高中必修一指数和指数函数练习题及答案

合集下载

高中数学《指数函数》针对练习及答案

高中数学《指数函数》针对练习及答案

第二章函数2.4.2 指数函数(针对练习)针对练习针对练习一指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a>0,b>0).(1)a222.计算或化简下列各式:(1)(a-2)·(-4a-1)÷(12a-4)(a>0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0. 3.计算:(1)1111242 114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+-++⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a ba b a b->>⎛⎫⎪⎝⎭4.计算:(1)10132114(2)924---⎛⎫⎛⎫-⨯-+-⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯5.(1)()2163278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .47.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x8.下列函数中为指数函数的是( ) A .23x y =⋅ B .3x y =-C .3x y -=D .1x y =9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠110.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A.1 B .2C D .3针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,5413.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞ C .(,2]-∞ D .[2,)+∞17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,120.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,222.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0 C .5 D .923.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( )A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,225.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e --=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .4037.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-第二章 函数2.4.2 指数函数(针对练习)针对练习针对练习一 指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a >0,b >0).(1)a2 2.【答案】(1)52a ; (2)136a ; (3)7362a b ; (4)76a . 【解析】 【分析】由根式与有理数指数幂的关系,结合指数幂的运算性质化简求值即可. (1)原式=11522222a a a a +⋅==. (2)原式=22313333262a a a a +⋅==. (3)原式=1221711333233332622222()()a ab a a b a b a b +⋅===.(4)原式=55722666a a a a --⋅==. 2.计算或化简下列各式: (1)(a -2)·(-4a -1)÷(12a -4)(a >0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0.【答案】(1)-13a ;(2)-1679.【解析】 【分析】直接根据指数幂的运算性质计算即可. 【详解】(1)原式21434114(12)33a a a a ----+=-÷=-=-(2)原式213227118500--⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭213323()5002)12-⎡⎤=-+-+⎢⎥⎣⎦=49+20+1=- 1679. 3.计算:(1)1111242114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+++ ⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a b a b a b ->>⎛⎫ ⎪⎝⎭【答案】(1)-16 (2)(0,0)a a b b>> 【解析】 【分析】(1)根据分数指数幂的运算规则化简计算即可; (2)根据分数指数幂的运算规则化简得出结果. (1)原式=111222411010233-⎫⎫⎛⎫⨯⨯++⨯+ ⎪⎝⎭⎝⎭⎝⎭(12410223⎫=⨯-⨯+⎝⎭220216=-+=-(2)原式543311233(0,0)a baa b bab a b-==>> 4.计算:(1)1132114(2)924---⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯【答案】(1)196(2)【解析】 【分析】(1)利用指数幂的运算性质即可求解.(2)利用根式与分数指数幂的互化以及指数幂的运算性质即可求解. (1)原式1111924()1218236=-⨯-+=++-=. (2)原式24119555636333222221[(8)](10)10(2)1010102---=⨯÷=⨯÷=⨯721102=⨯=== 5.(1)()21603278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.【答案】(1)8π+;(2)85. 【解析】 【分析】(1)(2)均根据指数幂的运算性质即可计算; 【详解】(1)原式233(2)=-1+|3﹣π|162(2)+=4﹣1+π﹣3+23=π+8.(2)原式3332223322248510a b a b--⋅==.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】直接根据指数函数的定义依次判断即可. 【详解】根据指数函数的定义,知①①中的函数是指数函数, ①中底数不是常数,指数不是自变量,所以不是指数函数; ①中4x 的系数是1-,所以不是指数函数; ①中底数40-<,所以不是指数函数. 故选:B .7.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x【答案】A 【解析】 【分析】根据指数函数定义判断. 【详解】B 中底数90-<,C 中指数是1x -,不是x ,D 中5x 前面系数不是1,根据指数函数定义,只有A 中函数是指数函数, 故选:A.8.下列函数中为指数函数的是( )A .23x y =⋅B .3x y =-C .3x y -=D .1x y =【答案】C 【解析】 【分析】根据指数函数的定义,逐项判定,即可求解. 【详解】根据指数函数的定义知,()0,1xy a a a =>≠,可得函数23x y =⋅不是指数函数;函数3x y =-不是指数函数;函数3x y -=是指数函数;函数1x y =不是指数函数. 故选:C.9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1【答案】C 【解析】 【分析】根据已知条件列不等式,由此求得正确选项. 【详解】由已知得244101a a a a ⎧-+=⎪>⎨⎪≠⎩,即2301a a a a ⎧+=⎪⎨⎪≠⎩,解得3a =.故选:C10.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A .1 B .2 CD .3【答案】C 【解析】 【分析】由指数函数所过的点求解析式,进而求(1)f -的值. 【详解】由题意,21(2)3f a ==,又a >0,则a =①()x f x =,故1(1)f --== 故选:C针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数的解析式可得函数2x y -=是以12为底数的指数函数,再根据指数函数的图像即可得出答案. 【详解】解:由122xxy -⎛⎫== ⎪⎝⎭,得函数2x y -=是以12为底数的指数函数,且函数为减函数,故D 选项符合题意. 故选:D.12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,54【答案】C 【解析】 【分析】由直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b 即可求解. 【详解】解:直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,511423>>, 所以a ,b ,c ,d 的值分别是12,1354, 故选:C.13.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-【答案】C 【解析】 【分析】令10x -=求出定点的横坐标,即得解. 【详解】解:令10,1-=∴=x x .当1x =时,()1111=2f a -=+,所以函数()f x 的图象过点()1,2. 故选:C.14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +【答案】B 【解析】 【分析】由指数函数过定点的性质进行求解. 【详解】()x f x a =的图象恒过定点()0,1,所以()1x f x a =+的图象恒过定点()0,2故选:B15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1【答案】B 【解析】 【分析】根据指数函数的知识确定正确选项. 【详解】当10x -=,即1x =时,()12f =, 所以()f x 过定点()1,2. 故选:B针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞C .(,2]-∞D .[2,)+∞【答案】D 【解析】 【分析】根据函数的定义域定义求解即可. 【详解】要使得函数y 则390x -≥,39x ≥,233x ≥,解得2x ≥.故函数y [2,)+∞. 故选:D.17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞【答案】D 【解析】求出使函数式有意义的自变量的范围即得、 【详解】由21020x x ⎧-≥⎨-≠⎩得02x x ≥⎧⎨≠⎩,即[0,2)(2,)x ∈⋃+∞.故选:D.18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦【答案】A 【解析】 【分析】求得4x f ⎛⎫= ⎪⎝⎭0,结合指数函数的性质求解即可. 【详解】因为()f x =所以4x f ⎛⎫= ⎪⎝⎭因为44440,44,1,44x x x x -≥≤≤≤,所以4xf ⎛⎫⎪⎝⎭的定义域为(],4-∞,故选A .【点睛】本题主要考查函数的定义域以及指数函数的单调性的应用,是基础题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,1【答案】B 【解析】 【分析】抽象函数的定义域求解,要注意两点,一是定义域是x 的取值范围;二是同一对应法则下,取值范围一致. 【详解】()y f x =的定义域为()0,1,1021x-∴<<,即121121x x ⎧-<-<⎨≠⎩,10x x <⎧∴⎨≠⎩,解得:1x <且0x ≠, ()()21x F x f ∴=-的定义域为()(),00,1-∞⋃.故选:B .20.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1【答案】C 【解析】 【分析】由题意可得10x a -≥,对a 讨论,分1,01a a ><<,运用指数函数的单调性,列不等式即可得到a 的范围. 【详解】要使函数0y a >且1)a ≠有意义, 则10x a -≥, 即01x a a ≥=, 当1a >时,0x ≥;当01a <<时,0x ≤,因为y =的定义域为(],0-∞ 所以可得01a <<符合题意,a ∴的取值范围为01a <<,故选C.【点睛】本题考查函数的定义域以及指数函数的单调性,注意运用偶次根式被开方式非负,意在考查分类讨论思想与运算能力,属于中档题.针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,2【答案】D 【解析】 【分析】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,转求二次函数与指数函数的值域即可.【详解】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,①()222111t x x x =-=--≥-,①(],2120ty ⎛⎫⎪⎭∈= ⎝,①函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(]0,2,故选:D22.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0C .5D .9【答案】A 【解析】 【分析】设23x t =,则2()21=-+f t t t 利用函数()f t 单调性可得答案. 【详解】设23x t =,则()22()211=-+=-f t t t t (3t ), 对称轴为1t =,所以()f t 在[)3,+∞上单调递增,所以2min ()(3)32314f t f ==-⨯+=.故选:A.23.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞【答案】C 【解析】 【分析】将函数化为121xyy+=-,利用20x >列出关于y 的不等式,解出不等式即可. 【详解】设2121x x y -=+,由原式得121xy y +=-,20x >, 101yy+∴>-, ①11y -<<,即函数()f x 的值域为(1,1)-. 故选:C24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,2【答案】A 【解析】 【分析】先求出12x y -=在[)1,+∞上的取值范围,再利用分段函数的值域进行求解.【详解】因为12x y -=在[)1,+∞上单调递增, 所以当1≥x 时,1022=1x y -=≥, 若函数()f x 的值域为R ,则1201231a a a ->⎧⎨-+≥⎩, 解得102a ≤<. 故选:A.25.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32【答案】C 【解析】当0a >且1a ≠时,函数为指数型函数,需要分情况进行讨论解决.当1a >时,函数2x y a =-是增函数;当01a <<时,函数2x y a =-是减函数,由此结合条件建立关于a的方程组,解之即可求得答案. 【详解】当1a >时,2xy a =-在[]1,1-上为增函数, 211523a a-=⎧⎪∴⎨-=-⎪⎩,解得3a =;当01a <<时,2xy a =-在[]1,1-上为减函数,523121a a⎧-=-⎪⎪∴⎨⎪-=⎪⎩,解得13a =.综上可知:3a =或13. 故选:C 【点睛】关键点点睛:本题主要考查了指数函数的单调性和值域,解题的关键是利用函数的单调性求解函数值域,但含有参数时往往需要讨论.针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞【答案】A 【解析】 【分析】利用复合函数的单调性“同增异减”来解题. 【详解】设243x x μ=-+-,在(,2]-∞单调递增,在[2,)+∞单调递减,5y μ=在(,)-∞+∞单调递增,根据“同增异减”可得,函数2435x x y -+-=的单调递减区间是[2,)+∞. 故选:A.27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】根据复合函数单调性法则“同增异减”求解即可. 【详解】解:因为函数2231y x x =-+在区间3,4⎛⎫-∞ ⎪⎝⎭上单调递减,在3,4⎡⎫+∞⎪⎢⎣⎭上单调递增,函数12xy ⎛⎫= ⎪⎝⎭在定义域内是单调递减函数,所以,根据复合函数单调性法则“同增异减”得223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为3,4⎡⎫+∞⎪⎢⎣⎭. 故选:D28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-【答案】C 【解析】 【分析】根据复合函数单调性来求得a 的取值范围. 【详解】依题意函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,15xy =在R 上递减, 2y x ax =+的开口向上,对称轴为2ax =-,根据复合函数单调性同增异减可知,122a a -≤⇒≥-. 故选:C29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】根据分段函数的性质,以及函数()f x 在R 上单调递减,结合指数函数的性质,可知011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,求解不等式,即可得到结果. 【详解】①函数()f x 在R 上单调递减,①011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,解得1233a <≤,实数a 的取值范围是12,33⎛⎤⎥⎝⎦. 故选:A.30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,【答案】C 【解析】 【分析】根据()f x 的单调性列不等式组,由此求得a 的取值范围. 【详解】 函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,,若()f x 在R 上为单调递增函数,则()14201421a a a a ⎧->⎪>⎨⎪-⨯≤⎩,解得423a ≤<;若()f x 在R 上为单调递减函数,则()142001421a a a a ⎧-<⎪<<⎨⎪-⨯≥⎩,无解. 综上所述,实数a 的取值范围为423⎡⎫⎪⎢⎣⎭,. 故选:C针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<【答案】C 【解析】 【分析】根据指数函数的单调性判断指数式的大小关系. 【详解】由题设,42a -=,2b =,122c =,又2x y =在定义域上递增, ①a c b <<. 故选:C.32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a【答案】B 【解析】 【分析】结合指数函数、幂函数的单调性确定正确选项. 【详解】4x y =在R 上递增,14y x =在()0,∞+上递增.123111334442422893c a b ==<==<==.故选:B33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞【答案】A 【解析】 【分析】根据指数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; 【详解】解:因为12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭等价于214a a +<-,解得1a <,即原不等式的解集为(,1)-∞ 故选:A34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞【答案】B 【解析】【分析】利用指数函数的单调性得到自变量的范围,进而得到指数函数的值域. 【详解】 由221139x x -+⎛⎫ ⎪⎝⎭可得2212(2)1339x x x -+--⎛⎫= ⎪⎝⎭,因为3x y =在R 上单调递增, 所以2124x x +-+即x 2+2x -3≤0, 解得:31x -≤≤ , 所以31222x y -=,即函数2x y =的值域是1,28⎡⎤⎢⎥⎣⎦,故选:B .35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-【答案】D 【解析】 【分析】先根据题干条件和函数13xy ⎛⎫= ⎪⎝⎭的单调性得到a b >,A 选项可以利用函数的单调性进行判断,BC 选项可以举出反例,D 选项用不等式的基本性质进行判断. 【详解】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,若1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则a b >,对于选项A :若a b >,因为()3f x x =单调递增,所以33a b >,故A 错误;对于选项B :当a b >时,若0c ,则ac bc =,故B 错误;对于选项C :由a b >,不妨令1a =,2b =-,则此时11ab>,故C 错误; 对于选项D :由不等式性质,可知D 正确. 故选:D.针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e--=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .40【答案】A 【解析】 【分析】根据()0.1f t =列式,并根据给出参考数据,结合指数函数的性质解相应的指数方程,即可得答案. 【详解】解:因为()0.1f t =,0.22(340)1()1t f t e--=+,所以0.22(340)10.11t e--=+,即0.22(340)011t e --=+,所以0.22(340)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈, 所以0.22(23).240t e e --≈,所以()0.22340 2.2t --≈,解得10t ≈. 故选:A.37.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天【答案】B 【解析】 【分析】根据题意将给出的数据代入公式即可计算出结果 【详解】因为0 3.22R =,10T =,01R rT =+,所以可以得到01 3.2210.22210R r T --===0.2220(0)1I e ⨯==,由题意可知0.2224t e >,ln 42ln 220.696.20.2220.2220.222t ⨯>=≈≈ 所以至少需要7天,累计感染病例数增加至(0)I 的4倍 故选:B38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h【答案】C 【解析】 【分析】根据已知的函数模型以及已知数据,待定系数即可求得结果. 【详解】由题意知1080e b =,1010120e e e k b k b +==⋅,所以()21051201ee 10809kk===, 所以51e 3k =,所以151e 27k =,所以15151ee e 10804027k bk b +=⋅=⨯=. 故选:C .39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时【答案】D 【解析】 【分析】根据题意建立方程组,进而解出11e ,e b k ,然后将22代入即可求得答案. 【详解】由题意,331133e 1922411e e 19282e24b k k k b+⎧=⇒==⇒=⎨=⎩,所以该食品在22C ︒的保鲜时间是2222e e e 1192484k b k b +=⋅=⨯=.故选:D.40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-【答案】A 【解析】 【分析】把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+可求得实数k 的值.【详解】由题意,把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+中得2080e 2060k -+=,可得201e2k-=, 所以,20ln 2k -=-,因此,ln 220k =. 故选:A.。

高一数学上册第二章--指数函数知识点及练习题(含答案)

高一数学上册第二章--指数函数知识点及练习题(含答案)

课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。

高中数学必修一《指数与指数函数》测试及答案2套

高中数学必修一《指数与指数函数》测试及答案2套

高中数学必修一《指数与指数函数》测试及答案2套单元测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <14,则化简44a -12的结果是( )A.1-4aB.4a -1 C .-1-4aD .-4a -12.某林区的森林蓄积量每年比上一年平均增加110.4%,那么经过x 年可增长到原来的y 倍,则函数y =f (x )的图象大致是( )3.设f (x )=⎝ ⎛⎭⎪⎫12|x |,x ∈R ,那么f (x )是( )A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .偶函数且在(0,+∞)上是减函数 4.若3a>1,则实数a 的取值范围为( )A .(-∞,0)B .(0,1)C .(0,+∞) D.(2,+∞) 5.函数y =2x-12x +1是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数6.函数y =⎝ ⎛⎭⎪⎫12 x 2-2的单调递减区间为( )A .(-∞,0]B .0,+∞)C .(-∞,2]D .2,+∞)7.函数y=⎝ ⎛⎭⎪⎫12-x 2+2x 的值域是( ) A .R B.⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞)D .(0,+∞)8.设f (x )是定义在实数集R 上的函数,满足条件:y =f (x +1)是偶函数,且当x ≥1时,f (x )=5x,则f ⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13的大小关系是( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32B .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫23C .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13 D .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13 9.函数y =|x |e-xx的图象的大致形状是( )10.下列函数中,与y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =|x |-1|x |C .y =-(2x +2-x)D .y =x 3-111.已知函数f (x )=⎩⎪⎨⎪⎧a xx <0,a -3x +4a x ≥0满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,14 B .(0,1) C.⎣⎢⎡⎭⎪⎫14,1 D .(0,3) 12.设函数f (x )=2-x 2+x +2 ,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),则( )A .K 的最大值为2 2B .K 的最小值为2 2C .K 的最大值为1D .K 的最小值为1第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.2-12+-42+12-1-1-5=________.14.函数f (x )=2a x +1-3(a >0,且a ≠1)的图象经过的定点坐标是________.15.若函数f (x )=⎩⎪⎨⎪⎧1x ,x <0,⎝ ⎛⎭⎪⎫13x,x ≥0,则不等式|f (x )|≥13的解集为________.16.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x-3,则当x <0时,f (x )=________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)函数f (x )=k ·a -x(k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8). (1)求函数f (x )的解析式; (2)若函数g (x )=f x -1f x +1,试判断函数g (x )的奇偶性并给出证明.18.(本小题满分12分) 已知函数f (x )=2x-4x.(1)求y =f (x )在-1,1]上的值域; (2)解不等式f (x )>16-9×2x;(3)若关于x 的方程f (x )+m -1=0在-1,1]上有解,求m 的取值范围.19.(本小题满分12分)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的关系近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式y =f (t );(2)进一步测定:每毫升血液中的含药量不少于0.25毫克时,药物对治疗疾病有效.求服药一次治疗疾病的有效时间.20.(本小题满分12分)已知函数f (x )=a 2+22x +1是奇函数.(1)求a 的值;(2)判断f (x )的单调性,并用定义加以证明; (3)求f (x )的值域.21.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈-1,1],函数φ(x )=f (x )]2-2af (x )+3的最小值为h (a ).(1)求h (a );(2)是否存在实数m >n >3,当h (a )的定义域为n ,m ]时,值域为n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.22.(本小题满分12分)定义在D 上的函数f (x ),如果满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫19x.(1)当a =-12时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在0,+∞)上是以4为上界的有界函数,求实数a 的取值范围.答案1.A 解析:∵a <14,∴4a -1<0,∴44a -12=1-4a .2.D 解析:经过x 年后y =(1+110.4%)x=2.104x.3.D 解析:函数f (x )的定义域R 关于原点对称,且f (-x )=⎝ ⎛⎭⎪⎫12|-x |=⎝ ⎛⎭⎪⎫12|x |=f (x ),所以f (x )是偶函数.又f (x )=⎝ ⎛⎭⎪⎫12|x |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥0,2x ,x <0,所以f (x )在(0,+∞)上是减函数.4.C 解析:因为3a>1,所以3a>30,3>1,∴y =3a是增函数.∴a >0.5.A 解析:函数y =2x-12x +1的定义域(-∞,+∞)关于原点对称,且f (-x )=2-x-12-x +1=12x -112x +1=1-2x 1+2x =-f (x ),所以该函数是奇函数. 6.B 解析:函数y =⎝ ⎛⎭⎪⎫12u为R 上的减函数,欲求函数y =⎝ ⎛⎭⎪⎫12x 2-2的单调递减区间,只需求函数u =x 2-2的单调递增区间,而函数u =x 2-2的单调递增区间为0,+∞).7.B 解析:令t =-x 2+2x ,则t =-x 2+2x 的值域为(-∞,1],所以y =⎝ ⎛⎭⎪⎫12-x 2+2x=⎝ ⎛⎭⎪⎫12t 的值域为⎣⎢⎡⎭⎪⎫12,+∞. 解题技巧:本题主要考查了指数型函数的值域,解决本题的关键是先求出指数t =-x 2+2x 的值域,再根据复合函数的单调性求出指数型函数的值域.8.D 解析:∵y =f (x +1)是偶函数,∴y =f (x +1)的对称轴为x =0,∴y =f (x )的对称轴为x =1.又x ≥1时,f (x )=5x,∴f (x )=5x在1,+∞)上是增函数,∴f (x )在(-∞,1]上是减函数.∵f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12,且23>12>13,∴f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13,即f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13.9.C 解析:由函数的表达式知,x ≠0,y =e -x|x |x =⎩⎪⎨⎪⎧e -x,x >0,-e -x,x <0,所以它的图象是这样得到的:保留y =e -x,x >0的部分,将x <0的图象关于x 轴对称.故选D.10.C 解析:设函数f (x )=y =-3|x |,x ∈R ,∴f (-x )=-3|-x |.∵f (x )=f (-x ),∴f (x )为偶函数.令t =|x |,∴t =|x |,x ∈(-∞,0)是减函数,由复合函数的单调性知,y=-3|x |在x ∈(-∞,0)为增函数.选项A 为奇函数,∴A 错;选项B 为偶函数但是在x ∈(-∞,0)为减函数,∴B 错;选项C 令g (x )=-(2x+2-x),g (-x )=-(2-x+2x),∴g (x )=g (-x ),∴g (x )为偶函数.由复合函数的单调性知,g (x )在x ∈(-∞,0)为增函数.故选C.11.A 解析:∵对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,∴f (x )是R 上的减函数.∴⎩⎪⎨⎪⎧0<a <1,a 0≥4a ,解得a ∈⎝ ⎛⎦⎥⎤0,14.故选A. 12.B 解析:∵函数f (x )=2-x 2+x +2的值域为1,22],又∵对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K ,f x >K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),∴K ≥2 2.故选B.13.-22解析:2- 12+-42+12-1-1-5=12-42+2+11-1=-32+2=-22.14.(-1,-1) 解析:由指数函数恒过定点(0,1)可知,函数f (x )=2ax +1-3(a >0,且a ≠1)的图象恒过定点(-1,-1).15.-3,1] 解析:当x <0时,|f (x )|≥13,即1x ≤-13,∴x ≥-3;当x ≥0时,|f (x )|≥13,即⎝ ⎛⎭⎪⎫13x ≥13,∴x ≤1.综上不等式的解集是x ∈-3,1].解题技巧:本题主要考查了关于分段函数的不等式,解决本题的关键是分段求出不等式的解集,最后取并集.16.-2-x+3 解析:当x <0时,-x >0.∵当x >0时,f (x )=2x -3,∴f (-x )=2-x-3.又f (x )是定义在R 上的奇函数,∴当x <0时,f (-x )=2-x-3=-f (x ),∴f (x )=-2-x+3.17.解:(1)由函数图案过点A (0,1)和B (3,8)知,⎩⎪⎨⎪⎧k =1,k ·a -3=8,解得⎩⎪⎨⎪⎧k =1,a =12,∴f (x )=2x.(2)函数g (x )=2x-12x +1为奇函数.证明如下:函数g (x )定义域为R ,关于原点对称;且对于任意x ∈R ,都有g (-x )=2-x-12-x +1=1-2x 1+2x =-2x-12x+1=-g (x )成立. ∴函数g (x )为奇函数.18.解:(1)设t =2x,因为x ∈-1,1],∴t ∈⎣⎢⎡⎦⎥⎤12,2,y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,∴t =12时,f (x )max =14,t =2时,f (x )min =-2.∴f (x )的值域为⎣⎢⎡⎦⎥⎤-2,14.(2)设t =2x ,由f (x )>16-9×2x 得t -t 2>16-9t , 即t 2-10t +16<0,∴2<t <8,即2<2x<8,∴1<x <3, ∴不等式的解集为(1,3).(3)方程有解等价于m 在1-f (x )的值域内,∴m 的取值范围为⎣⎢⎡⎦⎥⎤34,3.19.解:(1)当t ∈0,1]时,设函数的解析式为y =kt ,将M (1,4)代入,得k =4,∴ y =4t .又当t ∈(1,+∞)时,设函数的解析式为y =⎝ ⎛⎭⎪⎫12t -a,将点(3,1)代入得a =3,∴ y =⎝ ⎛⎭⎪⎫12t -3.综上,y =f (t )=⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝ ⎛⎭⎪⎫12t -3,t >1.(2)由f (t )≥0.25,解得116≤t ≤5.所以服药一次治疗疾病的有效时间为5-116=7916(小时).解题技巧:解题时,先观察图形,将图形语言转化成符号语言.由图形可知这是一个一次函数、指数函数相结合的题目.根据条件设出解析式,结合图象中的已知点求出函数解析式,再利用分段函数的知识即可求解服药一次治疗疾病的有效时间.20.解:(1)由题知,f (x )的定义域是R ,∵f (x )是奇函数,∴f (0)=0,即f (0)=a 2+220+1=0,解得a =-2.经验证可知,f (x )是奇函数, ∴a =-2.(3)f (x )=-1+22x +1,∵2x >0,∴2x+1>1,∴0<22x +1<2,-1<-1+22x +1<1,∴-1<y <1.故f (x )的值域为(-1,1).21.解:(1)因为x ∈-1,1],所以⎝ ⎛⎭⎪⎫13x ∈⎣⎢⎡⎦⎥⎤13,3.设t =⎝ ⎛⎭⎪⎫13x ,t ∈⎣⎢⎡⎦⎥⎤13,3,则φ(x )=t 2-2at +3=(t -a )2+3-a 2.当a <13时,y min =h (a )=φ⎝ ⎛⎭⎪⎫13=289-2a 3;当13≤a ≤3时,y min =h (a )=φ(a )=3-a 2; 当a >3时,y min =h (a )=φ(3)=12-6a .∴h (a )=⎩⎪⎨⎪⎧289-2a 3⎝ ⎛⎭⎪⎫a <13,3-a 2⎝ ⎛⎭⎪⎫13≤a ≤3,12-6a a >3.(2)假设满足题意的m ,n 存在,∵m >n >3,∴h (a )=12-6a 在(3,+∞)上是减函数. ∵h (a )的定义域为n ,m ],值域为n 2,m 2],∴⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2,两式相减,得6(m -n )=(m -n )(m +n ).由m >n >3,∴m +n =6,但这与m >n >3矛盾,∴满足题意的m ,n 不存在.解题技巧:本题主要考查了指数型函数的值域、存在性问题;解决存在性问题的关键是先假设存在,把假设作为已知条件进行推理,若推理合理则存在,若推理不合理则不存在.22.解:(1)当a =-12时,f (x )=1-12×⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫19x .令t =⎝ ⎛⎭⎪⎫13x,∵x <0,∴t >1,f (t )=1-12t +t 2.∵f (t )=1-12t +t 2在(1,+∞)上单调递增,∴f (t )>32,即f (x )在(-∞,1)的值域为⎝ ⎛⎭⎪⎫32,+∞. 故不存在常数M >0,使|f (x )|≤M 成立,∴函数f (x )在(-∞,0)上不是有界函数.(2)由题意知,|f (x )|≤4,即-4≤f (x )≤4对x ∈0,+∞)恒成立.令t =⎝ ⎛⎭⎪⎫13x ,∵x ≥0,∴t ∈(0,1],∴-⎝ ⎛⎭⎪⎫t +5t ≤a ≤3t-t 对t ∈(0,1]恒成立,∴⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫t +5t max ≤a ≤⎝ ⎛⎭⎪⎫3t -t min . 设h (t )=-⎝ ⎛⎭⎪⎫t +5t ,p (t )=3t-t ,t ∈(0,1].由于h (t )在t ∈(0,1]上递增,p (t )在t ∈(0,1]上递减,h (t )在t ∈(0,1]上的最大值为h (1)=-6,p (t )在1,+∞)上的最小值为p (1)=2,则实数a 的取值范围为-6,2].单元测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(-2)2] - 12 的结果是( ) A. 2 B .- 2 C.22D .-222.⎝⎛⎭⎪⎫1120-(1-0.5-2)÷⎝⎛⎭⎪⎫27823的值为( )A.-13B.13C.43D.733.若a>1,则函数y=a x与y=(1-a)x2的图象可能是下列四个选项中的( )4.下列结论中正确的个数是( )①当a<0时,(a223=a3;②na n=|a|(n≥2,n∈N);③函数y=(x-2)12-(3x-7)0的定义域是2,+∞);④6-22=32.A.1 B.2 C.3 D.45.指数函数y=f(x)的图象经过点⎝⎛⎭⎪⎫-2,14,那么f(4)·f(2)等于( ) A.8 B.16 C.32 D.646.函数y=21x的值域是( )A.(0,+∞) B.(0,1)C.(0,1)∪(1,+∞) D.(1,+∞)7.函数y=|2x-2|的图象是( )8.a ,b 满足0<a <b <1,下列不等式中正确的是( ) A .a a<a bB .b a<b bC .a a<b aD .b b<a b9.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1B .ex -1C .e-x +1D .e-x -110.若函数y =a x+m -1(a >0,a ≠1)的图象在第一、三、四象限内,则( ) A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <111.函数f (x )=2x +2-4x,若x 2-x -6≤0,则f (x )的最大值和最小值分别是( ) A .4,-32 B .32,-4 C.23,0 D.43,1 12.若函数f (x )=3x+3-x与g (x )=3x-3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系为________.14.若方程⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x -1+a =0有正数解,则实数a 的取值范围是________.15.已知函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|,则f (x )的单调递增区间是________.16.定义区间x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为a ,b ],值域为1,2],则区间a ,b ]的长度的最大值与最小值的差为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分) 解不等式a 2x +7<a3x -2(a >0,a ≠1).18.(本小题满分12分)已知函数f (x )=3x,且f (a )=2,g (x )=3ax-4x. (1)求g (x )的解析式;(2)当x ∈-2,1]时,求g (x )的值域.19.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫12ax,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x-2,且g (x )=f (x ),求满足条件的x 的值.20.(本小题满分12分)已知函数f (x )=a ·2x +b ·3x,其中常数a ,b 为实数. (1)当a >0,b >0时,判断并证明函数f (x )的单调性; (2)当ab <0时,求f (x +1)>f (x )时x 的取值范围.21.(本小题满分12分)设a ∈R ,f (x )=a -22x +1(x ∈R ).(1)证明:对任意实数a ,f (x )为增函数; (2)试确定a 的值,使f (x )≤0恒成立.22.(本小题满分12分)已知定义域为R 的函数f (x )=-2x+b2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.答案1.C 解析:(-2)2] - 12 =2- 12 =12=22.2.D 解析:原式=1-(1-22)÷⎝ ⎛⎭⎪⎫322=1-(-3)×49=73.故选D.3.C 解析:a >1,∴y =a x在R 上单调递增且过(0,1)点,排除B ,D , 又∵1-a <0,∴y =(1-a )x 2的开口向下.4.A 解析:在①中,a <0时,(a 2) 32 >0,而a 3<0,∴①不成立. 在②中,令a =-2,n =3,则3-23=-2≠|-2|,∴②不成立.在③中,定义域应为⎣⎢⎡⎭⎪⎫2,73∪⎝ ⎛⎭⎪⎫73,+∞,∴③不成立. ④式是正确的,∵6-22=622=32,∴④正确.5.D 解析:设f (x )=a x(a >0且a ≠1), 由已知得14=a -2,a 2=4,所以a =2,于是f (x )=2x,所以f (4)·f (2)=24·22=64.解题技巧:已知函数类型,求函数解析式,常用待定系数法,即先把函数设出来,再利用方程或方程组解出系数.6.C 解析:∵1x≠0,∴21x ≠1,∴函数y =21x的值域为(0,1)∪(1,+∞).7.B 解析:找两个特殊点,当x =0时,y =1,排除A ,C.当x =1时,y =0,排除D.故选B.8.C 解析:∵0<a <b <1,∴a a >a b ,故A 不成立,同理B 不成立,若a a <b a,则⎝ ⎛⎭⎪⎫a b a <1,∵0<a b<1,0<a <1, ∴⎝ ⎛⎭⎪⎫a ba <1成立,故选C. 9.D 解析:与曲线y =e x 关于y 轴对称的曲线为y =e -x ,函数y =e -x的图象向左平移一个单位长度即可得到函数f (x )的图象,即f (x )=e-(x +1)=e-x -1.解题技巧:函数图象的平移变换,要注意平移的方向和平移量.平移规律为:10.B 解析:由函数y =a x+m -1(a >0,a ≠1)的图象在第一、三象限知,a >1.知函数在第四象限,∴a 0+m -1<0,则有m <0.11.A 解析:f (x )=2x +2-4x =-(2x )2+4·2x =-(2x -2)2+4,又∵x 2-x -6≤0,∴-2≤x ≤3,∴14≤2x≤8.当2x =2时,f (x )max =4,当2x=8时,f (x )min =-32. 12.B 解析:因为f (-x )=3-x+3-(-x )=3-x +3x=f (x ),g (-x )=3-x -3-(-x )=3-x -3x =-g (x ),所以f (x )为偶函数,g (x )为奇函数.13.c >a >b 解析:由指数函数y =a x当0<a <1时为减函数知, 0.80.7>0.80.9,又1.20.8>1,0.80.7<1, ∴1.20.8>0.80.7>0.80.9,即c >a >b .14.(-3,0) 解析:令⎝ ⎛⎭⎪⎫12x=t ,∵方程有正根,∴t ∈(0,1).方程转化为t 2+2t +a =0, ∴a =1-(t +1)2.∵t ∈(0,1),∴a ∈(-3,0).15.(-∞,1] 解析:解法一:由指数函数的性质可知,f (x )=⎝ ⎛⎭⎪⎫12x在定义域上为减函数,故要求f (x )的单调递增区间,只需求y =|x -1|的单调递减区间.又y =|x -1|的单调递减区间为(-∞,1],所以f (x )的单调递增区间为(-∞,1].解法二:f (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,x ≥1,2x -1,x <1.可画出f (x )的图象,并求其单调递增区间.解题技巧:既可以利用复合函数的“同增异减”法则求解,也可以去绝对值符号,转化为分段函数求解.16.1 解析:作出函数y =2|x |的图象(如图所示).当x =0时,y =20=1, 当x =-1时,y =2|-1|=2,当x =1时,y =21=2,所以当值域为1,2]时,区间a ,b ]的长度的最大值为2,最小值为1,它们的差为1. 17.解:当a >1时,a 2x +7<a3x -2等价于2x +7<3x -2,∴x >9; 当0<a <1时,a 2x +7<a3x -2等价于2x +7>3x -2.∴x <9.综上,当a >1时,不等式的解集为{x |x >9}; 当0<a <1时,不等式的解集为{x |x <9}. 解题技巧:注意按照底数进行分类讨论. 18.解:(1)由f (a )=2,得3a=2,a =log 32, ∴g (x )=(3a )x-4x=(3log 32)x -4x=2x-4x=-(2x )2+2x. ∴g (x )=-(2x )2+2x. (2)设2x=t ,∵x ∈-2,1], ∴14≤t ≤2. g (t )=-t 2+t =-⎝⎛⎭⎪⎫t -122+14,由g (t )在t ∈⎣⎢⎡⎦⎥⎤14,2上的图象可得, 当t =12,即x =-1时,g (x )有最大值14;当t =2,即x =1时,g (x )有最小值-2. 故g (x )的值域是⎣⎢⎡⎦⎥⎤-2,14.19.解:(1)由已知得⎝ ⎛⎭⎪⎫12-a=2,解得a =1.(2)由(1)知,f (x )=⎝ ⎛⎭⎪⎫12x ,又g (x )=f (x ),则4-x-2=⎝ ⎛⎭⎪⎫12x ,即⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x-2=0. 令⎝ ⎛⎭⎪⎫12x =t ,则t 2-t -2=0,即(t -2)(t +1)=0. 又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x=2,解得x =-1.20.解:(1)函数f (x )在R 上是增函数.证明如下:a >0,b >0,任取x 1,x 2∈R ,且x 1<x 2,(2)∵f (x +1)>f (x ), ∴f (x +1)-f (x )=(a ·2x +1+b ·3x +1)-(a ·2x+b ·3x)=a ·2x+2b ·3x>0,当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b , 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b . 综上,当a <0,b >0时,x 的取值范围是⎝ ⎛⎭⎪⎫log 1.5⎝ ⎛⎭⎪⎫-a 2b ,+∞;当a >0,b <0时,x 的取值范围是⎝ ⎛⎭⎪⎫-∞,log 1.5⎝ ⎛⎭⎪⎫-a 2b . 21.(1)证明:任取x 1,x 2∈R ,且x 1<x 2,故对于任意实数a ,f (x )为增函数.(2)解:f (x )=a -22x +1≤0恒成立,只要a ≤22x +1恒成立,问题转化为只要a 不大于22x+1的最小值.∵x ∈R,2x>0恒成立,∴2x+1>1. ∴0<12x +1<1,0<22x +1<2,∴a ≤0.故当a ∈(-∞,0]时,f (x )≤0恒成立.22.解:(1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0,解得b =1.(3)因为f (x )是奇函数,f (t 2-2t )+f (2t 2-k )<0,则f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), 因f (x )为减函数,由上式推得,t 2-2t >k -2t 2. 即对一切t ∈R 有3t 2-2t -k >0, 从而判别式Δ=4+12k <0,解得k <-13.故k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-13.。

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题一.选择题1.若xlog 23=1,则3x+9x的值为(B)A.3B.6C.2D.解:由题意x=,所以3x==2,所以9x=4,所以3x+9x=6故选B2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4解答:解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(log m5+log m2)=2lgm•log m10=2.故选B.3.已知,则a等于()A.B.C. 2 D. 4解:因为所以解得a=4故选D4.若a>1,b>1,p=,则a p等于()A.1B.b C.l og b a D.a log b a解:由对数的换底公式可以得出p==log a(log b a),因此,a p等于log b a.故选C.5.已知lg2=a,10b=3,则log125可表示为(C)A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.若lgx﹣lgy=2a,则=(C)A.3a B.C.a D.解:∵lgx﹣lgy=2a,∴lg﹣lg=lg﹣lg=(lg﹣lg)=lg=(lgx﹣lgy)=•2a=a;故答案为C.7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0∵f(a)+f(b﹣2)=0∴a+(b﹣2)=0∴a+b=2故选D.8.=()A.1B.C.﹣2 D.解:原式=+2×lg2+lg5=+lg2+lg5=+1=,故选B.9.设,则=()A.1B.2C.3D.4解:∵,∴==()+()+()==3故选C10.,则实数a的取值区间应为(C)A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328∵3=log327<log328<log381=4∴实数a的取值区间应为(3,4)故选C.11.若lgx﹣lgy=a,则=(A)A.3a B.C.a D.解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.12.设,则()A.0<P<1 B.1<P<2 C.2<P<3 D.3<P<4 解:=log112+log113+log114+log115=log11(2×3×4×5)=log11120.∴log1111=1<log11120<log11121=2.故选B.13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,则abc的值等于(A)A.1B.2C.3D.4解:∵a,b,c均为正数,且都不等于1,实数x,y,z满足,∴设a x=b y=c z=k(k>0),则x=log a k,y=log b k,z=log c k,∴=log k a+log k b+log k c=log k abc=0,∴abc=1.故选A.14.化简a2•••的结果是(C)A.a B.C.a2D.a3解:∵a2•••=a2•••==a2,故选C15.若x,y∈R,且2x=18y=6xy,则x+y为()A.0B.1C.1或2 D.0或2解:因为2x=18y=6xy,(1)当x=y=0时,等式成立,则x+y=0;(2)当x、y≠0时,由2x=18y=6xy得,xlg2=ylg18=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg18=xylg6,得x=lg18/lg6,则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6=lg36/lg6=2lg6/lg6=2.综上所述,x+y=0,或x+y=2.故选D.16.若32x+9=10•3x,那么x2+1的值为(D)A.1B.2C.5D.1或5解:令3x=t,(t>0),原方程转化为:t2﹣10t+9=0,所以t=1或t=9,即3x=1或3x=9所以x=0或x=2,所以x2+1=1或5故选Dx x2A.﹣2<a<2 B.C.D.解;令t=2x,则t>0若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根∴解可得,即故选D18.若关于x的方程=3﹣2a有解,则a的范围是(A)A.≤a<B.a≥C.<a<D.a>解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,故0<3﹣2a≤2,解得≤a<,故选A.二.填空题19.,则m=10.解:由已知,a=log2m,b=log5m.∴+=log m2+log m5=log m10=1∴m=10故答案为:10.20.已知x+y=12,xy=9,且x<y,则=.解:由题设0<x<y∵xy=9,∴∴x+y﹣2==12﹣6=6x+y+2==12+6=18∴=,=∴=故答案为:21.化简:=(或或).解:====.故答案为:(或或).22.=1.解:===1.故答案为:1.23.函数在区间[﹣1,2]上的值域是[,8].解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,又f(x)=2g(x)为符合函数,∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,∴f(x)min=f(1)==;又f(﹣1)==23=8,f(2)==1,∴数在区间[﹣1,2]上的值域是[,8].故答案为:[,8].24.函数的值域为(0,8].解:令t=x2+2|x|﹣3==结合二次函数的性质可得,t≥﹣3∴,且y>0故答案为:(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..解:可以看做是由y=和t=﹣2x2﹣8x+1,两个函数符合而成,第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=﹣2x2﹣8x+1,在[1,3]上的值域就可以,t∈[﹣9,9]此时y∈[3﹣9,39]函数的递增区间是(﹣∞,﹣2],故答案为:[3﹣9,39];(﹣2,+∞)三.解答题26.计算:(1);(2).解:(1)==(2)===2+2﹣lg3+lg2+lg3﹣lg2+2=627.(1)若,求的值;(2)化简(a>0,b>0).解:(1)∵,∴x+x﹣1=9﹣2=7,x2+x﹣2=49﹣2=47,∴==3×6=18,∴==.(2)∵a >0,b >0,∴====.28.已知函数f (x )=4x ﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.解:(1)当f (x )=11,即4x ﹣2x+1+3=11时,(2x )2﹣2•2x ﹣8=0 ∴(2x ﹣4)(2x +2)=0 ∵2x >02x +2>2,∴2x ﹣4=0,2x =4,故x=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) (2)f (x )=(2x )2﹣2•2x +3 (﹣2≤x ≤1) 令∴f (x )=(2x ﹣1)2+2当2x =1,即x=0时,函数的最小值f min (x )=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当2x =2,即x=1时,函数的最大值f max (x )=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。

指数函数习题(经典 含答案 及详细解析)

指数函数习题(经典 含答案    及详细解析)

指数函数习题一、选择题1.定义运算,则函数的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( )A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞) B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y =2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=的定义域、值域和单调区间.11.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a⊗b=得f(x)=1⊗2x=答案:A2. 解析:∵f(1+x)=f(1-x),∴f(x)的对称轴为直线x=1,由此得b =2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).答案:A3.解析:由于函数y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k-1,k+1)内不单调,所以有k-1<0<k+1,解得-1<k<1.答案:C4. 解析:由题意得:A=(1,2),a x-2x>1且a>2,由A⊆B知a x-2x>1在(1,2)上恒成立,即a x-2x-1>0在(1,2)上恒成立,令u(x)=a x-2x-1,则u′(x)=a x lna-2x ln2>0,所以函数u(x)在(1,2)上单调递增,则u(x)>u(1)=a-3,即a≥3.答案:B5. 解析:数列{a n}满足a n=f(n)(n∈N*),则函数f(n)为增函数,注意a8-6>(3-a)×7-3,所以,解得2<a<3.答案:C6. 解析:f(x)<⇔x2-a x<⇔x2-<a x,考查函数y=a x与y=x2-的图象,当a>1时,必有a-1≥,即1<a≤2,当0<a<1时,必有a≥,即≤a<1,综上,≤a<1或1<a≤2.答案:C7. 解析:当a>1时,y=a x在[1,2]上单调递增,故a2-a=,得a=.当0<a<1时,y=a x在[1,2]上单调递减,故a-a2=,得a=.故a=或.答案:或8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a,b],当a=-1,b=0或a=0,b=1时区间长度最小,最小值为1,当a=-1,b=1时区间长度最大,最大值为2,故其差为1.答案:110. 解:要使函数有意义,则只需-x2-3x+4≥0,即x2+3x-4≤0,解得-4≤x≤1.∴函数的定义域为{x|-4≤x≤1}.令t=-x2-3x+4,则t=-x2-3x+4=-(x+)2+,∴当-4≤x≤1时,t max=,此时x=-,t min=0,此时x=-4或x=1.∴0≤t≤.∴0≤≤.∴函数y=的值域为[,1].由t=-x2-3x+4=-(x+)2+(-4≤x≤1)可知,当-4≤x≤-时,t是增函数,当-≤x≤1时,t是减函数.根据复合函数的单调性知:y=在[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11. 解:令a x=t,∴t>0,则y=t2+2t-1=(t+1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a>1,∵x∈[-1,1],∴t=a x∈[,a],故当t=a,即x=1时,y max =a2+2a-1=14,解得a=3(a=-5舍去).②若0<a<1,∵x∈[-1,1],∴t=a x∈[a,],故当t=,即x=-1时,y max=(+1)2-2=14.∴a=或-(舍去).综上可得a=3或.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a=log32.(2)此时g(x)=λ·2x-4x,设0≤x1<x2≤1,因为g(x)在区间[0,1]上是单调减函数,所以g(x1)-g(x2)=(2x1-2x2)(λ-2x2-2x1)>0恒成立,即λ<2x2+2x1恒成立.由于2x2+2x1>20+20=2,所以实数λ的取值范围是λ≤2.法二:(1)同法一.(2)此时g(x)=λ·2x-4x,因为g(x)在区间[0,1]上是单调减函数,所以有g′(x)=λln2·2x-ln4·4x=ln2[-2·(2x)2+λ·2x]≤0成立.设2x=u∈[1,2],上式成立等价于-2u2+λu≤0恒成立.因为u∈[1,2],只需λ≤2u恒成立,所以实数λ的取值范围是λ≤2.。

高一数学上册 指数函数知识点及练习题含答案

高一数学上册 指数函数知识点及练习题含答案

课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。

高一数学必修 指数函数试题及答案

高一数学必修 指数函数试题及答案

高一数学必修1指数函数试题及答案1.已知集合M={-1,1},N=x12<2x+1<4,x∈Z,则M∩N等于( ) A.{-1,1} B.{-1}C.{0} D.{-1,0}【解析】因为N={x|2-1<2x+1<22,x∈Z},又函数y=2x在R上为增函数,∴N={x|-1<x+1<2,x∈Z}={x|-2<x<1,x∈Z}={-1,0}.∴M∩N={-1,1}∩{-1,0}={-1}.故选B.【答案】 B2.设14<14b<14a<1,那么( )A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa【解析】由已知及函数y=14x是R上的减函数,得0<a<b<1.由y=ax(0<a<1)的单调性及a<b,得ab<aa.由0<a<b<1知0<ab<1.∵aba<ab0=1.∴aa<ba.故选C.也可采用特殊值法,如取a=13,b=12.【答案】 C3.已知函数f(x)=a-12x+1,若f(x)为奇函数,则a=________. 【解析】解法1:∵f(x)的定义域为R,又∵f(x)为奇函数,∴f(0)=0,即a-120+1=0.∴a=12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=12x+1-a,解得a=12.【答案】124.函数y=2-x2+ax-1在区间(-∞,3)内递增,求a的取值范围.【解析】对u=-x2+ax-1=-x-a22+a24-1,增区间为-∞,a2,∴y的增区间为-∞,a2,由题意知3≤a2,∴a≥6.∴a的取值范围是a≥6.一、选择题(每小题5分,共20分)1.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A.y3>y1>y2 B.y2>y1>y3C.y1>y2>y3 D.y1>y3>y2【解析】y1=40.9=21.8,y2=80.48=21.44,y3=(12)-1.5=21.5,∵y=2x在定义域内为增函数,且1.8>1.5>1.44,∴y1>y3>y2.【答案】 D2.若142a+1<143-2a,则实数a的取值范围是( )A.12,+∞B.1,+∞C.(-∞,1) D.-∞,12【解析】函数y=14x在R上为减函数,∴2a+1>3-2a,∴a>12.故选A.【答案】 A3.设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则有( )A.f(13)<f(32)<f(23)B.f(23)<f(32)<f(13)C.f(23)<f(13)<f(32)D.f(32)<f(23)<f(13)【解析】因为f(x)的图象关于直线x=1对称,所以f(13)=f(53),f(23)=f(43),因为函数f(x)=3x-1在[1,+∞)上是增函数,所以f(53)>f(32)>f(43),即f(23)<f(32)<f(13).故选B.【答案】 B4.如果函数f(x)=(1-2a)x在实数集R上是减函数,那么实数a的取值范围是( ) A.(0,12) B.(12,+∞)C.(-∞,12) D.(-12,12)【解析】根据指数函数的概念及性质求解.由已知得,实数a应满足1-2a>01-2a<1,解得a<12a>0,即a∈(0,12).故选A.【答案】 A二、填空题(每小题5分,共10分)5.设a>0,f(x)=exa+aex(e>1),是R上的偶函数,则a=________.【解析】依题意,对一切x∈R,都有f(x)=f(-x),∴exa+aex=1aex+aex,∴(a-1a)(ex-1ex)=0.∴a-1a=0,即a2=1.又a>0,∴a=1.【答案】 16.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.【解析】(1)考察指数函数y=1.5x.因为1.5>1,所以y=1.5x在R上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2.(2)考察指数函数y=0.5x.因为0<0.5<1,所以y=0.5x在R上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.【答案】<,<三、解答题(每小题10分,共20分)7.根据下列条件确定实数x的取值范围:a<1a1-2x(a>0且a≠1).【解析】原不等式可以化为a2x-1>a12,因为函数y=ax(a>0且a≠1)当底数a大于1时在R上是增函数;当底数a大于0小于1时在R上是减函数,所以当a>1时,由2x-1>12,解得x>34;当0<a<1时,由2x-1<12,解得x<34.综上可知:当a>1时,x>34;当0<a<1时,x<34.8.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性.【解析】设u=-x2+3x+2=-x-322+174,则当x≥32时,u是减函数,当x≤32时,u是增函数.又当a>1时,y=au是增函数,当0<a<1时,y=au是减函数,所以当a>1时,原函数f(x)=a-x2+3x+2在32,+∞上是减函数,在-∞,32上是增函数.当0<a<1时,原函数f(x)=a-x2+3x+2在32,+∞上是增函数,在-∞,32上是减函数.9.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.【解析】(1)f(-x)=3-x+3-(-x)=3-x+3x=f(x)且x∈R,∴函数f(x)=3x+3-x是偶函数.(2)由(1)知,函数的单调区间为(-∞,0]及[0,+∞),且[0,+∞)是单调增区间.现证明如下:设0≤x1<x2,则f(x1)-f(x2)=3x1+3-x1-3x2-2-x2=3x1-3x2+13x1-13x2=3x1-3x2+3x2-3x13x13x2=(3x2-3x1)?1-3x1+x23x1+x2.∵0≤x1<x2,∴3x2>3x1,3x1+x2>1,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数在[0,+∞)上单调递增,即函数的单调增区间为[0,+∞).。

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题1、下列函数一定是指数函数的是 ( ) A、12+=x y B 、3x y = C 、x y -=3 D 、x y 23⋅=2、已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg b a =lg a -lg b ③b a b a lg )lg(212= ④lg (ab )=10log 1ab A .0 B .1 C .2 D .33、已知x =2+1,则lo g 4(x 3-x -6)等于 ( )A .23 B .45 C .0 D .21 4、已知m >0时10x =lg (10m )+lg m 1,则x 的值为 ( ) A .2 B .1 C .0 D .-15、下列图像正确的是 ( )A B C D6、若log a b ·log 3a =5,则b 等于 ( )A .a 3B .a 5C .35D .537、5、已知031log 31log >>b a ,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 8、若函数)1,0(1≠>-+=a a m a y x 的图象在第一、三、四象限内,则 ( )A 、1>aB 、1>a 且0<mC 、010><<m a 且D 、10<<a9、函数x y -=1)21(的单调递增区间是 ( ) A 、),(+∞-∞ B 、),0(+∞ C 、),1(+∞ D 、)1,0(10、 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<< 11、下列函数中既是偶函数又是( ) A . B . C . D .12、 函数R x x x y ∈=|,|,满足 ( )A .奇函数是减函数B .偶函数又是增函数C .奇函数又是增函数D .偶函数又是减函数13、若01<<-x ,则下列不等式中成立的是 ( )A 、 x x x 5.055<<-B 、 x x x -<<55.05C 、x x x 5.055<<-D 、 x x x 555.0<<-14、下列命题中正确的是( ) A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限15、若2<x ,则|3|442x x x --+-的值是_____ _____.16、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数和指数函数一、选择题 1.(369a )4(639a )4等于( )(A )a16(B )a8(C )a4(D )a 22.若a>1,b<0,且a b+a -b=22,则a b-a -b的值等于( )(A )6 (B )±2 (C )-2 (D )23.函数f (x )=(a 2-1)x在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2<a (C )a<2 (D )1<2<a4.下列函数式中,满足f(x+1)=21f(x)的是( ) (A)21(x+1) (B)x+41 (C)2x (D)2-x5.下列f(x)=(1+a x )2xa-⋅是( )(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既奇且偶函数6.已知a>b,ab 0≠下列不等式(1)a 2>b 2,(2)2a>2b,(3)ba 11<,(4)a 31>b 31,(5)(31)a <(31)b中恒成立的有( )(A )1个 (B )2个 (C )3个 (D )4个7.函数y=1212+-x x 是( )(A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y=121-x的值域是( ) (A )(-1,∞) (B )(-,∞0)⋃(0,+∞) (C )(-1,+∞) (D )(-∞,-1)⋃(0,+∞)9.下列函数中,值域为R +的是( ) (A )y=5x-21 (B )y=(31)1-x (C )y=1)21(-x (D )y=x 21- 10.函数y=2xx e e --的反函数是( )(A )奇函数且在R +上是减函数 (B )偶函数且在R +上是减函数(C )奇函数且在R +上是增函数 (D )偶函数且在R +上是增函数 11.下列关系中正确的是( )(A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)3212.若函数y=3+2x-1的反函数的图像经过P 点,则P 点坐标是( ) (A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)13.函数f(x)=3x +5,则f -1(x)的定义域是( ) (A )(0,+∞) (B )(5,+∞) (C )(6,+∞) (D )(-∞,+∞)14.若方程a x-x-a=0有两个根,则a 的取值范围是( ) (A )(1,+∞) (B )(0,1) (C )(0,+∞) (D )φ15.已知函数f(x)=a x+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x +4 (D)f(x)=4x+3 16.已知三个实数a,b=a a ,c=aaa ,其中0.9<a<1,则这三个数之间的大小关系是( )(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b17.已知0<a<1,b<-1,则函数y=a x+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 二、填空题 1.若a 23<a2,则a 的取值范围是 。

2.若10x=3,10y=4,则10x-y= 。

3.化简⨯53xx 35xx×235xx = 。

4.函数y=1151--x x 的定义域是 。

5.直线x=a(a>0)与函数y=(31)x ,y=(21)x ,y=2x ,y=10x的图像依次交于A 、B 、C 、D 四点,则这四点从上到下的排列次序是 。

6.函数y=3232x -的单调递减区间是 。

7.若f(52x-1)=x-2,则f(125)= .8.已知f(x)=2x,g(x)是一次函数,记F (x )=f[g(x)],并且点(2,41)既在函数F (x )的图像上,又在F -1(x )的图像上,则F (x )的解析式为 .三、解答题1. 设0<a<1,解关于x 的不等式a1322+-x x >a522-+x x 。

2. 设f(x)=2x ,g(x)=4x,g[g(x)]>g[f(x)]>f[g(x)],求x 的取值范围。

3. 已知x ∈[-3,2],求f(x)=12141+-x x 的最小值与最大值。

4. 设a ∈R,f(x)=)(1222R x a a x x ∈+-+⋅,试确定a 的值,使f(x)为奇函数。

5. 已知函数y=(31)522++x x ,求其单调区间及值域。

6. 若函数y=4x -3·2x+3的值域为[1,7],试确定x 的取值范围。

7.已知函数f(x)=)1(11>+-a a a xx , (1)判断函数的奇偶性; (2)求该函数的值域;(3)证明f(x)是R 上的增函数。

第四单元 指数与指数函数一、 选择题1.0<a<1 2.433.14.(-∞,0)⋃(0,1) ⋃(1,+ ∞) ⎪⎩⎪⎨⎧≠-≠--015011x x x ,联立解得x ≠0,且x ≠1。

5.[(31)9,39] 令U=-2x 2-8x+1=-2(x+2)2+9,∵ -399,1≤≤-∴≤≤U x ,又∵y=(31)U 为减函数,∴(31)9≤y ≤39。

6。

D 、C 、B 、A 。

7.(0,+∞)令y=3U,U=2-3x 2, ∵y=3U为增函数,∴y=32323x -的单调递减区间为[0,+∞)。

8.0 f(125)=f(53)=f(52×2-1)=2-2=0。

9.31或3。

Y=m 2x+2m x-1=(mx+1)2-2, ∵它在区间[-1,1]上的最大值是14,∴(m -1+1)2-2=14或(m+1)2-2=14,解得m=31或3。

10.2710712+-x11.∵ g(x)是一次函数,∴可设g(x)=kx+b(k ≠0), ∵F(x)=f[g(x)]=2kx+b。

由已知有F (2)=41,F (41)=2,∴ ⎪⎩⎪⎨⎧=+-=+⎪⎩⎪⎨⎧==++1412222412412b k b k b k b k 即,∴ k=-712,b=710,∴f(x)=2-710712+x 三、解答题1.∵0<a<2,∴ y=a x在(-∞,+∞)上为减函数,∵ a 1322+-x x >a522-+x x , ∴2x 2-3x+1<x 2+2x-5,解得2<x<3,2.g[g(x)]=4x4=4x22=2122+x ,f[g(x)]=4x2=2x22,∵g[g(x)]>g[f(x)]>f[g(x)], ∴2122+x >212+x >2x22,∴22x+1>2x+1>22x,∴2x+1>x+1>2x,解得0<x<13.f(x)=43)212(12124121412+-=+=+-=+-----xx x x xx , ∵x ∈[-3,2], ∴8241≤≤-x .则当2-x =21,即x=1时,f(x)有最小值43;当2-x=8,即x=-3时,f(x)有最大值57。

4.要使f(x)为奇函数,∵ x ∈R,∴需f(x)+f(-x)=0, ∴f(x)=a-122)(,122+-=-+-x x a x f =a-1221++x x ,由1+x x x5.令y=(31)U ,U=x 2+2x+5,则y 是关于U 的减函数,而U 是(-∞,-1)上的减函数,[-1,+∞]上的增函数,∴ y=(31)522++x x 在(-∞,-1)上是增函数,而在[-1,+∞]上是减函数,又∵U=x 2+2x+5=(x+1)2+4≥4, ∴y=(31)522++x x 的值域为(0,(31)4)]。

6.Y=4x-33232322+⋅-=+⋅x xx ,依题意有⎪⎩⎪⎨⎧≥+⋅-≤+⋅-1323)2(7323)2(22x x x x 即⎪⎩⎪⎨⎧≤≥≤≤-1222421xx x 或,∴ 2,12042≤<≤≤xx 或 由函数y=2x的单调性可得x ]2,1[]0,(⋃-∞∈。

7.(2x)2+a(2x)+a+1=0有实根,∵ 2x>0,∴相当于t 2+at+a+1=0有正根,则⎪⎩⎪⎨⎧>+>-≥∆⎩⎨⎧≤+=≥∆010001)0(0a a a f 或 8.(1)∵定义域为x R ∈,且f(-x)=)(),(1111x x f a a a a xxxx ∴-=+-=+---是奇函数; (2)f(x)=,2120,11,121121<+<∴>++-=+-+xxx x x a a a a a ∵即f(x)的值域为(-1,1); (3)设x 1,x 2R ∈,且x 1<x 2,f(x 1)-f(x 2)=0)1)(1(2211112121221<++-=+--+-xx x x x x x x a a a a a a a a (∵分母大于零,且a 1x <a 2x ) ∴f(x)是R 上的增函数。

相关文档
最新文档