disappeared after removal of the forces, then we consider the property as plasticity. Another main difference between perfect elasticity and plasticity, in mathematical view, is a linear problem and a nonlinear problem, respectively.The atom forces in the material internal structure determine the mechanism of this two kind deformation. In fact, the internal structure of solid materials is always stable, on the basis of balance forces between atoms in solids. The suction force makes the atoms tend to close up to each other, and the repulsion force makes the atoms maintain some reasonable distance. In normal cases, these two forces are in Equilibrium State. Atomic structure will not be considered here. It will be interested in the macroscopically response only. When a solid body is subject to external loading, there are two different responses: elastic response and plastic response.Elastic deformation is a simple case easy to be understood. Plastic deformation is a more complex case. Figure 1.1 show the typical curve for a simple tension specimen of metal. The initial elastic region generally appears as a straight line OA, where Adefines the limit ofproportionality.On furtherstraining, the relation betweenstress and strain is no longerlinear but the material is stillelastic, and upon release of theload, the specimen reverts to itsoriginal length. The maximumstress point B at which the loadcan be applied without causingany permanent deformation Fig.1.1 Stress-strain diagram for an annealed cast-steelspecimen.(a) (b) (c) (d)Fig. 1.2 Stress-strain diagrams: (a) ductile metal, (b) cast iron and glass, (c) typical concrete or rock,(d) soils, triaxial compression. (Experimental data taken from reference [15].)defines the elastic limit . The point B is also called the yield point , for it marks the initiation of plastic or irreversible deformation. Usually, there is very little difference between the proportional limit, A, and the elastic limit, B. The behavior in the flat region BC is generally referer to as plastic flow . After C the material is exhibited strain hardening or also known as work hardening. Over some point D the material may be exhibit strain softening, as shown in figure 1.1.Now, consider the unloading from some point E beyond the yield point. The behavior is as indicated in figure 1.1. That is, when the stress is reduced, the strain decreases along an almost elastic unloading line OA .So we say that the unloading obey the elastic rule.Fig. 1.2 is the typical graph of stresses versus relative elongation (compression) for four kinds of materials.1.2. Basic hypothesisThe subject of theory of elasticity and plasticity is concerned with the deformation and motion of elastic-plastic bodies or structures under the action of applied load or other disturbances. The general assumptions employed in the study of theory of elasticity and plasticity are the same as those used in the mechanics of continuous medium. Therefore, throughout this book, we have: (a), continuum hypothesis, we shell suppose that the macroscopic behavior of the solid bodies is the same as if they were perfectly continuous in structure; and physical quantities such as the mass and momentum associated with the matter contained within a given small volume will be regarded as being spread uniformly and without any caves, cracks and discontinuous.(b), Uniform hypothesis and isotropic hypothesis, that is, the materials of elastic-plastic body is homogeneous and uniformly distributed over its volume so that the smallest element cut from the body possesses the same specific physical properties as the body. The elastic properties are the same in all directions. (c), small deformation hypothesis, in this book, we discuss small deformation only.1.3. Historical remarksBefore the engineering design of structures, one must not only know the internal force field acting on the structural material and but also know the material response. It means that we need give an analysis of the stresses, deformation and displacement of structural elements. Therefore we have to know the constitutive relation of materials. Seeking some methods to solve these problems, many researchers have continually studied for over 2000 years.The pioneering works of theory of elasticity and plasticity are given by Augustin Cauchy (1789-1857), Marie-Henri Navier (1785-1836), Leonard Euler (1707-1783), Simon Denis Poisson (1781-1840), Barre de Saint-venant (1797-1886), Nikolai Ivanobich Mushihailishibili (1691-1976),Ludwig Prandtl (1875-1858), Thomas Young (1773-1829), Richard von Mises (1883-1953), and many others.The general principles employed in the study of theory of elasticity and plasticity are the same as those used in studying the mechanics of continuous medium. Their basic formulations can be attributed primarily to the work of Euler and Cauchy. Euler first brought forward the general principles of linear and angular momentum balance for continuous media upon which rest all continuum mechanics, including theory elasticity and plasticity. Cauchy first given the concept of the stress and strain at a point and also found the general differential equations of motion or equilibrium of a continuum in term of the stress. Cauchy’s work on elasticity provided a detailedkinematical theory of strain and deformation. The extension of the mathematical theory to more general solids was first made by Navier in 1821 using special assumption concerning the molecular forces of elastic solids. Technical application began earliest in 1855, when Saint-Venant solved the problem of the twisting of prismatic bars and worked out detailed numerical results. Saint-Venant also took up the problem of plastic flow and developed two-dimensional governing equations which were subsequently generalized to three dimensions by M.Levy in 1871. In 1864 H. Tresca reported experiments to the French Academy, which suggested that the plastic yielding of a metal occured when the maximum shear stress reached to a critical value. After Tresca in 1913 R.V on Mises published his yield condition theory based on theory of distortional energy.In the last century (1901-2000) the theory of elasticity and plasticity have rapidly developed in theory and engineering practical. Many great contributors should be mentioned. Such as B.G.Galerkin, G.R.Kirchhoff, S.P.Timoshenko, grange, A.Nadai, A.A.Il’yushin, W.W.Sokolovsky, W.Prager, R.Hill, Kh.A.Rakhmatulin, G.I.Taylor, P.Perzyna, and many others.In this period, especially in last 50 years, theory of elasticity and plasticity rapidly developed in China too. Qian Xueshen, Qian Weichang, Hu Haichang ,Wang Ren, Huang Kezhi, Xu Benye,Wu Jike, Huang zhuping, Gao yuchen, Wang ziqiang, and many others developed the theory of elasticity and plasticity, specially in the engineering applications. In this period published many valuable books about elasticity and plasticity on theoretical and engineering application.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 弹塑性力学发展史
1.弹性力学发展史 古代弓箭的例子 共分四个时期: 第一时期(初期):1678年,虎克定律; 第二时期: 十七世纪末,只要研究梁; 1822年-1828年,法国柯西提出了应力、应变概念 ,建立了弹性力学三大方程;
1.4 弹塑性力学发展史
第三时期:广泛用于解决工程问题 1855年,法国圣维南发表了关于柱体扭转和弯曲 的论文; 1881年,德国赫兹解决了两弹性体局部接触问题 ; 1898年,德国基尔施发现了圆孔处的应力集中问 题; ……………………………………. 建立了能量原理,发展了许多实用的计算方法。
1.4 弹塑性力学发展史
二十世纪二十年代起,发展了一些边缘学 科:
非线性板壳理论 热弹性力学 力学 气动弹性力学、水弹性 磁弹性力学
1.4 弹塑性力学发展史
2.塑性力学发展史 1864年,Tresca提出了最大剪应力屈服准则, 二十世纪初,证实了此准则; 1904年及1913年,Huber和Mises提出了Mises屈 服准则; 1923年,Nadai研究了柱体扭转; 1950年,开始研究塑性本构关系;
1.6 下标记号法和求和约定
2.求和约定 在一项中,有一个下标出现两次,则对 此下标从1至3求和,并限定同一项中不能有 同一下标出现三次或三次以上。
ai bi ai bi a1b1 a2b2 a3b3
i 1
3
aii aii a11 a22 a33
i 1
3
继续研究塑性本构关系 之后,分为两大分支: 数值计算方法的研究
1.5 简化模型
简化模型的特点: (1)比较真实地反映材料的真实特性; (2)便于计算及理论研究。 根据有无明显的屈服阶段,分为两大类: 理想塑性模型 强化模型
1.5 简化模型
1.理想塑性材料
E s s s sgn 理想弹塑性模型
(2)线性强化刚塑性模型
s E1 sgn
1.5 简化模型
(2)线性强化刚塑性模型
B sgn
0 n 1 n0 B n 1 B
n
1.5 简化模型
理想弹塑性模型 理想塑性模型 理想刚塑性模型 线性强化弹塑性模型 强化模型 线性强化刚塑性模型 幂强化模型
1.5 简化模型
1.6 下标记号法和求和约定
1.下标记号法
一阶张量:3个独立量组成的集合
x
(u
y v
z w)
xi ui
x1
(u1
x2 u2
x3 u3 )
1.6 下标记号法和求和约定
a11 a12 a13 二阶张量:9个独立量组成的集合 a a a a 22 23 ij 21 a31 a32 a33 11 12 13 11 12 13 ; 22 23 ij 23 ij 21 21 22 31 32 33 31 32 33
s sgn
理想刚塑性模型
1.5 简化模型
2.强化模型
线性强化弹塑性模型 线性强化刚塑性模型 幂强化模型
1.5 简化模型
(1)线性强化弹塑性模型
E s s E1 S sgn
s
1.5 简化模型
塑性:荷载较大时,卸载后不能恢复原状的性质; 塑性变形:不随应力消失而恢复的变形。 (残余变形)
Tianjin University
1.1 弹性和塑性
弹性力学:研究弹性阶段的力学问题; 塑性力学:研究弹塑性阶段及塑性阶段的力学问题。 ……………………………………………… 弹塑性力学:研究结构从弹性阶段过渡到弹塑性阶 段,直到最后被破坏的整个发展过程 的力学问题。 工程弹塑性力学
1.6 下标记号法和求和约定
aijb j aijb j ai1b1 ai Βιβλιοθήκη b2 ai 3b3j 1 3
aijbi c j aijbi c j
i 1 j 1 3
3
3
(ai1bi c1 ai 2bi c2 ai 3bi c3 )
i 1
(a11b1c1 a21b2 c1 a31b3c1 ) (a12b1c2 a22b2 c2 a32b3c2 ) (a13b1c3 a23b2 c3 a33b3c3 )
i1 i 2 i 3 x1 x2 x3
2 ai 2 ai 2 ai 2 ai 2 2 2 x j x j x1 x2 x3
1.6 下标记号法和求和约定
同一项中不重复出现的下标称为自由标号,可取 1、2、3中任一值。
yi cij x j
3.静水压力试验
V V0
:体积应变
p p (1 ) K K1 K : 体积模量, K1:派生模量
1.3 基本实验资料
p 0, K1 结论: p ( 1) K 体积应变与静水压力间 是线性关系; (2)体积应变是完全弹性 的 静水压力不产生塑性变 形,且对屈服无影响。
yi ci1 x1 ci 2 x2 ci 3 x3 y1 c11 x1 c12 x2 c13 x3 y2 c21 x1 c22 x2 c23 x3 y c x c x c x 3 31 1 32 2 33 3
谢谢!
1.2 弹塑性力学的主要任务
研究对象:韧性金属材料 研究内容: (1) 应力与应变的本构关系 包括弹性本构、塑性本构; 单向应力状态、复杂应力状态 (2)荷载作用下结构内任一点的应力和变形 弹性状态: 给定荷载 求任一点的应力及应变
确定弹塑性区分界线 给定荷载 弹塑性状态: 求任一点的应力及应变
工程弹塑性力学
毕继红
第一章 绪论
1.1 1.2 1.3 1.4 1.5 1.6 弹性和塑性 弹塑性力学的主要内容 基本实验资料 弹塑性力学的发展史 简化模型 下标记号法和求和约定
Tianjin University
1.1 弹性和塑性
弹性:受荷载作用后发生变形,卸载后恢复原状的 性质; 弹性变形:可以恢复的变形。 ………………………………………………………
1.2 弹塑性力学的主要任务
基本假设: (1)均匀连续假设; (2)无初应力; (3)不考虑蠕变; (4)常温; (5)缓慢变形; (6)小变形
1.3 基本实验资料
1.简单拉伸实验 弹性段:OA+AB; 屈服阶段:BC;
P :比例极限
s :屈服极限
1.3 基本实验资料
强化阶段:CDE;
1.6 下标记号法和求和约定
a ii a 11 a a 33 ;
2 2 2 22 2
a a
2
ii
11
a22 a 33
2
用于含有导数项
ai a1 a2 a3 ai ,i xi x1 x2 x3
ij, j
ai , jj
ij x j
1.2 弹塑性力学的主要任务
弹性变形的特点: (1)应力与应变是一、一对应; (2)应力与应变是线性关系。
……………………………………………………… 塑性变形的特点: (1)塑性变形与应力不是一、一对应; 塑性变形不仅与当前的应力状态有关,而且与加载的 历史有关; (2)进入塑性状态后,应力与应变间是非线性关系。
d E1 , 强化模量 d D : 后继屈服应力
e p
颈缩阶段:EF。
1.3 基本实验资料
2. 压缩试验 (1)压缩与拉伸 曲线基本一致; (2)Bauschinger 效应: 具有强化性质 的材料,经拉伸 进入强化阶段后 再卸载,反向屈 服应力会降低。
1.3 基本实验资料