中考数学试题平均数、中位数、众数、方差
山东省潍坊市中考数学真题试题(含解析)-人教版初中九年级全册数学试题

2020年某某省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点评】本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b【分析】根据合并同类项、幂的乘方,同底数幂乘法以及完全平方公式,逐项判断即可.【解答】解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2+2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.【点评】本题考查合了并同类项,同底数幂的乘法和积的乘方、以及完全平方公式,解题关键是熟记运算法则和公式.3.(3分)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106【分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故先将1109万换成11090000,再按照科学记数法的表示方法表示即可得出答案.【解答】解:∵1109万=11090000,∴11090000=1.109×107.故选:A.【点评】本题考查了科学记数法的简单应用,属于基础知识的考查,比较简单.4.(3分)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的和看不到的棱都应表现在左视图中.【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.5.(3分)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141 144 145 146学生人数(名) 5 2 1 2则关于这组数据的结论正确的是()A.平均数是144 B.众数是141【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.【解答】解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D选项错误;故选:B.【点评】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.6.(3分)若m2+2m=1,则4m2+8m﹣3的值是()A.4 B.3 C.2 D.1【分析】把变形为4m2+8m﹣3=4(m2+2m)﹣3,再把m2+2m=1代入计算即可求出值.【解答】解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.【点评】此题考查了求代数式的值,以及“整体代入”思想.解题的关键是把代数式4m2+8m﹣3变形为4(m2+2m)﹣3.7.(3分)如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21 B.28 C.34 D.42【分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.【点评】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答8.(3分)关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】先计算判别式,再进行配方得到△=(k﹣1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【解答】解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.(3分)如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B (1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2 B.﹣2<x<0或x>1C.x>1 D.x<﹣2或0<x<1【分析】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的X围即可.【解答】解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.【点评】本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.10.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1 D.【分析】延长CO交⊙O于点E,连接EP,交AO于点P,则PC+PD的值最小,利用平行线份线段成比例分别求出CD,PO的长即可.【解答】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴,即,解得,PO=故选:B.【点评】此题主要考查了轴对称﹣﹣﹣最短距离问题,同时考查了平行线分线段成比例,掌握轴对称性质和平行线分线段成比例定理是解题的关键.11.(3分)若关于x的不等式组有且只有3个整数解,则a的取值X围是()A.0≤a≤2B.0≤a<2 C.0<a≤2D.0<a<2【分析】先求出不等式组的解集(含有字母a),利用不等式组有三个整数解,逆推出a 的取值X围即可.【解答】解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数求出关于a的不等式组12.(3分)若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【分析】根据a⊗b=,可得当x+2≥2(x﹣1)时,x≤4,分两种情况:当x≤4时和当x>4时,分别求出一次函数的关系式,然后判断即可得出结论.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.【点评】本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)因式分解:x2y﹣9y=y(x+3)(x﹣3).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)若|a﹣2|+=0,则a+b= 5 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.【点评】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.(3分)如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=55 °.【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出α.【解答】解:如图,∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠2=90°,∴∠AMQ=90°﹣∠2=90°﹣35°=55°,∵∠α与∠AMQ是对顶角,∴∠α=∠AMQ=55°.故答案为:55°.【点评】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.(3分)若关于x的分式方程+1有增根,则m= 3 .【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x的值,代入到转化以后的整式方程中计算即可求出m的值.【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.【点评】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.17.(3分)如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG 和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE=.【分析】根据折叠的性质结合勾股定理求得GE=5,BC=AD=8,证得Rt△EGF∽Rt△EAG,求得,再利用勾股定理得到DE的长,即可求解.【解答】解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=90°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.【点评】本考查了翻折变换,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.18.(3分)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是4039π.【分析】曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,再计算弧长.【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.【点评】此题主要考查了弧长的计算,弧长的计算公式:,找到每段弧的半径变化规律是解题关键.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.【分析】先将括号里的进行通分运算,然后再计算括号外的除法,把除法运算转化为乘法运算,进行约分,得到最简分式,最后把x值代入运算即可.【解答】解:原式=,=,=,=.∵x是16的算术平方根,∴x=4,当x=4时,原式=.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【分析】过点C作CD⊥AB,垂足为D,根据在C处测得桥两端A,B两点的俯角分别为60°和45°,可得∠CAD=∠MCA=60°,∠CBD=∠NCB=45°,利用特殊角懂得三角函数求解即可.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD===40(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40+120)(米).答:桥AB的长度为(40+120)米.【点评】本题考查了特殊角的三角函数的运算,熟悉特殊角的三角函数值是解题的关键.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.【分析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;(2)先求出B档所占百分比,再乘以1200即可得到结论;(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.【解答】解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)==.【点评】本题考查条形统计图以及树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【分析】(1)连接BF,证明BF∥CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.【解答】解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.【点评】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)【分析】(1)设y与x之间的函数表达式为y=kx+b,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w关于x的二次函数,根据二次函数的性质即可求解.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为W元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.【点评】本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD =AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【分析】(1)利用“SAS”证得△ACE≌△ABD即可得到结论;(2)利用“SAS”证得△ACE≌△ABD,推出∠ACE=∠ABD,计算得出AD=BC=,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【解答】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EF B=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)直接将A(﹣2,0)和点B(8,0)代入y=ax2+bx+8(a≠0),解出a,b 的值即可得出答案;(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM三种情况讨论结合图形得出边之间的关系,即可得出答案.【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),∴,解得,∴抛物线解析式为:;(2)当x=0时,y=8,∴C(0,8),∴直线BC解析式为:y=﹣x+8,∵,∴,过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,∴F(t,﹣t+8),∴,∴,即,∴t1=2,t2=6,∴P1(2,12),P2(6,8);(3)∵C(0,8),B(8,0),∠COB=90°,∴△OBC为等腰直角三角形,抛物线的对称轴为,∴点E的横坐标为3,又∵点E在直线BC上,∴点E的纵坐标为5,∴E(3,5),设,①当MN=EM,∠EMN=90°,当△NME~△COB时,则,解得或(舍去),∴此时点M的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则,解得:或(舍去),∴此时点M的坐标为;③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴,∴,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),或(3,11).【点评】本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.。
2022年四川省绵阳市中考数学真题(解析版)

4. 下列关于等边三角形的描述不正确的是( )
A. 是轴对称图形
B. 对称轴的交点是其重心
C. 是中心对称图形
D. 绕重心顺时针旋转 120°能与自身重合
【答案】C 【解析】 【分析】根据等边三角形的轴对称性,三线合一的性质逐一判断选项,即可. 【详解】解:A. 等边三角形是轴对称图形,正确,不符合题意, B. 等边三角形的对称轴的交点是其重心,正确,不符合题意, C. 等边三角形不是中心对称图形,符合题意, D. 等边三角形绕重心顺时针旋转 120°能与自身重合,正确,不符合题意. 故选 C. 【点睛】本题考查了等边三角形的性质,三角形重心,中心对称图形与轴对称图形的定义,正确掌握相关 定义是解题关键. 5. 某中学青年志愿者协会的 10 名志愿者,一周的社区志愿服务时间如下表所示:
7. 正整数 a、b 分别满足 3 53 a 3 98 , 2 b 7 ,则 ba ( )
A. 4 【答案】D 【解析】
B. 8
C. 9
D. 16
【分析】根据 a、b 的取值范围,先确定 a、b,再计算 ba .
【详解】解: 3 53 3 64 3 98 , 2 4 7 , a 4,b 2,
时间/h
2
3
4
5
6
人数
1
3
2
3
1
关于志愿者服务时间的描述正确的是( )
A. 众数是 6
B. 平均数是 4
C. 中位数是 3
D. 方差是 1
【答案】B
【解析】
【分析】根据中位数,众数,平均数和方差的定义,逐一判断选项即可.
【详解】解:∵志愿者服务时间为 3 小时的人数为 3 个人,志愿者服务时间为 5 小时的人数为 3 个人,
(整理)中考数学真题解析58 平均数、中位数、众数、方差、极差、标准差(含答案).

(2012年1月最新最细)2011全国中考真题解析120考点汇编平均数、中位数、众数、方差、极差、标准差一、选择题1.(2011江苏淮安,6,3分)某地区连续5天的最高气温(单位:℃)分别是30,33,24,29,24.这组数据的中位数是()A.29B.28C.24D.9考点:中位数。
专题:计算题。
分析:求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:数据排序为:24、24、29、30、33,∴中位数为29,故选A.点评:注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.2.(2011盐城,7,3分)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()A.平均数为30B.众数为29C.中位数为31D.极差为5 考点:方差;算术平均数;中位数;众数.专题:计算题.分析:分别计算该组数据的平均数,众数,中位数及极差后找到正确的答案即可.x=29.8,∵数据29出现两次最多,∴众数为29,解答:解:中位数为29,极差为:32﹣28=4.故B.点评:本题考查了平均数、中位数及众数的定义,特别是求中位数时候应先排序.3.(2011江苏苏州,5,3分)有一组数椐:3,4,5,6,6,则下列四个结论中正确的是()A、这组数据的平均数、众数、中位数分别是4.8,6,6B、这組数据的平均数、众数、中位数分别是5,5,5C、这组数据的平均数、众数、中位数分别是4.8,6,5D、这组数据的平均数、众数、中位数分别是5,6,6考点:众数;算术平均数;中位数.专题:计算题.分析:要求平均数只要求出数据之和再除以总个数即可;对于众数可由数据中出现次数最多的数写出;对于中位数,因为题中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的一个数.解答:解:一组数椐:3,4,5,6,6的平均数=(3+4+5+6+6)÷5=24÷5=4.8.6出现的次数最多,故众数是6.按从小到大的顺序排列,最中间的一个数是5,故中位数为:5.故选C.点评:本题考查平均数、中位数和众数的概念.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.4.(2011江苏无锡,8,3分)100名学生进行20秒钟跳绳测试,测试成绩统计如下表:则这次测试成绩的中位数m满足()A.40<m≤50B.50<m≤60 C.60<m≤70D.m>70考点:中位数。
2022年上海中考数学真题(word解析版)

【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.
二.填空题
7.计算:3a-2a=__________.
【答案】a
【解析】
【详解】根据同类项与合并同类项法则计算:3a-2a=(3-2)a=a
8.已知f(x)=3x,则f(1)=_____.
【答案】3
故选:D.
【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.
5.下列说法正确的是()
A. 命题一定有逆命题B. 所有的定理一定有逆定理
C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题
【答案】B
【解析】
【分析】根据反比例函数性质求】解:∵反比例函数y= (k≠0),且在各自象限内,y随x的增大而增大,,
∴k=xy<0,
A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;
B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;
D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.
故选:A.
【点睛】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.
2022年上海中考数学真题
一.选择题
1.8的相反数是()
A. B.8C. D.
【答案】A
【解析】
(必考题)初中八年级数学下册第二十章《数据的分析》经典测试题(含答案解析)(1)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数B解析:B 【分析】根据方差的意义即可判断. 【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 故选:B . 【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3 B .4C .5D .9C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.3.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁C解析:C【分析】先比较平均数,平均数相同时选择方差更小的参加.【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛,又因为丙的方差小于甲的方差,所以丙的成绩更具有稳定性,所以应该选择丙参赛.故选:C.【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.4.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。
2024年四川省广元市中考数学试题(含答案)

广元市2024年初中学业水平考试暨高中阶段学校招生考试数学说明:1.全卷满分150分,考试时间120分钟.2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共三个大题26个小题.3.考生必须在答题卡上答题,写在试卷上的答案无效.选择题必须使用2B 铅笔填涂答案,非选择题必须使用0.5毫米黑色墨迹签字笔答题.4.考试结束,将答题卡和试卷一并交回.第Ⅰ卷选择题(共30分)一、选择题(每小题给出的四个选项中,只有一个符合题意.每小题3分,共30分)1.将1-在数轴上对应的点向右平移2个单位,则此时该点对应的数是()A .1- B.1 C.3- D.3【答案】B【解析】【分析】本题考查了数轴上的动点问题,正确理解有理数所表示的点左右移动后得到的点所表示的数是解题的关键.将1-在数轴上对应的点向右平移2个单位,在数轴上找到这个点,即得这个点所表示的数.【详解】根据题意:数轴上1-所对应的点向右平移2个单位,则此时该点对应的数是1.故选B .2.下列计算正确的是()A.336a a a += B.632a a a ÷= C.()222ab a b +=+ D.()2224ab a b =【答案】D【解析】【分析】本题考查了合并同类项,同底数幂的除法,完全平方公式,积的乘方运算,正确的计算是解题的关键.根据合并同类项,同底数幂的除法,完全平方公式,积的乘方运算法则逐项分析判断即可求解.【详解】解:A .3332a a a +=,故该选项不正确,不符合题意;B .633a a a ÷=,故该选项不正确,不符合题意;C .()222=2a b a ab b +++,故该选项不正确,不符合题意;D .()2224ab a b =,故该选项正确,符合题意.故选:D .3.一个几何体如图水平放置,它的俯视图是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了组合体的三视图,解题的关键是根据从上面看到的图形是几何体的俯视图即可解答.【详解】解:从上面看,如图所示:故选:C .4.在“五·四”文艺晚会节目评选中,某班选送的节目得分如下:91,96,95,92,94,95,95,分析这组数据,下列说法错误的是()A.中位数是95B.方差是3C.众数是95D.平均数是94【答案】B【解析】【分析】此题考查了平均数,中位数,众数,方差的定义及计算,根据各定义及计算公式分别判断,正确掌握各定义及计算方法是解题的关键【详解】解:将数据从小到大排列为91,92,94,95,95,95,96,共7个数据,居中的一个数据是95,∴中位数是95,故A 选项正确;这组数据中出现次数最多的数据是95,故众数是95,故C 选项正确;这组数据的平均数是()191929495959596947++++++=,故D 选项正确;这组数据的方差为()()()()()2222212091949294949495943969477⎡⎤-+-+-+-⨯+-=⎣⎦,故B 选项错误;故选:B 5.如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于()A .64︒ B.60︒ C.54︒ D.52︒【答案】A【解析】【分析】本题考查了圆周角定理,圆内接四边形的性质,熟练掌握以上知识点是解题的关键.根据同弧所对的圆心角等于圆周角的2倍可求得ABC ∠的度数,再根据圆内接四边形对角互补,可推出CDE ABC ∠=∠,即可得到答案.【详解】解:ABC ∠ 是圆周角,与圆心角AOC ∠对相同的弧,且128AOC ∠=︒,111286422ABC AOC ∴∠=∠=⨯︒=︒,又 四边形ABCD 是O 的内接四边形,180ABC ADC ∴∠+∠=︒,又180CDE ADC ∠+∠=︒ ,64CDE ABC ∴∠=∠=︒,故选:A .6.如果单项式23m x y -与单项式422n x y -的和仍是一个单项式,则在平面直角坐标系中点(),m n 在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出,m n 的值,再确定点(),m n 的位置即可【详解】解:∵单项式23m x y -与单项式422n x y -的和仍是一个单项式,∴单项式23m x y -与单项式422n x y -是同类项,∴24,23m n =-=,解得,2,1m n ==-,∴点(),m n 在第四象限,故选:D7.如图,将ABC 绕点A 顺时针旋转90︒得到ADE V ,点B ,C 的对应点分别为点D ,E ,连接CE ,点D 恰好落在线段CE 上,若3CD =,1BC =,则AD 的长为()A. B. C.2 D.【答案】A【解析】【分析】此题考查了旋转的性质,等腰直角三角形的判定和性质,勾股定理,由旋转得AC AE =,90CAE ∠=︒,1DE BC ==,推出ACE △是等腰直角三角形,4CE =,过点A 作AH CE ⊥于点H ,得到1HD =,利用勾股定理求出AD 的长.【详解】解:由旋转得ABC ADE △△≌,90CAE ∠=︒,∴AC AE =,90CAE ∠=︒,1DE BC ==,∴ACE △是等腰直角三角形,314CE CD DE =+=+=,过点A 作AH CE ⊥于点H ,∴122AH CE CH HE ====,∴211HD HE DE =-=-=,∴AD ===,故选:A .8.我市把提升城市园林绿化水平作为推进城市更新行动的有效抓手,从2023年开始通过拆违建绿、见缝插绿等方式在全域打造多个小而美的“口袋公园”.现需要购买A 、B 两种绿植,已知A 种绿植单价是B 种绿植单价的3倍,用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株.设B 种绿植单价是x 元,则可列方程是()A.67503000503x x -= B.30006750503x x -=C.67503000503x x += D.30006750503x x +=【答案】C【解析】【分析】本题主要考查了分式方程的应用,设B 种绿植单价是x 元,则A 种绿植单价是3x 元,根据用6750元购买的A 种绿植比用3000元购买的B 种绿植少50株,列出方程即可.【详解】解:设B 种绿植单价是x 元,则A 种绿植单价是3x 元,根据题意得:67503000503x x+=,故选:C .9.如图①,在ABC 中,90ACB ∠=︒,点P 从点A 出发沿A →C →B 以1cm /s 的速度匀速运动至点B ,图②是点P 运动时,ABP 的面积()2cmy 随时间x (s )变化的函数图象,则该三角形的斜边AB 的长为()A.5B.7C.D.【答案】A【解析】【分析】本题考查根据函数图象获取信息,完全平方公式,勾股定理,由图象可知,ABP 面积最大值为6,此时当点P 运动到点C ,得到162AC BC ⋅=,由图象可知7AC BC +=,根据勾股定理,结合完全平方公式即可求解.【详解】解:由图象可知,ABP 面积最大值为6由题意可得,当点P 运动到点C 时,ABP 的面积最大,∴162AC BC ⋅=,即12AC BC ⋅=,由图象可知,当7x =时,0y =,此时点P 运动到点B ,∴7AC BC +=,∵90C ∠=︒,∴()222222721225AB AC BC AC BC AC BC =+=+-⋅=-⨯=,∴5AB =.故选:A10.如图,已知抛物线2y ax bx c =++过点()0,2C -与x 轴交点的横坐标分别为1x ,2x ,且110x -<<,223x <<,则下列结论:①<0a b c -+;②方程220ax bx c +++=有两个不相等的实数根;③0a b +>;④23a >;⑤2244b ac a ->.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】本题考查的是二次函数的图象与性质,熟练的利用数形结合的方法解题是关键;由当=1x -时,0y a b c =-+>,可判断①,由函数的最小值2y <-,可判断②,由抛物线的对称轴为直线2b x a=-,且13222b a <-<,可判断③,由1x =时,0y a b c =-+>,当3x =时,930y a b c =++>,可判断④,由根与系数的关系可判断⑤;【详解】解:① 抛物线开口向上,110x -<<,223x <<,∴当=1x -时,0y a b c =-+>,故①不符合题意;②∵抛物线2y ax bx c =++过点()0,2C -,∴函数的最小值2y <-,∴22ax bx c ++=-有两个不相等的实数根;∴方程220ax bx c +++=有两个不相等的实数根;故②符合题意;③∵110x -<<,223x <<,∴抛物线的对称轴为直线2bx a =-,且13222ba <-<,∴13ba <-<,而0a >,∴3a b a -<<-,∴0a b +<,故③不符合题意;④∵抛物线2y ax bx c =++过点()0,2C -,∴2c =-,∵1x =时,0y a b c =-+>,即3330a b c -+>,当3x =时,930y a b c =++>,∴1240a c +>,∴128a >,∴23a >,故④符合题意;⑤∵110x -<<,223x <<,∴212x x ->,由根与系数的关系可得:12bx x a +=-,12c x x a =,∴2224144b acb ca a a-⎛⎫=⨯-- ⎪⎝⎭()2121214x x x x =+-()21212144x x x x ⎡⎤=+-⎣⎦()212114144x x =->⨯=∴22414b ac a->,∴2244b ac a ->,故⑤符合题意;故选:C .第Ⅱ卷非选择题(共120分)二、填空题(把正确答案直接写在答题卡对应题目的横线上,每小题4分,共24分)11.分解因式:2(1)4a a +-=___________________________________.【答案】2(1)a -##2(1)a -+【解析】【分析】首先利用完全平方式展开2(1)a +,然后合并同类项,再利用完全平方公式进行分解即可.【详解】2222(1)412421(1)a a a a a a a a +-=++-=-+=-.故答案为:2(1)a -.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式:222)2(a ab b a b ±+=±.12.2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810-秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为______秒.【答案】174.310-⨯【解析】【分析】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,解题的关键是熟知110a ≤<.根据题意可知,43阿秒184310-=⨯秒,再根据科学记数法的表示方法表示出来即可.【详解】解:根据题意1阿秒是1810-秒可知,43阿秒18174310 4.310--=⨯=⨯秒,故答案为:174.310-⨯.13.点F 是正五边形ABCDE 边DE 的中点,连接BF 并延长与CD 延长线交于点G ,则BGC ∠的度数为______.【答案】18︒##18度【解析】【分析】连接BD ,BE ,根据正多边形的性质可证()SAS ABE CBD ≌,得到BE BD =,进而得到BG 是DE 的垂直平分线,即90DFG ∠=︒,根据多边形的内角和公式可求出每个内角的度数,进而得到72FDG ∠=︒,再根据三角形的内角和定理即可解答.【详解】解:连接BD ,BE ,∵五边形ABCDE 是正五边形,∴AB BC CD AE ===,A C∠=∠∴()SAS ABE CBD ≌,∴BE BD =,∵点F 是DE 的中点,∴BG 是DE 的垂直平分线,∴90DFG ∠=︒,∵在正五边形ABCDE 中,()521801085CDE -⨯︒∠==︒,∴18072FDG CDE ∠=︒-∠=︒,∴180180907218G DFG FDG ∠=︒-∠-∠=︒-︒-︒=︒.故答案为:18︒【点睛】本题考查正多边形的性质,内角,全等三角形的判定及性质,垂直平分线的判定,三角形的内角和定理,正确作出辅助线,综合运用相关知识是解题的关键.14.若点(),Q x y 满足111x y xy+=,则称点Q 为“美好点”,写出一个“美好点”的坐标______.【答案】()2,1-(答案不唯一)【解析】【分析】此题考查了解分式方程,先将方程两边同时乘以xy 后去分母,令x 代入一个数值,得到y 的值,以此为点的坐标即可,正确解分式方程是解题的关键【详解】解:等式两边都乘以xy ,得1x y +=,令2x =,则1y =-,∴“美好点”的坐标为()21-,,故答案为()21-,(答案不唯一)15.已知y =与()0k y x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0k y x x =>上点C 处,则B 点坐标为______.【答案】()0,4【解析】【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出(2,A 以及()430y x x=>,根据解直角三角形得130∠=︒,根据折叠性质,330∠=︒,然后根据勾股定理进行列式,即4OB OC ==.【详解】解:如图所示:过点A 作AH y ⊥轴,过点C 作CD x ⊥轴,∵3y x =与()0ky x x =>的图象交于点()2,A m ,∴把()2,A m 代入3y x =,得出3223m ==,∴(2,3A ,把(2,3A 代入()0ky x x =>,解得233k =⨯=,∴()430y x x =>,设43C m m ⎛⎫⎪ ⎪⎝⎭,,在23Rt tan 1323AHAHO OH ∠=== ,,∴130∠=︒,∵点B 为y 轴上一点,将OAB 沿OA 翻折,∴2130∠=∠=︒,OC OB =,∴3901230∠=︒-∠-∠=︒,则433tan 33CDm OD m =∠==,解得3m =,∴()23C ,,∴()222324OB OC ==+=,∴点B 的坐标为()04,,故答案为:()04,.16.如图,在ABC 中,5AB =,tan 2C ∠=,则5AC BC +的最大值为______.【答案】【解析】【分析】过点B 作BD AC ⊥,垂足为D ,如图所示,利用三角函数定义得到5AC BC AC DC +=+,延长DC 到E ,使EC CD x ==,连接BE ,如图所示,从而确定5AC BC AC DC AC CE AE +=+=+=,45E ∠=︒,再由辅助圆-定弦定角模型得到点E 在O 上运动,AE 是O 的弦,求5AC BC +的最大值就是求弦AE 的最大值,即AE 是直径时,取到最大值,由圆周角定理及勾股定理求解即可得到答案.【详解】解:过点B 作BD AC ⊥,垂足为D ,如图所示:tan 2C ∠=,∴在Rt BCD 中,设DC x =,则2BD x =,由勾股定理可得BC =,55DC BC ∴==,即55BC DC =,∴5AC BC AC DC +=+,延长DC 到E ,使EC CD x ==,连接BE ,如图所示:∴55AC BC AC DC AC CE AE +=+=+=, BD DE ⊥,2DE x BD ==,BDE ∴ 是等腰直角三角形,则45E ∠=︒,在ABE 中,5AB =,45E ∠=︒,由辅助圆-定弦定角模型,作ABE 的外接圆,如图所示:∴由圆周角定理可知,点E 在O 上运动,AE 是O 的弦,求55AC BC +的最大值就是求弦AE 的最大值,根据圆的性质可知,当弦AE 过圆心O ,即AE 是直径时,弦最大,如图所示:AE 是O 的直径,∴90ABE ∠=︒,45E ∠=︒ ,∴ABE 是等腰直角三角形,5AB = ,∴5BE AB ==,则由勾股定理可得AE ==55AC BC +的最大值为故答案为:【点睛】本题考查动点最值问题,涉及解三角形、勾股定理、等腰直角三角形的判定与性质、圆的性质、圆周角定理、动点最值问题-定弦定角模型等知识,熟练掌握动点最值问题-定弦定角模型的解法是解决问题的关键.三、解答题(要求写出必要的解答步骤或证明过程.共96分)17.计算:()2012024π2tan 602-⎛⎫-++︒- ⎪⎝⎭.【答案】1-【解析】【分析】此题考查了实数的混合运算,特殊的三角函数值,零次幂及负指数幂计算,正确掌握各计算法则是解题的关键.【详解】解:原式124341=+=-=-.18.先化简,再求值:22222a a b a b a b a ab b a b--÷---++,其中a ,b 满足20b a -=.【答案】b a b +,23【解析】【分析】本题考查了分式的化简求值,熟练掌握分式的化简求值是解题的关键.先将分式的分子分母因式分解,然后将除法转化为乘法计算,再计算分式的加减得到b a b +,最后将20b a -=化为2b a =,代入b a b +即得答案.【详解】原式2()()()a a b a b a b a b a b a b+--=÷---+2()()()a a b a b a b a b a b a b--=⨯--+-+a a b a b a b -=-++b a b=+20b a -= ,2b a ∴=,∴原式2223a a a ==+.19.如图,已知矩形ABCD .(1)尺规作图:作对角线AC 的垂直平分线,交CD 于点E ,交AB 于点F ;(不写作法,保留作图痕迹)(2)连接AE CF 、.求证:四边形AFCE 是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】本题主要考查矩形的性质,垂直平分线的画法及性质,三角形全等的判定与性质,菱形的判定.(1)根据垂直平分线的画法即可求解;(2)由直线EF 是线段AC 的垂直平分线.得到EA EC =,FA FC =,90COE AOF ∠=∠=︒,OA OC =,根据矩形的性质可证()ASA COE AOF ≌,可得EC FA =,即可得到EA EC FA FC ===,即可求证.【小问1详解】解:如图1所示,直线EF 为所求;【小问2详解】证明:如图2,设EF 与AC 的交点为O ,由(1)可知,直线EF 是线段AC 的垂直平分线.∴EA EC =,FA FC =,90COE AOF ∠=∠=︒,OA OC =,又∵四边形ABCD 是矩形,∴CD AB ∥,∴ECO FAO ∠=∠,∴()ASA COE AOF ≌,∴EC FA =,∴EA EC FA FC ===,∴四边形AFCE 是菱形.20.广元市开展“蜀道少年”选拔活动,旨在让更多的青少年关注蜀道、了解蜀道、热爱蜀道、宣传蜀道,进一步挖掘和传承古蜀道文化、普及蜀道知识.为此某校开展了“蜀道文化知识竞赛”活动,并从全校学生中抽取了若干学生的竞赛成绩进行整理、描述和分析(竞赛成绩用x 表示,总分为100分,共分成五个等级:A :90100x ≤≤;B :8090x ≤<;C :7080x ≤<;D :6070x ≤<;E :5060x ≤<).并绘制了如下尚不完整的统计图.抽取学生成绩等级人数统计表等级A B C D E 人数m 2730126其中扇形图中C 等级区域所对应的扇形的圆心角的度数是120︒.(1)样本容量为______,m =______;(2)全校1200名学生中,请估计A 等级的人数;(3)全校有5名学生得满分,七年级1人,八年级2人,九年级2人,从这5名学生中任意选择两人在国旗下分享自己与蜀道的故事,请你用画树状图或列表的方法,求这两人来自同一个年级的概率.【答案】(1)90,15;(2)200;(3)15.【解析】【分析】(1)利用C 等级的人数及其扇形圆心角度数求出总人数,用总人数减去其他等级的人数即可得到m 的值;(2)用总人数1200乘以抽样调查中的A 等级的比例即可得到A 等级的人数;(3)列树状图求解即可.【小问1详解】解:样本容量为1203090360÷=,90273012615m =----=,故答案为:90,15【小问2详解】151********⨯=(名)答:全校1200名学生中,估计A 等级的人数有200名.【小问3详解】设七年级学生为A ,八年级学生为1B ,2B ,九年级学生为1C ,2C 画树状图如下:由树状图可知一共有20种等可能的结果,其中两人来自同一个年级的结果有4种,∴P (选择的两人来自同一个年级)41205==.【点睛】此题考查了扇形统计图与统计表,列树状图求概率,利用个体比例求总体中的数量,正确理解统计图表得到相关信息是解题的关键.21.小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值sin sin αβ叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4α=,30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.【答案】(1)32;(2)21002cm .【解析】【分析】本题主要考查了解直角三角形的应用,勾股定理等知识,(1)根据7cos 4α=,设7b =,则4=c x ,利用勾股定理求出22(4)(7)3a x x x =-=,进而可得33sin 44a x c x α===,问题即可得解;(2)根据折射率与(1)的材料相同,可得折射率为32,根据sin sin 603sin sin 2αββ︒==,可得3sin 3β=,则有3sin sin 3OCD β∠==,在Rt ODC △中,设3OD x =,3OC x =,问题随之得解.【小问1详解】∵7cos 4α=,∴如图,设7b x =,则4=c x ,由勾股定理得,22(4)(7)3a x x x =-=,∴33sin 44a xc x α===,又∵30β=︒,∴1sin sin 302β=︒=,∴折射率为:3sin 341sin 22αβ==.【小问2详解】根据折射率与(1)的材料相同,可得折射率为32,∵60α=︒,∴sin sin 603sin sin 2αββ︒==,∴3sin 3β=.∵四边形ABCD 是矩形,点O 是AD 中点,∴2AD OD =,90D Ð=°,又∵OCD β∠=,∴3sin sin 3OCD β∠==,在Rt ODC △中,设3OD x =,3OC x =,由勾股定理得,22(3)(3)6CD x x x =-=,∴31tan 62OD xCD x β===又∵10cm CD =,∴10OD =,∴OD =,∴=AD ,∴截面ABCD 的面积为:210=.22.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如下表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?【答案】(1)长款服装购进30件,短款服装购进20件;(2)当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.【解析】【分析】本题考查了二元一次方程的实际应用,一元一次不等式的实际应用,列出正确的等量关系和不等关系是解题的关键.(1)设购进服装x 件,购进长款服装y 件,根据“用4300元购进长、短两款服装共50件,”列二元一次方程组计算求解;(2)设第二次购进m 件短款服装,则购进()200m -件长款服装,根据“第二次进货总价不高于16800元”列不等式计算求解,然后结合一次函数的性质分析求最值.【小问1详解】解:设购进短款服装x 件,购进长款服装y 件,由题意可得5080904300x y x y +=⎧⎨+=⎩,解得2030x y =⎧⎨=⎩,答:长款服装购进30件,短款服装购进20件.【小问2详解】解:设第二次购进m 件短款服装,则购进()200m -件长款服装,由题意可得()809020016800m m +-≤,解得:120m ≥,设利润为w 元,则()()()1008012090200106000w m m m =-+--=-+,∵100-<,∴w 随m 的增大而减小,∴当120m =时,∴1012060004800w =-⨯+=最大(元).答:当购进120件短款服装,80件长款服装时有最大利润,最大利润是4800元.23.如图,已知反比例函数1k y x =和一次函数2y mx n =+的图象相交于点()3,A a -,3,22B a ⎛⎫+- ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1k y x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围;(3)求AOB 的面积.【答案】(1)19y x =-;2213y x =-+(2)30x -<<或92x >(3)154【解析】【分析】(1)根据题意可得3322a a ⎛⎫-=-+⎪⎝⎭,即有3a =,问题随之得解;(2)12y y >表示反比例函数1k y x =的图象在一次函数2y mx n =+的图象上方时,对应的自变量的取值范围,据此数形结合作答即可;(3)若AB 与y 轴相交于点C ,可得()0,1C ,则1OC =,根据()12AOB AOC BOC B A S S S OC x x =+=- ,问题即可得解.【小问1详解】由题知3322a a ⎛⎫-=-+⎪⎝⎭,∴3a =,∴()3,3A -,9,22B ⎛⎫-⎪⎝⎭,∴19y x=-,把()3,3A -,9,22B ⎛⎫- ⎪⎝⎭代入2y mx n =+得33922m n m n -+=⎧⎪⎨+=-⎪⎩,∴231m n ⎧=-⎪⎨⎪=⎩,∴2213y x =-+;【小问2详解】由图象可知自变量x 的取值范围为30x -<<或92x >【小问3详解】若AB 与y 轴相交于点C ,当0x =时,22113y x =-+=,∴()0,1C ,即:1OC =,∴()11915132224AOB AOC BOC B A S S S OC x x ⎛⎫=+=-=⨯⨯+= ⎪⎝⎭ .24.如图,在ABC 中,AC BC =,90ACB ∠=︒,O 经过A 、C 两点,交AB 于点D ,CO 的延长线交AB 于点F ,DE CF ∥交BC 于点E .(1)求证:DE 为O 的切线;(2)若4AC =,tan 2CFD ∠=,求O 的半径.【答案】(1)证明见解析;(2)2103r =.【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得290COD CAB ∠=∠=︒,再根据DE CF ,可得18090EDO COD ∠=︒-∠=︒,问题得证;(2)过点C 作CH AB ⊥于点H ,根据等腰直角三角形的性质有CH AH ==,结合tan 2CFD ∠=,可得2CH FH =,即FH =,利用勾股定理可得CF .在Rt FOD △中,根据tan 2OD CFD OF∠==,设半径为r 2=,问题得解.【小问1详解】证明:连接OD .∵AC BC =,90ACB ∠=︒,∴ACB △为等腰直角三角形,∴45CAB ∠=︒,∴290COD CAB ∠=∠=︒,∵DE CF ,∴180COD EDO ∠+∠=︒,∴18090EDO COD ∠=︒-∠=︒,∴DE 为O 的切线.【小问2详解】过点C 作CH AB ⊥于点H ,∵ACB △为等腰直角三角形,4AC =,∴42AB =,∴22CH AH ==,∵tan 2CFD ∠=,∴2CH FH =,∴2FH =,∵222CF CH FH =+,∴10CF =.在Rt FOD △中,∵tan 2ODCFD OF ∠==,设半径为r 210r =-,∴2103r =.【点睛】本题考查了切线的判定,圆周角定理,正切,勾股定理等知识以及等腰三角形的性质等知识,问题难度不大,正确作出合理的辅助线,是解答本题的关键.25.数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.在ABC 中,点D 为边AB 上一点,连接CD .(1)初步探究如图2,若ACD B ∠=∠,求证:2AC AD AB =⋅;(2)尝试应用如图3,在(1)的条件下,若点D 为AB 中点,4BC =,求CD 的长;(3)创新提升如图4,点E 为CD 中点,连接BE ,若30CDB CBD ∠=∠=︒,ACD EBD ∠=∠,27AC =BE 的长.【答案】(1)证明见解析(2)2CD =(321【解析】【分析】(1)根据题意,由ACD B ∠=∠,A A ∠=∠,利用两个三角形相似的判定定理即可得到ACD ABC △△∽,再由相似性质即可得证;(2)设AD BD m ==,由(1)中相似,代值求解得到AC =,从而根据ACD 与ABC 的相似比为AD AC =(3)过点C 作EB 的平行线交AB 的延长线于点H ,如图1所示,设CE DE a ==,过点B 作BF EC ⊥于点F ,如图2所示,利用含30︒的直角三角形性质及勾股定理即可得到相关角度与线段长,再由三角形相似的判定与性质得到AD AC CD AC AH CH ====,代值求解即可得到答案.【小问1详解】证明:∵ACD B ∠=∠,A A ∠=∠,∴ACD ABC △△∽,∴AC ADAB AC =,∴2AC AD AB =⋅;【小问2详解】解:∵点D 为AB 中点,∴设AD BD m ==,由(1)知ACD ABC △△∽,∴2222AC AD AB m m m =⋅=⋅=,∴AC =,∴ACD 与ABC 的相似比为AD AC =∴CD BC =,∵4BC =∴CD =;【小问3详解】解:过点C 作EB 的平行线交AB 的延长线于点H ,过C 作CY AB ⊥,如图1所示:∵点E 为CD 中点,∴设CE DE a ==,∵30CDB CBD ∠=∠=︒,∴2CB CD a ==,120DCB ∠=︒,在Rt BCY △中,12CY CD a ==,则由勾股定理可得3BD a =,过点B 作BF EC ⊥于点F ,如图2所示:∴60FCB ∠=︒,∴30CBF ∠=︒,∴12CF BC =,∴CF a =,3BF a =,∴2EF a =,∴7BE a =,∵CH BE ∥,点E 为CD 中点,∴227CH BE a ==,243DH DB a ==,EBD H ∠=∠,又∵ACD EBD ∠=∠,∴ACD H ∠=∠,ACD AHC ∽△△,∴21277AD ACCDAC AH CH a ====,又∵27AC =∴2AD =,14AH =,∴12DH =,即12=,∴a =∴BE ==【点睛】本题考查几何综合,涉及相似三角形的判定与性质、含30︒的直角三角形性质、勾股定理等知识,熟练掌握三角形相似的判定与性质是解决问题的关键.26.在平面直角坐标系xOy 中,已知抛物线F :2y x bx c =-++经过点()3,1A --,与y 轴交于点()0,2B .(1)求抛物线的函数表达式;(2)在直线AB 上方抛物线上有一动点C ,连接OC 交AB 于点D ,求CD OD的最大值及此时点C 的坐标;(3)作抛物线F 关于直线1y =-上一点的对称图象F ',抛物线F 与F '只有一个公共点E (点E 在y 轴右侧),G 为直线AB 上一点,H 为抛物线F '对称轴上一点,若以B ,E ,G ,H 为顶点的四边形是平行四边形,求G 点坐标.【答案】(1)222y x x -=-+;(2)最大值为98,C 的坐标为311,24⎛⎫- ⎪⎝⎭;(3)点G 的坐标为()2,0-,()2,4,()4,6.【解析】【分析】(1)本题考查了待定系数法解抛物线分析式,根据题意将点A B 、坐标分别代入抛物线解析式,解方程即可;(2)根据题意证明CDM ODB ∽△△,再设AB 的解析式为y mx n =+,求出AB 的解析式,再设()2,22C t t t --+,则(),2M t t +,再表示出CD OD利用最值即可得到本题答案;(3)根据题意求出()1,1E -,再分情况讨论当BE 为对角线时,当BE 为边时继而得到本题答案.【小问1详解】解:()3,1A --,()0,2B 代入2y x bx c =-++,得:9312b c c --+=-⎧⎨=⎩,解得:22b c =-⎧⎨=⎩,∴抛物线的函数表达式为222y x x -=-+.【小问2详解】解:如图1,过点C 作x 轴的垂线交AB 于点M .∴CM y ∥轴,∴CDM ODB ∽△△,∴2CD CM CMOD OB ==,设AB 的解析式为y mx n =+,把()3,1A --,()0,2B 代入解析式得312m n n -+=-⎧⎨=⎩,解得:12m n =⎧⎨=⎩,∴2y x =+.设()2,22C t t t --+,则(),2M t t +,∴2239324CM t t t ⎛⎫=--=-++ ⎪⎝⎭,∵30t -<<,10-<,∴当32t =-时,CM 最大,最大值为94CM =.∴CD OD 的最大值为98,此时点C 的坐标为311,24⎛⎫- ⎪⎝⎭.【小问3详解】解:由中心对称可知,抛物线F 与F '的公共点E 为直线1y =-与抛物线F 的右交点,∴2221x x --+=-,∴13x =-(舍),21x =,∴()1,1E -.∵抛物线F :222y x x -=-+的顶点坐标为()1,3-,∴抛物线F '的顶点坐标为()3,5-,∴抛物线F '的对称轴为直线3x =.如图2,当BE 为对角线时,由题知3E G H B x x x x -=-=,∴2G x =-,∴()2,0G -.如图3,当BE 为边时,由题知1H G E B x x x x -=-=,。
2022年山东省菏泽市中考数学真题 (解析版)

【解析】
【分析】先按分式混合运算法则化简分式,再把已知变形为a2-2a=15,整体代入即可.
【详解】解:
=
=a(a-2)
=a2-2a,
∵a2-2a-15=0,
∴a2-2a=15,
∴原式=15.
故答案为:15.
【点睛】本题考查分式化简求值,熟练掌握分式混合运算法则是解题的关键.
14.如图,在第一象限内的直线 上取点 ,使 ,以 为边作等边 ,交 轴于点 ;过点 作 轴的垂线交直线 于点 ,以 为边作等边 ,交 轴于点 ;过点 作 轴的垂线交直线 于点 ,以 为边作等边 ,交 轴于点 ;……,依次类推,则点 的横坐标为_______.
4.如图所示,将一矩形纸片沿AB折叠,已知 ,则 ()
A 48°B.66°C.72°D.78°
【答案】C
【解析】
【分析】由折叠及矩形的性质可得 ,再根据平行线的性质求出 ,根据周角的定义求解即可.
【详解】∵将一矩形纸片沿AB折叠,
∴ ,
,
,
,
,
故选:C.
【点睛】本题考查了矩形的性质,折叠的性质及平行线的性质,熟练掌握知识点是解题的关键.
A.1B. C. D.2
【答案】C
【解析】
【分析】连接AF,则AF的长就是AM+FM的最小值,证明△ABC是等边三角形,AF是高线,利用三角函数即可求解.
【详解】解:连接AF,则AF的长就是AM+FM的最小值.
∵四边形ABCD是菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∵
∴F是BC的中点,
三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内,写在其他区域不得分.)
《平均数、中位数、众数及方差的有关计算》测试题及答案

《平均数、中位数、众数及方差的有关计算》测试题2015.12.28一、选择题1.某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有一个数据被遮盖).被遮盖的数据是( )A.1 ℃B.2 ℃C.3 ℃D.4 ℃2.在一次体育测试中,小芳所在小组8人的成绩分别是46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A.47B.48C.48.5D.493.为了解七年级学生参与家务劳动的时间,李老师随机调查了七年级8名学生一周内参与家务劳动的时间(单位:小时)分别是1,2,3,3,3,4,5,6.则这组数据的众数是( )A.2.5B.3C.3.375D.54.若要对一射击运动员最近5次训练成绩进行统计分析,判断他的训练成绩是否稳定,则需要知道他这5次训练成绩的( )A.中位数B.平均数C.众数D.方差5.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5,10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐6.某校篮球队在一次定点投篮训练中进球情况如图,那么这个队的队员平均进球个数是__________.7.有一组数据:2,3,5,5,x,它的平均数是10,则这组数据的众数是__________.8.数据-2,-1,0,3,5的方差是__________.9.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是__________(填“平均数”或“中位数”).10.为测试两种电子表的走时误差,做了如下统计:则这两种电子表走时稳定的是__________.11.一次数学测验中,以60分为标准,超过的部分用正数表示,不够的部分用负数表示,其中5名学生的成绩(单位:分)如下:+36,0,+12,-18,+20.(1)这5名学生中,最高分是多少?最低分是多少?(2)这5名学生的平均分是多少?12.今有两人进行射击比赛,成绩(命中环数)(单位:环)如下:甲:10,8,7,7,8;乙:9,8,7,7,9.哪个人的成绩稳定?13.某校举办八年级学生数学素养大赛.比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分(单位:分)情况.(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问甲能否获得这次比赛一等奖?14.甲、乙两名同学进入初四后某科6次考试成绩如图所示:(1)请根据上图填写下表:平均数方差中位数众数甲75 75乙33.3(2)请你从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?15.某次数学竞赛,初一(6)班10名参赛同学的成绩(单位:分)分别为85,88,95,124,x,y,85,72,88,109.若这10名同学成绩的唯一众数为85分,平均成绩为90分,试求这10名同学成绩的方差.16.为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率(2)小明对同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是_________(填“甲”或“乙”)组的学生;(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.参考答案9.中位数10.甲1.C2.C3.B4.D5.A6.67.58.34511.(1)因为在记录结果中,+36最大,-18最小,所以这5名学生中,最高分为96分,最低分为42分;(2)因为(36+0+12-18+20)÷5=10,所以他们的平均成绩为60+10=70(分).12.x 甲=15×(10+8+7+7+8)=8,x 乙=15×(9+8+7+7+9)=8.s 2甲=15×[(10-8)2+2×(8-8)2+2×(8-7)2]=1.2,s 2乙=15×[2×(9-8)2+(8-8)2+2×(8-7)2]=0.8.因为x 甲=x 乙且s 2甲>s 2乙, 所以乙的成绩稳定.13.(1)甲的总分:66×10%+89×40%+86×20%+68×30%=79.8(分). (2)设趣题巧解所占的百分比为x ,数学应用所占的百分比为y.由题意,得20608070,20809080.x y x y ++=++=⎧⎨⎩解得0.3,0.4.x y ==⎧⎨⎩ 所以甲的总分为:20+89×0.3+86×0.4=81.1>80. 即甲能获一等奖. 14.(1)125;75;75;72.5;70.(2)①甲、乙两名同学成绩的平均数均为75分,但是甲的方差为125,乙的方差仅仅33.3,所以乙的成绩相对比甲稳定得多;②从折线图中甲、乙两名同学的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.15.因为这10名同学成绩的唯一众数为85分, 所以x 、y 中至少有一个数为85.假设x为85,又因为平均成绩为90分,×(85+88+95+124+85+y+85+72+88+109)=90.所以110可得另一个数为69.所以这10名同学的成绩的方差为:×s2=110[(85-90)2+(88-90)2+(95-90)2+(124-90)2+(85-90)2+(69-90)2+(85-90)2+(72-90)2+(88 -90)2+(109-90)2]=239.16.(1)6;7.1.(2)甲.(3)乙组的平均分、中位数都高于甲组,方差小于甲组,且成绩集中在中上游.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点2:平均数,中位数,众数,方差一、选择题1.(2008年浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;2.(2008淅江金华)金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙D、不能确定3.(2008浙江义乌)国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是( )A.6969元B.7735元C.8810元D.10255元4.(2008湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,255.(2008年浙江省绍兴市)在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁6.(2008年四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案:A7.(2008年四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )A.14.15 B.14.16 C.14.17 D.14.20答案:B8.(2008年陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万.这组数据的众数和中位数分别是()A.20万,15万B.10万,20万C.10万,15万D.20万,10万答案:C9.(2008北京)众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是()A.50,20 B.50,30 C.50,50 D.135,50答案:C10.(2008湖北鄂州)数据的众数为,则这组数据的方差是()A.2 B.C.D.答案:B11.(2008年浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(2008年山东省枣庄市)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是0.4B.众数是3.9C.中位数是3.98D.平均数是3.98答案:B13.(2008山东济南)“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60张B.80张C.90张D.110答案:B14.(2008湖北黄石)若一组数据2,4,,6,8的平均数是6,则这组数据的方差是()A.B.8 C.D.40答案:B15.(2008 湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )A. 23,25B. 23,23C. 25,23D. 25,25答案:D16.(2008 重庆)数据2,1,0,3,4的平均数是()A、0B、1C、2D、3答案:C17.(08厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案:C18.(08乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案:B19.(08绵阳市)某校初三·一班6名女生的体重(单位:kg)为:35 36 38 40 42 42则这组数据的中位数等于().A.38 B.39 C.40 D.42答案:B20.(2008浙江金华)金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙D、不能确定答案:A21.(2008佳木斯市)已知5个正数的平均数是,且,则数据的平均数和中位数是()A.B.C.D.答案:D22.(2008福建省泉州市)已知一组数据的平均数为8,则另一组数据的平均数为()。
A. 6B. 8C. 10D. 12答案:C23.(2008年四川省南充市)某地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位:℃),则这组数据的中位数和众数分别是()A.36,37 B.37,36 C.36.5,37 D.37,36.5答案:A24.(2008新疆乌鲁木齐市)一名射击运动员连续打靶8次,命中的环数如图1所示,这组数据的众数与中位数分别为()A.9与8 B.8与9C.8与8.5 D.8.5与9答案:C25.(2008云南省)彩云中学九年级(一)班同学举行“奥运在我心中”演讲比赛.第三小组的六名同学成绩如下(单位:分):,,,,,.则这组数据的众数是()A. B. C. D.答案:B26..(2008宁夏)甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S=0.006,乙10次立定跳远成绩的方差S=0.035,则()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较答案:A27.(2008湖南益阳市)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,25答案:D28.(2008湖南常德市)北京奥组委为了更好地传播奥运匹克知识,倡导奥林匹克精神,鼓励广大民众到现场观看精彩的比赛,小明一家积极响应,上网查得部分项目的门票价格如下:这些门票价格的中位数和众数分别是()A.50, 50B.67.5, 50C.40, 30D.50, 30答案:A29.(2008广东肇庆市)数据1,1,2,2,3,3,3的极差是()A.1 B.2 C.3 D.6答案:B30..(2008黑龙江黑河)已知5个正数的平均数是,且,则数据的平均数和中位数是()A.B.C.D.答案:D31.(2008年浙江省衢州)为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;答案:C32(2008广东)下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是()A.28 B.28.5 C.29 D.29.5答案:B33.(2008广东深圳)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误..的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是15答案:B34.(2008山西太原)今年5月16日我市普降大雨,基本解除了农田旱情。
以下是各县(市、区)的降水量分布情况(单位:㎜),这组数据的中位数,众数,极差分别是()A. 29.4,29.4,2.5B. 29.4,29.4,7.1C. 27,29.4,7D. 28.8,28,2.5 答案:B35.(2008湖北孝感)我市5月某一周每天的最高气温统计如下:则这组数据(最高气温)的众数与中位数分别是()A.29,30B.30,29C.30,30D.30,31答案:C36.(2008江苏盐城)甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表:则甲、乙、丙3名运动员测试成绩最稳定的是()A.甲B.乙C.丙D.3人成绩稳定情况相同答案:A37.(2008浙江湖州)数据2、4、4、5、3的众数是()A、2B、3C、4D、5答案:A38.(2008资阳市) 下列说法正确的是( )A.频数是表示所有对象出现的次数B.频率是表示每个对象出现的次数C.所有频率之和等于1D.频数和频率都不能够反映每个对象出现的频繁程度答案:C39.(2008湘潭市)已知样本数据1,2,4,3,5,下列说法不正确...的是()A.平均数是3 B.中位数是4C.极差是4 D.方差是2答案:B40.(2008 台湾)某篮球队队员共16人,每人投篮6次,且表(一)为其投进球数的次数分配表。
若此队投进球数的中位数是2.5,则众数为何?( )答案:A41.(2008贵州贵阳)刘翔在今年五月结束的“好运北京”田径测试赛中获得了110m栏的冠军.赛前他进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这10次成绩的()A.众数B.方差C.平均数D.中位数答案:B42.(2008贵州贵阳)8名学生在一次数学测试中的成绩为80,82,79,69,74,78,,81,这组成绩的平均数是77,则的值为()A.76 B.75 C.74 D.73答案:D43.(2008湖南株洲)某同学7次上学途中所花时间(单位:分钟)分别为10、9、11、12、9、10、10,这组数据的众数是A.9B.10C.11D.12答案:B44.(2008 河南实验区)初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是()A. 9,10,11B.10,11,9C.9,11,10D.10,9,11答案:A45.(2008 广东)下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是( )A.28 B.28.5 C.29 D.29.5答案:B二、填空题1.(2008年四川省宜宾市)10、一组数据:2,3,2,5,6,2,4,3,的众数是答案:22.(2008年浙江省衢州市)15、汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。