不完全信息下的静态博弈习题
博弈论与经济分析(不完全信息静态)

博弈论与经济分析(不完全信息静态)第四章 不完全信息静态博弈不完全信息意味着至少有一个参与者不能确定另一个参与者的收益函数,或者说类型。
我们用一个例子来引入要讨论的问题: 例:信息不对称条件下的古诺模型 市场:P(Q)=a-Q ,Q=q1+q2 企业1:C1(q1)=cq1企业2:以θ的概率为高成本,即222()H C q c q =;以1θ-的概率为低成本,即222()L C q c q =。
当然,H L c c >。
信息不对称:企业2知道自己的成本,也知道企业1的成本;企业1知道自己的成本,但是只知道企业2成本状况的概率分布。
以上都是公共信息,即企业1知道企业2享有信息优势,企业2知道企业1知道,企业1也知道企业2知道企业1知道……如此等等。
解题:企业1会预测企业2在不同情况下的最优选择:当企业2为高成本时2122max[()]H q a q q c q *---当企业2为低成本时2122max[()]L q a q q c q *---既然企业只知道企业2成本情况的概率分布,则企业1只能根据上述预测最大化自己的期望收益:1121121max [(())](1)[(())]H L q a q q c c q a q q c c q θθ**---+----以上三个优化问题的一阶条件为:12()2H H a q c q c **--=12()2LL a q c q c **--=221[()](1)[()]2H L a q c c a q c c q θθ***--+---=联立求解:221()()36H H H L a c c q c c c θ*-+-=+-22()()36L L H L a c c q c c c θ*-+=-- 12(1)3H L a c c c q θθ*-++-=比较该结果与“完全信息条件”条件下结果的不同。
作业:说明企业2在两种成本下是否因为“信息优势”得到了好处?是应该巩固该优势还是向企业1公开信息?一、 静态贝叶斯博弈的标准表述完全信息静态:G={S1,…Sn;u1,…,un}在静态博弈条件下,策略S 就是一个行动A (当然,动态博弈则不同),于是我们可以写作G={A1,…An;u1,…,un}。
经济博弈论第六章不完全信息静态博弈共39页

11
27.04.2020
6.1.3 海萨尼转换
基本思路:将静态博弈转化为动态博弈 (1)假设有一个名为“自然”的博弈方0,该博弈
方的作用是先为其他每个博弈方抽取他们的类型, 抽取的这些类型构成类型向量
t=(t1,…,tn),其中t i T i ,i=1,…,n。
(2)“自然”让每个博弈方知道到自己的类型, 但却不让其他博弈方知道。
10
27.04.2020
6.1.2 静态贝叶斯博弈的一般表示
静态贝叶斯博弈的一般表达式为: G={A1,…,An ;T1,…,Tn;u1,…,un}
其中Ai为博弈方i的行为空间(策略空间), Ti是博弈方i的类型空间,博弈方i的得益 ui=ui(a1,…,an,ti)为策略组合(a1,…,an ) 和类型ti的函数。
q1*a2C1C3 H(1)CL)
6
27.04.2020
6.1.1 不完全信息的古诺模型
与完全信息古诺模型比较 完全信息古诺模型中的的产量
q1*
a2C1 3
C2
q2*
a2C2 3
C1
CH C2 q2*(CH)q2*
CL C2 q2*(CL)q2*
ቤተ መጻሕፍቲ ባይዱ
7
27.04.2020
6.1.2 静态贝叶斯博弈的一般表示
厂商1只知道有两种可能性,一种是C2= C2(q2) = CH q2概率为θ另一种是C2= C2(q2)= C Lq2, 概率为1-θ,而CH>CL,也即边际成本有高、低两 种可能。
3
27.04.2020
6.1.1 不完全信息的古诺模型
厂商2在边际成本是较高的CH时会选择较低的产 量,而在边际成本为较低的CL时会选择较高的产 量。
博弈论的成绩博弈试题2

成绩博弈试题一、完全信息的静态成绩博弈现在有A.B两个答案.请同学们在A、B两个答案中同时选择一个。
如果我选A,同学也选A,得80分如果我选B,同学也选B,得100分如果我选A,同学选B,我得40分,同学得60分如果我选B,同学选A,我得60分,你得40分此时你的答案是(B ),同学的答案是(B )你的得分为:(80 )同学的得分:(80 )二、完全信息的动态成绩博弈1、如果同学先选A,你的答案( A )你的得分为:(80 )同学的得分:(80 )2、如果同学先选B,你的答案(B )你的得分为:(100 )同学的得分:(100 )3、如果你先选A,你希望同学选(A )你的得分为:(80 )同学的得分:(80 )4、如果你先选B,你希望同学选( B )你的得分为:(100 )同学的得分:(100 )三、不完全信息的静态成绩博弈1、你和周围的同学两人同时选,两人都要得最高分,否则都计算0分,你会选(B )同学会选择(B )你的得分为:(100 )同学的得分:(100 )2、你们两人中选择的得分高者,加20分,得分低者,减20分,否则得0分,你会选( B ),你希望同学选( A )你的得分为:(80 )同学的得分:(20 )此时同学希望你选( A ),同学选( B )你的得分为:(20 )同学的得分:(80 )四、不完全信息的动态成绩博弈1、你和周围的同学两人一起选,同学先选A,两人都要得最高分,否则都计算0分,你会选( A )你的得分为:(80 )同学的得分:(80 )2、你和周围的同学两人一起选,同学先选A,两人中选择的得分高者,加20分,得分低者,减20分,否则得0分,你会选( B )你的得分为:(80 )同学的得分:(20 )3、你和周围的同学两人一起选,同学先选B,两人都要得最高分,否则都计算0分,你会选( B )你的得分为:(100 )同学的得分:(100 )4、你和周围的同学两人一起选,同学先选B,两人中选择的得分高者,加20分,得分低者,减20分,否则得0分,你会选( A )你的得分为:(20 )同学的得分:(80 )5、你和周围的同学两人一起选,你先选A,两人中选择的得分高者,加20分,得分低者,减20分,否则得0分,同学会选( B )你的得分为:(20 )同学的得分:(80 )6、你和周围的同学两人一起选,你先选A,两人都要得最高分,否则都计算0分,同学会选( A )你的得分为:(80 )同学的得分:(80 )7、你和周围的同学两人一起选,你先选B,两人中选择的得分高者,加20分,得分低者,减20分,否则得0分,同学会选(A )你的得分为:(80 )同学的得分:(20 )8、你和周围的同学两人一起选,你先选B,两人都要得最高分,否则都计算0分,同学会选( B )你的得分为:(100 )同学的得分:(100 )总得分为:1220平均分为:76.25要求:1、试卷答案不能改动,改动处记为错。
博弈论第六章不完全信息静态博弈题库

博弈论第六章不完全信息静态博弈题库【原创版】目录一、引言二、不完全信息静态博弈的概述1.不完全信息的定义2.静态博弈的定义三、不完全信息静态博弈的解题方法1.严格优势策略2.纳什讨价还价解3.轴向讨价还价解四、应用案例分析五、总结正文一、引言在博弈论中,不完全信息静态博弈是一个重要的研究领域。
由于参与者在博弈过程中所拥有的信息不完全,这使得博弈过程变得更加复杂和有趣。
本文将介绍不完全信息静态博弈的概述,以及探讨如何解决这类问题。
二、不完全信息静态博弈的概述1.不完全信息的定义不完全信息指的是参与者在博弈过程中,无法完全了解其他参与者的策略或支付函数。
这种情况下,参与者需要根据自己所掌握的信息,来猜测其他参与者可能采取的策略。
2.静态博弈的定义静态博弈是指参与者在一定时间内,一次性地选择策略并完成博弈的过程。
静态博弈中,参与者不需要考虑时间顺序,只需关注当前状态下的最优策略。
三、不完全信息静态博弈的解题方法1.严格优势策略在完全信息静态博弈中,如果一个策略对某个参与者来说是严格优势的,那么他会选择这个策略。
在不完全信息静态博弈中,同样可以利用严格优势策略来求解。
即通过分析其他参与者可能采取的策略,找到一个对某个参与者来说严格优势的策略。
2.纳什讨价还价解纳什讨价还价解是解决不完全信息静态博弈问题的一种方法。
通过设计一种讨价还价机制,使得参与者可以在不完全信息的情况下,达成一种合作解。
纳什讨价还价解的关键是让参与者在博弈过程中,有动力去揭示自己的真实支付函数。
3.轴向讨价还价解轴向讨价还价解是另一种解决不完全信息静态博弈问题的方法。
它通过让参与者在博弈过程中,根据其他参与者的策略选择,来调整自己的策略,从而实现一种合作解。
轴向讨价还价解的优势在于,它可以在不完全信息的情况下,使得参与者的收益达到最大。
四、应用案例分析以寡头垄断市场为例,市场中有两个寡头企业,它们需要决定是否进行价格战。
在这个过程中,每个企业都需要考虑对方的策略选择。
不完全信息下的静态博弈习题

不完全信息下的静态博弈习题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--非完全信息静态博弈习题1、考虑下面的Cournot 双头垄断模型。
市场的反需求函数为Q a Q p -=)(,其中21q q Q +=为市场总产量,两个企业的总成本都为()i i i cq q c =,但需求却不确定:分别以θ的概率为高(H a a =),以θ-1的概率为低(L a a =),此外,信息也是非对称的:企业1知道需求是高还是低,但企业2不知道,所有这些都是共同知识,两企业同时进行决策。
要求:假定H a 、L a 、θ和c 的取值范围使得所有均衡产出都是正数,试问此博弈的贝叶斯纳什均衡是什么解:在市场需求为高时,企业1的最优战略为:()H H H q c q q a Max 121⨯--- 由一阶条件可以推出221c q a q H H --= (1) 在市场需求为低时,企业1的最优战略为:()L L L q c q q a Max 121⨯--- 由一阶条件可以推出221c q a q L L --=(2) 企业2的最优战略为 ()()(){}2212211q c q q a q c q q a Max L L H H ----+---θθ由一阶条件可得:()()()211*2cq a q a q L L H H ---+=-θθ (3)方程(1)、(2)和(3)联立可得:()()()()621311*1c q a q a q L L H H H ------=θθ ()622*1c a a q HL L --+=θθ()31*2c a a q HL -+-=θθ由此可知,企业1的战略()*1*1,L H q q 和企业2的战略*2q 构成贝叶斯纳什均衡。
2、在下面的静态贝叶斯博弈中,求出所有的纯战略贝叶斯纳什均衡:(1)自然决定收益情况由博弈1给出还是由博弈2给出,选择每一博弈的概率相等;(2)参与者1了解到自然是选择了博弈1还是博弈2,但参与者2不知道;(3)参与者1以相同概率选择T 或B ,同时参与者2选择L 或R;(4)根据自然选择的博弈,两参与者都得到了相应的收益。
博弈论练习题2答案

博弈论练习题(四)一、什么是子博弈精炼纳什均衡?答:将纳什均衡中包含的不可置信的威胁策略剔除出去。
它要求参与者的决策在任何时点上都是最优的。
由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。
只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。
或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。
二、参与人的理性问题对动态博弈分析的影响是否比静态博弈的影响更大?为什么?答:正确,博弈论要求个体具有始终追求自身利益最大化的理性意识和理性能力的“自我”个体理性,这是静态博弈的范畴。
除此之外,还要求相关的参与者具有层次较高的“交互理性”,要求不同个体之间在理性和行为方面具有一种“默契”。
即,人们的自身利益的最大化不仅取决于自己的选择,还取决于与之相关的其他人的选择与行为,那么为了实现自己的最大利益,个体的理性决策就必须考虑他人的理性选择与行为。
作为博弈论的基础,交互理性是其基本的理性要求。
博弈论还要求有关博弈的结构、各个博弈参与者的得益函数以与各个博弈参与者的理性等“知识”是所有博弈参与者之间的“共同知识”。
也就是,每个博弈参与者不仅要首先明确自己和其他参与者所有可选的策略,还需知晓各种情况下自己最终的收益或其概率分布,并且每个博弈参与者都知道各个参与者掌握这些信息;更为重要的是,每个博弈参与者都知道所有参与者都是理性的,都知道其他博弈参与者知道所有参与者都是理性的,都知道其他博弈参与者知道其他博弈参与者知道所有博弈参与者都是理性的------。
理性的共同知识假设是非合作博弈理论的一个非常重要和关键的假设,是实现交互理性和理性主义的纳什均衡的基本前提,这些,都是动态博弈的范畴。
因此说,参与者理性问题对动态博弈的分析影响更大。
三、纳什均衡和精炼纳什均衡存在哪些问题?答:纳什均衡存在的问题:(1)不是所有博弈都存在纳什均衡如纯策略就不存在混合策略则一定会存在纳什均衡,它是通过概率来计算纳什均衡,在这种均衡下,给定其他参与人的策略选择概率,每个参与人都可以为自己确定选择每一种策略的最优概率。
博弈论_不完全信息静态博弈

贝叶斯纳什均衡的存在性
贝叶斯纳什均衡的存在性定理 定理3.1.2,见书上第62页,不讲定理的证明 它与第24页的定理2.2.3的比较。定理3.1.2所
要用到的前提条件更强,其原因在于: 在贝叶斯博弈中,局中人i的收益是纯策略下
的期望收益。或,局中人i的收益函数ui(s-i, si, ti)可以随着类型的变化而变化;当ui是si的凹函 数时,其凸组合“∑pi(t-i|ti)×ui(s-i(t-i), si, ti), t-i∈T-I”也是si的凹函数;若拟凹则不成立
义3.1.2做比较 此定义是对纯策略下贝叶斯纳什均衡定义的一
个直接扩展,其中E(ui)是局中人i在混合策略 组合下,对其收益函数ui的数学期望 定理3.1.3:混合策略组合是贝叶斯纳什均衡 的充分必要条件 定理3.1.4:贝叶斯纳什均衡的存在性定理
求解行业博弈的贝叶斯纳什均衡
条件概率 标记混合策略的符号 标记期望收益的符号 计算不同类型下的期望收益 书上的方法:由混合策略下贝叶斯纳什均衡的
对局中人2的计算
局中人 1建厂 高成本
进入
不进入
局中人 1建厂 低成本
进入
不进入
建厂 , -4/3 , 0 建厂 , -4/3 , 0
不建厂 , 1 , 0 不建厂 , 1 , 0
合成后的支付矩阵
局中人 1建厂 高成本
进入
不进入
局中人 1建厂 低成本
进入
不进入
建厂 0, -4/3 2, 0 建厂 1.5, -4/3 3.5, 0
混合策略
在贝叶斯博弈G=[N, {Ti}, P, {Si(ti)}, {ui}]中,局中人i 在类型ti∈Ti下,为每一个纯策略以概率进行选择,则 xi(ti) =(x1(i)(ti), x2(i)(ti), ···, xm_i(i)(ti))称为局中人i在类型 ti下的一个混合策略。有时简写为xi。
不完全信息静态博弈Harsanyi(1967-68)提出了一个不完全信息博弈的

β (x)F (x) + (N − 1)β(x) = (N − 1)x
– Typeset by FoilTEX –
4
我们以下定义均以纯策略为例:
不完全信息博弈 要求:虽然每个博弈者并不知道对手 的类型,但是所有类型出现的联合概率分布 F : Θ → [0, 1] 需为共同认识, 其中 Θ = Θ1 × Θ2... × ΘN。 博弈者 i 观察到私人类型 θi 后的效用可以表示为 Ui[s1(θ1), ..., sN(θN)|θi], Ui(·|θi) 是 在给定 θi 下的 von Neumann-Morgenstern 期望效用函 数, 因为其自变量均为随机变量。于是,
– Typeset by FoilTEX –
7
拍卖理论
现代拍卖理论是从 Vickery(1961) 开始的,80 年代以来 快速衍生出大量文献,其中以静态博弈为分析框架 的 拍卖问题主要是围绕收入相等法则(Revenue Equivalence Principle)和联系法则 (Linkage Principle) 两个基本原理展开。
方案 3? A 省在修路的情况下, 其支付额应在 50 万元 的修路费基础上,减去它给 B 省的外部性 30 万元,
– Typeset by FoilTEX –
20
方案 3 为: 如果 A 省上报值与 B 省收益和大于 100 万元,修路,但 A 省只支付 20 万元,B 省支付 50 万 元。
– Typeset by FoilTEX –
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非完全信息静态博弈习题
1、考虑下面的Cournot 双头垄断模型。
市场的反需求函数为Q a Q p -=)(,其中21q q Q +=为市场总产量,两个企业的总成本都为()i i i cq q c =,但需求却不确定:分别以θ的概率为高(H a a =),以θ-1的概率为低(L a a =),此外,信息也是非对称的:企业1知道需求是高还是低,但企业2不知道,所有这些都是共同知识,两企业同时进行决策。
要求:假定H a 、L a 、θ和c 的取值范围使得所有均衡产出都是正数,试问此博弈的贝叶斯纳什均衡是什么
解:
在市场需求为高时,企业1的最优战略为:
()H H H q c q q a Max 121⨯--- 由一阶条件可以推出2
21c q a q H H --= (1) 在市场需求为低时,企业1的最优战略为:
()L L L q c q q a Max 121⨯---
《 由一阶条件可以推出2
21c q a q L L --=
(2) 企业2的最优战略为 ()()(){}2212211q c q q a q c q q a Max L L H H ----+---θθ
由一阶条件可得:
()()()211*2c
q a q a q L L H H ---+=-θθ (3)
方程(1)、(2)和(3)联立可得:
()()()()6
21311*1c q a q a q L L H H H ------=θθ ()6
22*1c a a q H
L L --+=θθ ()31*2c a a q H
L -+-=θθ
由此可知,企业1的战略()*1*1,L
H q q 和企业2的战略*2q 构成贝叶斯纳什均衡。
;
2、在下面的静态贝叶斯博弈中,求出所有的纯战略贝叶斯纳什均衡:
(1)自然决定收益情况由博弈1给出还是由博弈2给出,选择每一博弈的概率相等;
(2)参与者1了解到自然是选择了博弈1还是博弈2,但参与者2不知道;
(3)参与者1以相同概率选择T 或B ,同时参与者2选择L 或R;
(4)根据自然选择的博弈,两参与者都得到了相应的收益。
L R
T
B
L R )
T
B
解:
(1) (B ,L )
(2) 参与者1在上边博弈时选T ,下边博弈时选B ;
%
如果参与者推断自然选择上边博弈的概率>2/3,参与者2选L
如果参与者推断自然选择上边博弈的概率=2/3,参与者2选L 和选R 无差异
如果参与者推断自然选择上边博弈的概率<2/3,参与者2选R
(3) 参与者1以相同的概率选T 或选B ;
如果参与者推断自然选择上边博弈的概率>2/3,参与者2选L
如果参与者推断自然选择上边博弈的概率=2/3,参与者2选L 和选R 无差异
如果参与者推断自然选择上边博弈的概率<2/3,参与者2选R
(4) 自然选择上边博弈时,参与者1选T ,参与者2 选L ;
自然选择下边博弈时,参与者1选B ,参与者2 选R ;
\
3、考虑一个非完全信息性别博弈:假设克里斯和帕特两人已经认识了相当长的一段时间,但克里斯和帕特仍然不能确定对方的支付函数(收益函数)的情况。
如果双方都选择歌剧时克里斯的支付为c t +2,其中c t 为克里斯的私人信息;双方都去看拳击时帕特的支付为p t +2,其中p t 为帕特的私人信息。
c t 和p t 相互独立,并服从〔0,x 〕区间上的均匀分布。
两人的战略选择为:克里斯在c t 超过某临界值c 时选择歌剧,否则选择拳击;帕特在p t 超过某临界值p 时选择拳击,否则选择歌剧。
帕特
歌剧 拳击
歌剧
克里斯
拳击
要求:求出该博弈的纯
战略贝叶斯纳什均衡
解;
.
解:(1)克里斯以()x c x /-的概率选择歌剧,帕特以()x p x /-的概率选择拳击。
给定帕特的战略,克里斯选择歌剧和拳击的期望支付分别为: ()()c c t x p x p t x p +=⋅⎪⎭⎫ ⎝
⎛-++2012 与
x p x p x p -=⋅⎪⎭⎫ ⎝
⎛-+⋅1110 从而当且仅当
c p
x =-〉3t c (1) 时选择歌剧是最优的。
~
相似地,给定克里斯的战略,帕特选择拳击和选择歌剧的期望支付为
()()p p t x c x c t x c +=⋅⎪⎭⎫ ⎝
⎛-++2012 与
x
c x c x c -=⋅⎪⎭⎫ ⎝⎛-+⋅1110 从而当且仅当
p c
x =-〉3t p (2) 时选择拳击是最优的。
解方程(1)和(2)构成的方程组可得c =p 及
03p 2=-+x p (3)
解此方程可得到克里斯选择歌剧的概率()x c x /-和帕特选择拳击的概率()x p x /-均为 x x 24931++--。