三维参数化造型及设计

合集下载

基于catia知识工程的三维装配体参数化设计

基于catia知识工程的三维装配体参数化设计

基于catia知识工程的三维装配体参数化设计
Catia知识工程是一种针对制造系统中数据建模和管理的新兴技术。

其优势在于能够有效地提高制造系统的知识建模水平、提升自动制造系统在三维装配可视性和高效性之间的折中。

Catia知识工程技术弥补了传统装配体设计中困扰三维系统管理、可视性现实效果及参数化设计的缺点,为三维装配体参数化设计提供了可能。

基于Catia知识工程的三维装配体参数化设计的分析方法主要基于三个方面:a)实物性状分析:探讨装配体部件的大小、形状、尺寸和微观结构;b)装配关系分析:探讨部件之间的相互作用和装配方式;c)装配耦合分析:以及耦合性评估来判断系统单元之间的可行性以及系统强项。

基于Catia知识工程的三维装配体参数化设计的具体设计步骤如下:
一、系统需求分析:从实际需求出发,根据客户要求,分析系统的可行性、服务条件以及相关的功能状态限制;
二、分析和设计:利用Catia知识工程技术,从零件形状和结构、装配关系、装配耦合等多个方面来分析部件之间的关系,并进行参数化设计;
三、仿真和优化:根据设计的系统模型,进行功能性仿真和性能优化,确保设计的可行性;
四、设计实现与测试:将设计方案实施到真实部件上,并进行实际测试,确保设计的准确性和可行性。

综上所述,基于Catia知识工程的三维装配体参数化设计是一项创新性的技术,其利用建模和管理知识工程技术,不仅能够有效提高制造系统的知识建模水平,而且能够提高系统的可视性和高效性,是一种非常有效的参数化设计手段。

支持人体模型驱动的三维服装参数化设计

支持人体模型驱动的三维服装参数化设计

m dletr f m ( MF ) e rn o cr so bd oe fa r rm ( MF fsy eo e MF y ui oe f ue r e G F r e i t uv f oy m dl et ef e B F) r l,df m d B F b s g a a fr g e u a it r n
模 型。给 出的 实例表 明 , 用该方 法可 以非 常快速有 效地得到相 同款 式的 系列化三维服 装 。 利
关键 词 :人 体模型 ; 装模 型 ; 型驱 动 ;曲线编/ 服 模 解码 中圈分 类号 :T 3 9 P0 文献标 志码 :A 文章 编号 :10 — 6 5 2 1 ) 0 3 5 — 3 0 13 9 (0 0 1 —9 80
Ab ta t s r c :T i p p r p e e td a n w meh d t o lt D g r n e in b eo mi g g r n d l tr u h b d h s a e rs ne e t o o c mpee 3 a me t d s y d fr n ame tmo e h o g o y g di i g o y mo e n a me tmo e a e b i a e n te f au e mo ei g tc n lg . E c d d c r e fg r e t r n .B d d la d g r n d lc n b u l b s d o h e t r d l e h oo y v t n n o e u v so a m n
d i 1 3 6 / .sn 1 0 . 6 5 2 0. 0. 9 o :0. 9 9 iis . 0 1 3 9 . 01 1 0 6
3D ame tp rmeeie e in s p o td b o y mo e rvn g r n aa trz d d sg u p re y b d d ld ii g

三维造型设计第1 章

	 三维造型设计第1 章
上一页 下一页 返回
1.1 认识三维造型设计软件
• 5. 北航海尔CAXA 实体设计XP • CAXA 实体设计使实体设计跨越了传统参数化造型在复杂性方面受到
的限制,不论是经验丰富的专业人员,还是刚接触CAXA 实体设计的 初学者,CAXA 实体设计都能提供便利的操作。其采用鼠标拖放式全 真三维操作环境,具有无可比拟的运行速度、灵活性和强大功能,使 设计更快,并获得更高的交互性能。CAXA 实体设计支持网络环境下 的协同设计,可以与CAXA 协同管理或者其他主流CPC/PLM 软件集 成工作。利用CAXA 实体设计,人人都能够更快地从事创新设计。
• “文件夹浏览器”(Folder Browser)分为“文件夹树”(Folder Tree)和“公用文件夹”(Common Folders)。
• “文件夹树”(Folder Tree)能够浏览计算机的文件夹结构。默认 情况下,“文件夹树”(Folder Tree)将在“文件夹浏览器”( FolderBrowser)窗口的底部处于折叠状态。
• 但UG提供了分析软件NASTRAN、ANSYS、PATRAN 接口;机构 动力学软件IDAMS 接口;注塑模分析软件MOLDFLOW 接口等。 Unigraphics 提供给公司一个从设计、分析到制造的完全的数字产品 模型。
• Unigraphics 采用基于过程的设计向导、嵌入知识的模型、自由选择 的造型方法、开放的体系结构及协作式的工程工具,这些只是提高产 品质量、提高生产力和创新能力所采用的众多独特技术中的一小部分 。
格的图标。此外,还包含消息日志、重新生成管理器、3D 框选择器 与选择过上一页 下一页 返回
1.2 Creo 基本功能与操作
• 消息日志可提供来自Creo Parametric 的提示、反馈与消息。 • (9)菜单管理器(图1−10) • 在Creo Parametric 中使用某些功能与模式时,显示在界面最右侧的

三维标准件库的参数化设计与开发

三维标准件库的参数化设计与开发

( !8#& ) , 作者简介 : 王霞 女, 内蒙丰镇人 , 讲师
第 3 期# # # #
# # # # # # # # # # 王霞: 三维标准件库的参数化设计与开发# # # # # # # # # #
# # # # !,#
! 所示。
图 3# 起管理其它表作用的序号表
图 "# 标准件库的入口界面
’""(年!" 月 第 ’$ 卷 第& 期
沈阳航空工业学院学报 E.,FBGH .I 2J;BKGBL ?B<-A-,-; .I +;F.BG,-ADGH 1BLAB;;FABL
5D-9 ’""( 3.H9 ’$) M.9 &
!""# 文章编号:
!$%& (’""( ) "&
""$"
"$
三 维 标 准 件 库 的参 数 化 设 计 与 开 发
) ) +,-./+0 是 +,-.:;<= 公 司推出 的一款优 秀 的计算机辅助设计软件, 广泛应用于机械、 建筑、 航天 、 轻工 、 服装和军事等工程设计领域, 拥有广 大的用户群。 它能有效地帮助工程技术人员提高 设计水 平 及 工作 效 率, 是工 程 师 的 得 力助 手。 +,-./+0 不仅具有强大的二维制图功能, 在三维 造型方面也有一定的优势 , 利用 +,-./+0 构造的 三维模型 , 可导入相关软件进行工程分析、 装配和 数控编程等操作, 是众多工程技术人员的必备工 。 具 标准件是工 程设计中用途 最广泛的基本 单 元, 其绘制也是 设计人员重复劳动最多的环节 。 由于标准件在工程设计中的频繁使用, 对三维绘 图软件提出了建立标准件库的需求。 对于 +,-./+0 来说 , 它的二次开发方式有很 34 、 3/ 等, 多种 , 例如 +,-.>?27、 本文采 用 34+ 的方式来对三维标准件库进行编程操作。这是因 为与 +,-./+0 提供 的其 他二 次开发 技术 相比 , 34+ 具有超出其他 +,-./+0 +7? 环境的许多 优 点, 例如: 运行速度快、 易于使用、 具有 @AB:.C< 互 操作性等。由于涉及对数据库的操作, 本文采用 +DD;<< 库来存储标准件的相关图形数据 , 在 34+ 开发过程中, 采用 +05 方式进行连接。

基于范成法的斜齿轮三维造型参数化设计

基于范成法的斜齿轮三维造型参数化设计

齿廓就 是斜 齿轮 端面齿廓 的投影 。设想 建模 从法 面 的
角度 出发 , 仿齿 轮切 削加工 过程 , 模 对直 径等 于齿顶 圆
直径 , 高度为 齿轮 宽度 的齿轮 毛胚 进行 切齿槽 , 这符 合
齿轮特 征 。利 用 A tLS u IP提供 的参数 功 能 , 合工 程 o 结
设 计 , 定斜齿 轮 的 主要 参 数 , 斜 齿 轮 的法 向模 数 、 确 如 齿数 、 旋 角 ( 值 为 左 旋 , 值 为 右旋 ) 法 向压 力 螺 负 正 、
角、 齿轮 宽度 、 面齿顶 高 系数 、 顶 隙 系 数 等分 别 设 法 齿 置 为可 以改变 的参 数 , 过 公 式计 算 分 度 圆、 顶 圆 、 通 齿 齿 根 圆等一 系列 尺 寸 J 端 面 模 数 m = m / o 卢,端 : cs
面压力 角 = rt(gL c s ) 分 度 圆直 径 d= m acg to/ o ;
输入 对 话 框 , 现 参 数 化 的操 作 界 面 。用 rw 使 各 实 o D L对象依 顺 序水平 列 于 画面 中 , bxd cl C 用 oe—o mn来 u 设 置 两组 框行 即齿 轮参 数及 尺 寸 参 数 , 以此 使对 话 框
界 面简洁 明 了 , 图 2所 示 。 如
危 险性 。
参考文献 :
[ ] 成大先. 1 机械设计手册 [ . M]北京 : 化学工业 出版社 ,O2 2O .
[ ] 张红 军. 2 电液 比例 技 术在 D 90 F 0 D型架 桥 机 上 的应 用 [ ]工程机械 , 0 , 1 ) J. 2 8 (1 。 0
[ ] 许 益民. 3 电液 比例 控制系统 分析与设计 [ , M] 北京 : 械 机

ProE内齿轮三维参数化造型设计

ProE内齿轮三维参数化造型设计

学士学位毕业论文Pro/e内齿轮三维参数化造型设计学生姓名:指导教师:所在学院:学号:专业:中国·大庆2009年 6 月摘要以Pro/E Wildfire2.0为开发平台,以直齿圆柱内齿轮为研究对象,利用关系式约束的空间曲线,以拉伸、镜像及阵列等方法创建直齿圆柱内齿轮实体。

并以Pro/program模块为开发工具,进行圆柱内齿轮三维参数化程序设计,用户可根据人机交互界面的提示,输入相关参数,即可自动生成圆柱齿轮的三维实体,从而缩短产品开发周期,提高设计效率。

在设计的过程中举例介绍了在开发一种新型钻杆动力钳过程中利Pro/E 的三维参数化造型功能进行内齿套的参数化设计过程。

采用这种方法可以通过改变齿轮的驱动参数直接得到不同型号零件,简化了设计过程,节约了时间。

关键词:Pro/E;内齿轮参数化设计;Pro/programAbstractTaking Pro/E Wildfire2.0 as a development environment, taking spur internal gear as research object, the author made use of stretch and mirror method, the entity of gear is attained. Then taking Pro/program as development tool, the 3D-solid parameterized design for the spur in-ternal gear is attained. Inputting some basic parameters of the gear, the strict 3D-solid of the spur gear is automatically generated. So it can shorten the period of development and improve the efficiency.So ,for example,Based on the software Pro/E,a process of parametric design of the internal gear used in drill pipe tone is introduced. By this method, different types of the parts can be gained by inputting different power pa-rameters easily. It has simplified the design procedure and save the timeKey words:Pro/E;internal gear;parametric design;Pro/ program目录摘要 (I)Abstract (II)1绪论 (1)1.1 PRO/E参数化造型设计的意义 (1)1.2 PRO/E 软件的介绍 (1)1.2.1参数化设计和特征功能 (2)1.3 PRO/E 的二次开发 (2)1.3.1自动特征建模实例 (4)1.3.2 PRO/E与MFC的接口开发 (4)1.3.3 关于PRO/E二次开发小结 (4)1.4 PRO/E软件研究动态 (5)2 内齿轮的设计方法 (7)2.1内齿轮设计的分析 (7)2.2.基于Pro/Program二次开发齿轮参数化设计的步骤 (7)2.2.1 齿轮齿槽形状的精确确定 (7)2.3 设计举例 (8)2.4现代工程设计理论方法 (9)3、参数化实际的研究动态 (10)3.1参数化设计方法 (10)3.2国内外发展趋势 (10)3.3参数化设计意义 (10)3.4参数化设计的方法和实现原理 (11)3.5参数化模型的建立 (13)3.5.1程序参数化 (13)3.5.2交互参数化法 (14)3.5.3构造过程法 (14)3.5.4离线参数化方法 (14)3.5.5图形的局部参数化 (15)3.5.6工程图样的参数化 (15)4、设计步骤 (16)4.1研究思路 (16)4.2渐开线的设计要点 (16)4.3设计内容 (16)4.3.1 参数分析及设置 (16)4.3.2 零件模型的建立 (17)4.3.3 建立参数间关系 (17)4.3.5 结语 (23)4.4 传统设计的缺陷 (24)4.4.1.不能支持设计过程的完整阶段 (24)4.4.2.不符合工程设计人员的习惯 (24)4.4.3.无法支持并行设计过程 (25)结论 (26)参考文献 (27)致谢 (29)1绪论1.1 PRO/E参数化造型设计的意义当今的工业领域,越来越多地把产品的设计、分析、制造、数据管理与信息技术融为一体,以此提高工业生产的自动化水平。

浅析参数化、模块化三维设计的优势和实施方法

浅析参数化、模块化三维设计的优势和实施方法1引言对于机械设计,传统的设计方法都是设计人员通过画图板、铅笔、制图工具,来绘制图形。

这样的设计方法不但使设计工作变得复杂、枯燥,而且浪费了很多的资源和时间。

如今已经很少看到设计人员用纸笔画图了,取而代之的是CAD软件。

通过CAD软件来设计图形使设计人员节约了很多时间,提高了设计的质量和效率,做到了传统设计方法无法做到的一些事情。

目前模拟传统作图过程的CAD二维设计已经得到广泛的应用,而CAD三维设计正在以无可比拟的优势逐渐替代CAD二维设计。

三维设计技术有着和传统设计不同的思想和方法,它的出现和发展是我们机械设计上的一大进步。

目前三维设计软件已经渗透到各个工程领域,未来互联网+、智能制造、虚拟现实技术皆是以三维设计为基础,可以说三维设计是机械设计行业的必由之路。

孙中山先生说过,“天下大势,浩浩汤汤,顺之者昌,逆之者亡。

”对于国家历史尚且如此,小到一个企业及个人又何尝不是呢,对于设计人员来说,三维设计的思想和方法已经成为本领域人员不可或缺的技能,也是跟上时代不被淘汰必备的基本技能。

2参数化、模块化三维设计优势三维设计有其自身的规律和方式,并不是许多人认为的那样,杀猪杀屁股,各有各的杀法,只要最后做出的模型正确就行了。

作者经过多年的使用和推广,总结了很多三维设计的经验,并摸索出了很好的设计方法,其中十二条原则(见附录)是很重要的原则,是三维设计必须坚持的基本原则,是多年来由失败中总结出的经验结晶,不遵守的话就可以直接放弃三维设计了,因为到设计后期将举步维艰。

三维设计水平的层次可以划分为三个阶段,第一阶段是三维建模堆积木,第二阶段是TOP-DOWN设计,第三阶段是模块化设计。

目前设计人员的三维设计水平参差不齐,由于各种原因,部分设计人员仍坚持使用AutoCAD二维设计方法,其中很重要的几点是:一、有人总是说三维设计效率低,没有在老图纸的基础上改改来的快;二是三维设计总是出错;三是错误后很难更改。

三维参数化设计探究——参数化方法论

三维参数化设计探究——参数化方法论三维参数化设计是一种基于参数化方法的设计方法,通过对设计问题进行参数化建模、优化和分析,实现设计方案的快速生成和灵活调整。

在三维参数化设计中,设计问题被视为一个参数空间,设计师通过改变参数的取值来探索和优化设计方案。

参数化方法论是三维参数化设计的理论基础,它提供了一种系统的方法来解决设计问题。

参数化方法论主要包括以下几个方面的内容:1.参数化建模:参数化建模是将设计问题转化为一个参数空间的过程。

设计师需要将设计问题抽象成一系列可调整的参数,然后通过参数间的关系来构建参数化模型。

参数化模型是一种基于参数的几何模型,可以根据参数的取值实时地生成不同的几何形状。

2.参数化优化:参数化优化是通过优化算法来参数空间中的最优解。

在参数化优化中,设计师需要定义一个性能评价函数,用来评估不同参数组合的设计方案。

然后,优化算法根据评价函数的反馈信息来最优解。

常用的参数化优化方法包括遗传算法、蚁群算法、粒子群算法等。

3.参数化分析:参数化分析是利用参数化模型对设计方案进行灵活调整和分析。

通过改变参数的取值,设计师可以直观地观察到设计方案的变化。

而且,基于参数化模型,设计师还可以对设计方案进行一系列性能分析,例如强度分析、流场分析、光照分析等。

3.参数化模型与实体模型之间的转换:在实际应用中,设计师通常会先使用参数化建模工具构建参数化模型,然后通过参数化模型生成实体模型。

参数化模型是一种抽象的几何模型,而实体模型是一种具体的几何模型,可以直接输出制造或可视化。

参数化模型与实体模型之间的转换通常需要进行网格生成、拓扑处理和曲面生成等步骤。

三维参数化设计具有多个优点和应用价值。

首先,三维参数化设计可以提高设计效率与设计质量。

通过参数化建模,设计师可以轻松地生成大量设计方案,并通过参数化优化来最优解。

其次,三维参数化设计可以加强设计的灵活性与可调整性。

通过参数化分析,设计师可以直观地观察到设计方案的变化,并根据需要进行灵活调整。

快速设计 Blender中的参数化建模技巧

快速设计:Blender中的参数化建模技巧Blender是一款功能强大的三维建模和渲染软件,广泛应用于动画、影视制作、游戏开发等领域。

在Blender中,参数化建模是一项重要的技巧,它可以帮助用户更高效地创建和修改模型,节省时间和精力。

本文将介绍一些在Blender中实现参数化建模的技巧。

首先,我们可以利用Blender中的公式编辑器来实现参数化建模。

打开Blender后,选择一个基本的几何体(如立方体),然后进入其编辑模式。

选择一个面,按快捷键"U",然后选择"Project From View",将该面投影到视图中。

然后,按快捷键"N",在属性面板中打开公式编辑器。

在公式编辑器中,我们可以使用数学公式来控制模型的形状。

例如,我们可以选择一个顶点,设置其横坐标公式为"sin(x)",纵坐标公式为"cos(x)",这样顶点的位置将根据正弦曲线和余弦曲线确定。

通过调整公式的参数,我们可以快速修改模型的形状。

其次,Blender中的驱动功能也是实现参数化建模的重要手段。

驱动是一种可以通过设定条件和计算关系来实现模型自动变化的方法。

在Blender中,我们可以使用Python脚本、物理引擎、约束等方式来创建驱动。

例如,我们可以选择一个模型的顶点,设置一个关于时间的驱动,通过控制时间来实现模型的运动效果。

我们也可以选择一个模型的边,设置一个关于鼠标位置的驱动,通过控制鼠标位置来实现模型的形变效果。

通过合理运用驱动功能,我们可以快速创建出想要的参数化模型。

此外,在Blender中,使用数组和镜像功能也是实现参数化建模的重要技巧。

数组是一种可以将模型重复复制的方式,可以根据一系列参数来控制复制的数量、间距和方向等。

镜像则是一种可以在模型的对称面上自动生成对称的部分的方式。

通过合理运用数组和镜像功能,我们可以快速创建对称的模型,避免了重复建模的工作量。

三维参数化造型及设计资料讲解


用如右图所 示的拓扑
闭合环(Loop)
(topology) 结构。
边(Edge)
顶点(Vertex)
表面(Surface)
曲线(Curve) 点(Point)
根据模型的数据结构所包含的拓扑元素的不 同,可以将三维模型分为线框模型、表面模 型和实体模型。
(1)线框模型
线框模型中一个物体的描述是通过顶点和 与之相连的边来产生的。
可以认为,参数化技术的应用主导了CAD发 展史上的第三次技术革命。
4、第四次CAD技术革命
——更上层楼的变量化技术
SDRC的开发人员发现了参数化技术尚有许 多不足之处。
首先,全尺寸约束这一硬性规定就干扰和制 约着设计者创造力及想象力的发挥。
全尺寸约束:即设计者在设计初期及全过程中, 必须通过尺寸约束来控制形状,通过尺寸的改变 来驱动形状的改变。当零件形状过于复杂时,改 变尺寸达到所需要的形状很不直观;
实体模型在数据结构中增加了体的概念, 与其计算机内部描述(数据结构)相对应, 可分成边界表示法(B-Rep)和构造实体 几何法(CSG)。
实体模型可以在计算机内部对几何物体进 行唯一的、无冲突的和完整的描述。
实体模型可以通过接口为其他应用提供关 于物体完整的计算机内部描述,因此计算 机辅助设计过程可以完全自动化。从数据 的通用性来看,通过程序应用,整个产品 生产过程都可以得到辅助。
3、第三次CAD技术革命
——一鸣惊人的参数化技术
如果说在此之前的造型技术属于无约束自由 造型的话,进入80年代中期,出现了比无约 束自由造型更好的算法──参数化实体造型 方法。它主要的特点是:基于特征、全尺寸 约束、全数据相关、尺寸驱动设计修改。
参数技术公司(Parametric Technology Corp.), 研制了命名为Pro/E的参数化软件。由于第 一次实现了尺寸驱动零件设计修改,使人们 看到了它今后将给设计者带来的方便性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③ 产品系列化:为了满足市场需求的多样 性,企业往往推出规格与配置有所差别的产 品系列。这需要在设计中指定相应的零件规 格系列和产品装配配置方式。 ④ 产品设计规范和信息存档:对于初具规 模的企业而言,产品的设计与制造都是连续 性的行为,因此继承以往的设计与制造经验 具有极其重要的意义。在产品设计中既需要 利用已有的规范,也需要考虑将典型的新设 计方案上升为企业设计规范。
三维参数化造型及设计

第五讲 特征技术应用与零件设计专用1一、特征技术的应用



特征技术具有鲜明的工程性和层次性,加上参 数化技术的支持,可以方便地编辑模型,在产 品模型的控制和更改方面提供了广泛的潜力。 但是特征技术强大的控制能力利用得好,可以 使模型维护与更改方便。而运用不当,缺乏良 好规划的特征关系会使设计中点滴之处的微小 修改导致整个模型意想不到的结果。 了解特征的层次性和时序性,在特征的各层次 之间合理规划建模的策略,逐步完成实体模型 的建立。特征造型的优势并非造型的速度,而 是通过对特序是特征技术的重要特点,对于 特征技术而言,由于特征关系的问题,使得 特征建立的次序成为重要因素。首先后期的 特征需要借用前面特征的有关要素,例如定 义草图时借用己有特征的轮廓建立几何和尺 寸关系等。其次,特征的拓扑关系是在已有 特征的环境下设的关键 设计的控制是产品设计中的关键问题,三维 设计不仅在效率和造型方法方面改变了传统 手工设计的基本方法,更为主要的是三维产 品设计由于应用特征技术、数据一致性和设 计信息的全局化应用等特点,导致其控制的 重要性远远大于造型本身。打个形象的比方, 在传统的手工设计阶段,我们采用的是效率 低下的图板,虽然速度缓慢但是安全,设计 图纸中的错误可以采用同等的工作量去进行 修正。

2、特征关系的类别和影响 在特征之间有如下几种关系:几何与 尺寸关系、拓扑关系和时序关系。 特征之间的几何和尺寸关系主要在特 征草图中设定,几何关系包括特征草 图实体之间的相切、等距等几何关联 方式。尺寸关系设定特征的是几何实体在空间中的相互位 置关系。例如孔对于实体模型的贯穿关系, 面之间的相切或者等距关系等。对于特征而 言,拓扑关系主要体现在特征定义的终止条 件中,如完全贯穿、到离指定面指定的距离 等终止条件方式决定了特征之间的拓扑关系。 这种拓扑关系不会因为与子特征,父子关系 如果一个特征的建立参照了其他特征的元素, 则被参照特征成为该特征的父特征,而该特征 称为父特征的子特征。父特征与子特征之间形 成父子关系,在SolidWorks的帮助文件中这样 解释父子关系: ♂当某些特征生成于其他特征之上时,则以前 生成特征的存在决定了它们的存在。此新的特 征称为子特征。例如,一个实体上有一个孔, 孔便是这个实体的子特征。 ♂父特征是其他特征所依赖的现有特征。例如,一些基本规则 在特征造型中,由于层次性和建模时序的交 织,不同的建模方式不仅在速度上有所差异, 更会影响到后续的模型维护与修改等方面。 特征建模中需要遵循的几种基本的原则: ①合理规划关系出现的层次,定义关系所处 的层次需注意:比较固定的关系封装在较低 层次,需要经常调整的关系放在较高层次。 ②先建立构成零件基本形态的主要特征和较 大尺度的特征,然后再添加辅助的圆角、倒 角等辅助特征。 ③先确立特征的几何形状,然后再确定特征 尺寸,在必要的情况下添加特征之间的尺寸 和几何关系。专用 8表 父子关系的类型


父子关系的这种解释方法重点放在了特征的建 立次序方面,实际上并没有包含父子关系的所 有方面。这里将父子特征关系区分为如下几种 类型: 基准关系、几何与尺寸关系、拓扑关系、派 生关系、数学关系 在特征管理树中,子特征肯定位于父特征之后, 不要试图将子特征移动到父特征之前。 删除父特征会同时删除子特征AD系统的建模层次 如下图所示,基于特征的产品造型分为四个层 次: 草图、特征、零件和产品。其中特征是三 维造型的基本单元。
草图 构建参数 特征 特征关系 零件 父子关系 时序关系
装配关系
产品图 基于特征的产品造型 专用3

草图提供生成特征的基本信息,如拉伸特征的 截面等,草图中存在着几何约束与尺寸约束。 从草图生成特征需要追加特征构建参数,如拉 伸特征中的深度等。 在特征层次中,特征之间的关系十分复杂,既 包括类似于草图中的尺寸约束和几何约束,还 有特征之间的父子关系和时序关系。 一系列的特征经过组合、剪裁、阵列、镜向等 操作形成零件模型,零件模型中需要体现设计 意图,反映产品的基本特性。 零件按照装配要求生成产品的整体模型,CAD 软件不仅支持静态装配,还可以演示产品中零 件的相互运动关系。在产品总体层次体现设计 意件设计的基本步骤和原则

1、零件设计的地位和基本任务 零件设计是产品设计的基本组成部分,就企 业而言,零件设计的功能包括如下几个方面: ① 结构设计:将产品决策阶段的产品功能 实现方案转换为具体的结构实现。确定产品 各部分的几何形状和精确尺寸。 ② 工程属性定义:按照产品的运动要求、 材料的力学属性等指定产品的工程属性,如 运动配合与静态配合的公差,零件金属材料 的选用和热处理方式等。 13 专用专用 10
而在利用基于特征技术的CAD系统时,虽然 可以方便地利用其中的父子关系、变更参数 等高效率的建模方法,但是如果在特征关系 处理上方法失策,就会为后续的工作积累无 穷的隐患,因此要深入了解各种特征技术的 功能和应用场合,努力做到设计意图与产品 造型方法选择的一致性。如果没有做到这点, 修正模型需要花费巨大的工作量去理清几何 模型中的各种关系,甚至重新来过。所以了 解并掌握特征关系是使用三维CAD软件的终 极目标之一。
相关文档
最新文档