2017年高二上学期数学竞赛试卷 Word版含答案
2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)

2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)1.2017年全国高中数学联赛江苏赛区预赛试卷及详解2.填空题1.已知向量$\overrightarrow{AP}=\begin{pmatrix}1\\3\end{pmatrix}$,$\overrightarrow{PB}=\begin{pmatrix}-3\\1\end{pmatrix}$,则向量$\overrightarrow{AP}$与$\overrightarrow{AB}$的夹角等于$\frac{\pi}{4}$。
2.已知集合$A=\{x| (ax-1)(a-x)>0\}$,且$a\in A$,$3\notin A$,则实数$a$的取值范围是$1\leq a<2$或$2<a\leq 3$。
3.已知复数$z=\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3})$,则$z^3+z^2=\frac{1}{2}-\frac{3}{2}i$。
4.在平面直角坐标系$xOy$中,设$F_1$,$F_2$分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,$P$是双曲线右支上一点,$M$是$PF_2$的中点,且$OM\perp PF_2$,$3PF_1=4PF_2$,则双曲线的离心率为$5$。
5.定义区间$[x_1,x_2]$的长度为$x_2-x_1$。
若函数$y=\log_2x$的定义域为$[a,b]$,值域为$[0,2]$,则区间$[a,b]$的长度的最大值与最小值的差为$3$。
6.若关于$x$的二次方程$mx^2+(2m-1)x-m+2=0(m>0)$的两个互异的根都小于$1$,则实数$m$的取值范围是$\left(\frac{3+\sqrt{7}}{4},+\infty\right)$。
7.若$\tan4x=\frac{3\sin4x\sin2x\sinx}{\cos8x\cos4x\cos4x\cos2x\cos2x\cos x\cos x}$,则$\sin^2x+\sin^24x+\sin^28x=3$。
2017年五套数学竞赛题附答案

2017年浙江高中数学竞赛一,填空题(每题8分,共80分)1. 在多项式()()610321x x x 的展开式+-的系数为______.2. 已知()5log35log172+=-a a ,则实数a=_________.3. 设()[]1,02在b ax x x f ++=中有两个实数根,则b a 22-的取值范围是___________.4. 设()1sin sin sin cos cos cos sin ,,222222=+-+-∈y x yx y x x x R y x 且,则=-y x _______. 5.已知两个命题,命题()()0log :>=x x x f p a 函数单调递增;命题函数:q ()012>++=ax x x g ()R x ∈,q p q p ∧∨为真命题,若为假命题,则实数a 的取值范围为____.6. 设S 是⎪⎭⎫ ⎝⎛850,中所有有理想的集合,对简分数()1,,=∈q p S pq,定义函数,1p q p q f +=⎪⎪⎭⎫ ⎝⎛则()32=x f 在S 中根的个数为___________.7. 已知动点P ,M,N 分别在x 轴上,圆()()12122=-+-y x 和圆()()34322=-+-y x 上,则PN PM +的最小值为__________.8. 已知棱长为1的正四面体P —ABC,PC 的中点为D,动点E 在线段AD 上,则直线与平面ABC 所成的角的取值范围为__________.9.已知平面向量0.10,321,,,=⋅<<===c b c b a ρρρρρ若λ()c b λλ---1所有取不到的值的集合为____________.10. 已知()()()0421212,0.1,0,2222=---+-+⎩⎨⎧≥-<-=x a x x f x x f x x x x x f 方程有三个根.321x x x <<若()12232x x x x -=-,则实数a=_______.二. 解答题11. (本题满分20分)设()()(),⋯=+=+=+,2,1,316,322121n x f x x f x x f n n 对每个n ,求()x x f n 3=的实数解。
2017年全国高中数学联合竞赛试题及解答.(A卷)

2017年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2017A1、设)(x f 是定义在R 上函数,对任意的实数x 有1)4()3(-=-⋅+x f x f ,又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为 ◆答案: 21-★解析:由条件知,1)()7(-=+x f x f ,即1)14()7(-=++x f x f ,故)14()(+=x f x f ,即函数)(x f 的周期为14,所以21)5(1)2()100(-=-=-=-f f f2017A 2、若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围为 ◆答案: []13,1+-★解析:由1cos 22=+y x 得[]3,1cos 212-∈-=y x ,得[]3,3-∈x ,21cos 2x y -=,所以()1121cos 2--=-x y x ,[]3,3-∈x 可求得其范围为[]13,1+-。
2017A 3、在平面直角坐标系xOy 中,椭圆C 的方程为110922=+y x ,F 是C 的焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积最大值为 ◆答案:2113 ★解析:由题意得()0,3A ,()1,0F ,设P 点的坐标为()θθsin 10,cos 3,其中⎪⎭⎫⎝⎛∈2,0πθ,则 ()ϕθθθ+=⋅⋅+⋅⋅=+=∆∆sin 2113cos 321sin 10321OFP OAP OAPF S S S ,可得面积最大值为2113。
2017A 4、若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”,则平稳数的个数 是 ◆答案: 75★解析:考虑平稳数abc 。
①若0=b ,则1=a ,{}1,0∈c ,有2个平稳数;②若1=b ,则{}2,1∈a ,{}2,1,0∈c ,有632=⨯个平稳数; ③若[]8,2∈b ,则a ,{}1,,1+-∈b b b c ,有63337=⨯⨯个平稳数; ④若9=b ,则{}9,8,∈c a ,有422=⨯个平稳数; 综上可知,平稳数的个数为7546362=+++。
高二数学竞赛试题及答案.doc

高二数学竞赛试题及答案高二数学竞赛模拟试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.AF1.如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任意一点为始点,与始点不BE同的另一点为终点的所有向量中,除向量外,与向量OA共线的向量共有( )A.2个B. 3个C.6个D. 7个213CD2.若(3a -2a) n 展开式中含有常数项,则正整数n的最小值是( )A.4B.5C. 6D. 83. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为( )3311A. 20B. 10C. 20D. 104.抛物线y2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)5.已知向量m=(a,b),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a,-b)B.(-a,b)C.(b,-a)D.(-b,-a)6.如图,在正方体ABCDA1B1C1D1中,P为BD1的中点,则△PAC 在该正方体各个面上的射影可能是( )DCAB A B③②①④111A.①④B.②③C.②④D.①②7.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A.36种B.48种C.72种D.96种8.已知直线l、m,平面?、β,且l⊥?,m?β.给出四个命题:(1)若?∥β,则l⊥m;(2)若l⊥m,则?∥β;(3)若?⊥β,则l∥m;(4)若l∥m,则?⊥β,其中正确的命题个数是( )A.4B.1C.3D.29.已知函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)10.4名乘客乘坐一列火车,有5节车厢供他们乘坐。
假设每个人进入各节车厢是等可能的,那么这4名乘客分别在不同车厢的概率为( )A54A54A44A44 A、4 B、4 C、5 D、5 5544二、填空题:本大题共4小题,每小题5分,共20分.答案填在题中横线上.11.从?a?b?的二项展开式的各项中任取两项,这两项中至少有一项含有的二项式系1 7数的概率为。
浙江省2017年高中(高二)希望杯二试数学试题Word版含答案

第二十八届“希望杯”全国数学邀请赛高二(特) 第2试试题第Ⅰ卷(共40分)一、选择题(每小题4分,共40分)1.设x ,y ,z 都是正实数,01a <<,若log x a a x =,1log y aa y =,1()log xa z a=,则( )A .y z x <<.B .x z y <<.C .x y z <<.D .z x y <<. 2.函数sin cos y ax ax =+的最小正周期为4,则它们的对称轴可能是直线( ) A .12x π=-. B .0x =. C .12x π=. D .12x =. 3.二元不等式142x y xy +≤+所表示的平面上的区域是( )A .B .C .D .4.If ABC ∆ and DEF ∆satisfy thatsin cos A D =,sin cos B E =,sin cos C F =,then ( )A .Both ABC ∆ and DEF ∆ are acute triangles .B .Both ABC ∆ and DEF ∆ are obtuse triangles .C. ABC ∆ is an acute triangles ,and DEF ∆is an obtuse triangles . D .ABC ∆ is an obtuse triangles ,and DEF ∆is an acute triangles .(英汉小词典:acute 锐角的;obtuse 钝角的)5.已知等差数列{}n a 与{}n b 的前n 项和分别为n A 与n B ,且5393n n A n B n +=+(1,2,3,n =),则使nna b 为整数的正整数n 的个数是( ) A .3. B .4. C.5. D .6.6.在三棱锥VABC 中,AVB AVC ∠=∠,则VA BC ⊥是VB VC =的( A .充分不必要条件.B .充要条件. C.必要不充分条件.D .既不充分也不必要条件.7.For a tan rec gular triangle ABC in a Cartesian coordinate system ,there are (2,1)AB =,(3,)AC m =,then the number of different possible values of m is ( )A .0.B .1. C.2. D .3.8.一项“闯关”游戏的规则为:在桌面上抛掷一个各面内分别写有1,2,3,…,12的正十二面体n 次,若抛掷n 次后朝下的面内n 个数的和不小于211n +,则算过关,现有一人做此游戏,他最多只能连过( )A .10关.B .11关. C.12关. D .13关. 9.The number of roots of the equation cos(cos )sin αα= inthe int erval ,22ππ⎡⎤-⎢⎥⎣⎦is ( )A .0.B .1. C.2. D .3.10.已知双曲线22221x y a b-=(0a >,0b >),若过右焦点F 且倾斜角为30︒的直线与双曲线的右支有两个交点,则此双曲线的离心率的取值范围是( ) A .(1,2). B.. C.[2,)+∞. D.)+∞. 第Ⅱ卷(共90分)二、填空题(每小题4分,共40分.)11.集合{1,1,12}A d d =++,2{1,,}B r r =,若A B =,则r = . 12.已知方程24210x x --=的两个根为cos α,cos β,α,β(0,)π∈,则cos()αβ-= .13.光线沿着直线3+1=0x y +射入,遇到直线210x y --=反射,则反射光线所在直线的方程是 .14.已知整数a ,b ,c 满足22222874a b c ab b c +++<++,则a b c ++= . 15.已知i x R +∈(1,2,,2017i =)满足122017x x x ≥≥≥,122017420x x x +++=,如果121()k k y x x x k=+++(1,2,,2017k =),则122017y y y +++的最小值是 .16.已知数列{}n a ,满足11a =,11(21)n n n n a n a a a ++=++,则2017a = . 17.数列2{lg(10002)}a-的前n 项和为n S ,则使n S 取得最大值的n 的值是 .18.棱长为1的正方体1111ABCD A B C D -中,P 是棱11A B 上的动点,过点P 、B 、1D 作截面,则截面面积的最小值是 .19.正方形ABCD 的边长为a ,点A 和B 在抛物线2y x =上,点C 和D 在直线21y x =-上,则a = .20.已知圆C 经过双曲线22(2)(1)1916x y +--=的两个焦点,并且与x 轴交于M 、N 两点,若8MN =,则圆C 的方程是 .三、解答题 每题要写出推算过程.21. 若正数a ,b ,c 满足1a b c ++=,求证:2221a b c +++≤.22. 如图,四面体ABCD 中,DA ⊥平面ABC ,AC BC ⊥,1DA AC ==,BC =(1)求异面直线AB ,CD 所成角的余弦值;(2)若E ,F 分别为AB ,CD 上的点,且满足AE AB CF CD λλ==,01λ<<.若EF 与平面ABC 所成角为α,求sin α的最大值.23.数列{}n a 中,已知13a =,2112(1)n n n a a a --=-(2n ≥).(1)判断数列{}n a 的单调性,并证明你的结论; (2)若数列{}n b 满足2n n n a b a =-(n N +∈),求数列{}n b 的通项公式.试卷答案一、选择题1-5:DDBDC 6-10:BCBBB二、填空题11.12-13.91330x y ++=14.415.420 16.21201717.1919.20.22(2(5)41x y ++-=)三、解答题21.原不等式等价于2222()a b c a b c +++≤++,ab bc ca ≤++,即23()abc ab bc ca ≤++222222=2()a b b c c a abc a b c +++++,也即222222abc a b b c c a ≤++,(*) 又222222a b b c b ac +≥,222222b c c a c ab +≥, 222222c a a b a bc +≥,上面三式相加即得(*). 故待证不等式成立.22.(1)作CG ⊥平面ABC ,以CA ,CB ,CG 分别为x 轴、y 轴、z 轴建立空间直角坐标系.则cos ,||||AB CDAB CD AB CD <>=623==, 所以,异面直线AB ,CD (2)FE FA AE =+()FC CA AE =++ ()CF CA AE =-++CD CA AB λλ=-++(1,0,1)(1,0,0)(λλ=-++- (2,)λλ=-+-.易知,平面ABC 的法向量(0,0,1)n =.于是||sin |cos ,|||||FE n FE n FE n α=<>====≤当12λ=,即12λ=时,等号成立. 所以sin α23.(1)数列{}n a 是递减数列. 首先,由数学归纳法易证2n a >(n N +∈)又212(1)nn n n n a a a a a +-=--221112(1)21n n n n n a a a a a ⎛⎫-+==-+ ⎪--⎝⎭, 由2n a >,得111n a <-, 即1121n n a a +<<-, 所以10n n a a +-<, 故数列{}n a 是递减数列. (2)1112n n n a b a +++=-222(1)22(1)nn nn a a a a -=-- 222(2)n nn a b a ==-, 又11132a b a ==-, 所以2224122()n n n n b b b b ---===11822312n n n b b ---====,即123n n b -=.。
2017年全国高中数学联赛A卷和B卷试题和答案(word版)

2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中,AB=1,AP=2,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A 卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中,2a,3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2xf x +是偶函数,则(1)f 的值为 .4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|xxa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=.三、(本题满分50分)如图,点D 是锐角ABC ∆的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY.四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈,1220,,,{1,2,,10}b b b ∈,集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a的公比为32a q a ==,故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案解:设,,z a bi a b R =+∈,由条件得(9)10(1022)a bi a b i ++=+-+,比较两边实虚部可得9101022a a b b +=⎧⎨=-+⎩,解得:1,2a b ==,故12z i =+,进而||z =3.答案:74-。
2017年五套数学竞赛题附答案

2017年浙江高中数学竞赛一,填空题(每题8分,共80分)1. 在多项式()()610321x x x 的展开式+-的系数为______.2. 已知()5log35log172+=-a a ,那么实数a=_________.3. 设()[]1,02在b ax x x f ++=中有两个实数根,那么b a 22-的取值范围是___________.4. 设()1sin sin sin cos cos cos sin ,,222222=+-+-∈y x yx y x x x R y x 且,那么=-y x _______. 5.已知两个命题,命题()()0log :>=x x x f p a 函数单调递增;命题函数:q ()012>++=ax x x g ()R x ∈,q p q p ∧∨为真命题,若为假命题,那么实数a 的取值范围为____.6. 设S 是⎪⎭⎫ ⎝⎛850,中所有有理想的集合,对简分数()1,,=∈q p S pq,概念函数,1p q p q f +=⎪⎪⎭⎫ ⎝⎛则()32=x f 在S 中根的个数为___________.7. 已知动点P ,M,N 别离在x 轴上,圆()()12122=-+-y x 和圆()()34322=-+-y x 上,那么PN PM +的最小值为__________.8. 已知棱长为1的正四面体P —ABC,PC 的中点为D,动点E 在线段AD 上,那么直线与平面ABC 所成的角的取值范围为__________.9.已知平面向量0.10,321,,,=⋅<<===c b c b a若λ,()λλ---1所有取不到的值的集合为____________. 10. 已知()()()0421212,0.1,0,2222=---+-+⎩⎨⎧≥-<-=x a x x f x x f x x x x x f 方程有三个根.321x x x <<若()12232x x x x -=-,那么实数a=_______.二. 解答题11. (此题总分值20分)设()()(),⋯=+=+=+,2,1,316,322121n x f x x f x x f n n 对每一个n ,求()x x f n 3=的实数解。
2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文

可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年苍南县“姜立夫杯”数学竞赛高二试卷考生注意事项:1本卷共有17道题目,全卷满分100分,考试时间120分钟.2答题前,务必在试题卷、答题卷的密封线内填写好自己的学校、姓名和准考证号. 3本卷所有试题都必须用蓝色或黑色签字笔在答题卷上书写,在试题卷上作答无效. 4本卷解答一律不准使用计算器.一、 选择题(本大题共8小题,每小题4分,满分32分,每小题有且仅有一个正确的答案)1.函数)2sin(3)(π+=x x f 是( )(A )周期为π2的奇函数 (B )周期为π2的偶函数 (C )周期为π的奇函数 (D )周期为π的偶函数2.若M={(x ,y )| |tan πy |+sin 2πx =0},N={(x ,y )|x 2+y 2≤2},则M ∩N 的元素个数是( )(A )4 (B )5 (C )8 (D )93. 如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在100个小伙子中,如果某人不亚于其他99人,就称他为棒小伙子,那么,100个小伙子中的棒小伙子最多可能有( )(A )1个 (B )2个 (C )50个 (D )100个 4.有若干个棱长为1的小正方体搭成一个几何体,这个几何体的正视图和侧视图均如右图所示,那么符合这个平面图形的小正方体块数最多时该几何体的体积是 ( )(A )6 (B ) 14 (C )16 (D ) 185.在平面直角坐标系中,方程|x +y |2a +|x -y |2b =1 (a ,b 是不相等的两个正数)所代表的曲线是 ( )(A )三角形 (B )正方形(C )非正方形的菱形 (D )非正方形的长方形6.已知x ,y 满足⎩⎪⎨⎪⎧y -2≤0,x +3≥0,x -y -1≤0,则46--+x y x 的取值范围是 ( )(A )⎥⎦⎤⎢⎣⎡720,2 (B )⎥⎦⎤⎢⎣⎡713,1 (C )⎥⎦⎤⎢⎣⎡73,0 (D )⎥⎦⎤⎢⎣⎡76,07.设四面体四个面的面积分别为S 1,S 2,S 3,S 4,它们的最大值为S ,记1234=S S S S Sλ+++,则λ一定满足( )(A )2<λ≤4 (B )3<λ<4 (C )2.5<λ≤4.5 (D )3.5<λ<5.5第4题8. 设函数22,0()log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩,若对任意给定的(2,)y ∈+∞,都存在唯一的x R ∈,满足22(())2f f x a y ay =+,则正实数a 的最小值是( )(A )14 (B )12(C )2 (D )4 二、填空题(本大题共6个小题,每小题6分,满分36分.)9.从正方体的棱和各个面上的对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是 .10. 若直线b x y +=被圆122=+y x 所截得的弦长不小于1,则b 的取值范围是 .11.已知ABC ∆中,AB AC ⊥,||2AB AC -=,点M 是线段BC (含端点)上的一点,且()1AM AB AC ⋅+=,则||AM 的取值范围是 .12.如图,在三棱锥S —ABC 中,若底面ABC 是正三角形,侧棱长M 、N 分别为棱SC 、BC 的中点,并且AM ⊥MN ,则三棱锥S —ABC 的外 接球的体积为 .13. 定义在R 上的函数f (x )满足),(21)3(,1)1()(,0)0(x f xf x f x f f ==-+=且当1021≤<≤x x 时,有)()(21x f x f ≤,则)20141(f 的值为__ __. 14.若三个非零且互不相等的实数a 、b 、c 满足112a b c+=,则称a 、b 、c 是调和的;若满足2a c b +=,则称a 、b 、c 是等差的。
已知集合{}2014M x x x Z =≤∈,,集合P 是集合M 的三元子集,即{}P a b c M =⊆,,。
若集合P 中元素a 、b 、c 既是调和的,又是等差的,则称集合P 为“好集”。
则不同的“好集”的个数为 .2014年苍南县“姜立夫杯”数学竞赛高二答题卷一、选择题(本大题共8小题,每小题4分,满分32分.每小题有且仅有一个正确的答二、填空题(本大题共6个小题,每小题6分,满分36分. 请将正确的答案填在横线上)9.________________________ 10._____________________________ 11._______________________ 12._____________________________ 13._______________________ 14._____________________________三、 解答题(本大题共3小题,第15、16题各10分,第17题12分,满分32分.要求写出必要的解答过程)15、设函数()sin 1f x x x =+, (I )求函数()f x 在[0,]2π上的最大值与最小值;(II )若实数c b a ,,使得1)()(=-+c x bf x af 对任意R x ∈恒成立,求acb cos 的值.16.已知函数2()1f x x a x =+-,a 为常数.(1)当2a =时,求函数()f x 在[0,2]上的最小值和最大值; (2)若函数()f x 在[0,)+∞上单调递增,求实数a 的取值范围.17.设n S 是数列{}n a 的前n 项和,且n a 是n S 和2的等差中项.(1)求数列{}n a 的通项公式;(2)当1i j n ≤≤≤(,,i j n 均为正整数)时,求i a 和j a 的所有可能的乘积i j a a 之和n T ; (3)设212222*nn M n N T T T =+++∈(),求证:1324M ≤<.2017年苍南县“姜立夫杯”数学竞赛高二试卷参考答案一、选择题(本大题共8小题,每小题4分,满分32分.每小题有且仅有一个正确的答案)二、填空题(本大题共6个小题,每小题6分,满分36分. 请将正确的答案填在横线上)9.______4________________ 10._____ [_______________ 11.______1(,1]2_______________ 12._____92π________________________13._____1128__________ 14.______1006_______________________四、 解答题(本大题共3小题,第15、16题各10分,第17题12分,满分32分.要求写出必要的解答过程)15. 解:(I )由条件知()2sin()13f x x π=++,由02x π≤≤知,5336x πππ≤+≤,于是1sin()123x π≤+≤所以2x π=时,()f x 有最小值12122⨯+=;当6x π=时,()f x 有最大值2113⨯+=. (4分)(II )由条件可知2sin()2sin()133a xb xc a b ππ+++-++=对任意的x R ∈恒成立, ∴2sin()2sin()cos 2cos()sin (1)0333a xb xc b x c a b πππ+++⋅-+⋅++-= ∴2(cos )sin()2sin cos()(1)033a b c x b c x a b ππ+⋅+-⋅+++-=∴ cos 0sin 010a b c b c a b +=⎧⎪=⎨⎪+-=⎩,由sin 0b c =知0b =或sin 0c =。
若0b =时,则由cos 0a b c +=知0a =,这与10a b +-=矛盾! 若sin 0c =,则cos 1c =(舍去),cos 1c =-, 解得π)12(,21+===k c b a ,所以,1cos -=acb . (10分)16. 解:(1)当2a =时,22222,1,()2122,1,x x x f x x x x x x ⎧+-≥⎪=+-=⎨-+<⎪⎩22(1)3,1,(1)1,1,x x x x ⎧+-≥⎪=⎨-+<⎪⎩ 所以当[1,2]x ∈时,max min [()]6,[()]1f x f x ==当[0,1]x ∈时,max min [()]2,[()]1f x f x ==所以()f x 在[0,2]上的最大值为6,最小值为1。
(5分)(2)因为22,1,(),1,x ax a x f x x ax a x ⎧+-≥⎪=⎨-+<⎪⎩2222(),1,24(),1,24a a x a x a a x a x ⎧+--≥⎪⎪=⎨⎪--+<⎪⎩而()f x 在[0,)+∞上单调递增所以当1x ≥时,()f x 必单调递增,得12a-≤即2a ≥- 当01x ≤<时,()f x 亦必单调递增,得02a≤即0a ≤且2211a a a a +-≥-+恒成立故所求实数a 的取值范围为[2,0]-。
(10分) 17. 15.(1)∵n a 是n S 和2的等差中项,∴22n n S a +=, ① 当1=n 时,1122S a +=,解得21=a . 当2n ≥时,1122n n S a --+=. ②①-②得1122---=-n n n n a a S S ()2,*≥∈n N n , ∴122--=n n n a a a 。
∴12-=n n a a 。
∴21=-n na a ()2n ≥. ∴数列{}n a 是首项为2,公比为2的等比数列, ∴nn a 2=()2n ≥.当1n =时,1122a ==,符合上式,所以数列{}n a 的通项公式为2nn a =()*n ∈N 。
………………………………………3分(2)由i a 和j a 的所有可能乘积2i j i j a a +⋅=()n j i ≤≤≤1可构成下表: 112+,122+,132+,…,()112n +-,12n+ 222+,232+,…,()212n +-,22n+332+,…,()312n +-,32n+……………… 2n n+构造如下n 行n 列的数表:112+,122+,132+,…,()112n +-,12n+ 212+,222+,232+,…,()212n +-,22n+312+,322+,332+,…,()312n +-,32n+………………12n +,22n +,32n +,… ,()12n n +-,2n n+设上表第一行的和为T ,则()()41242112n n T -==--.于是()()2124221222222n n n T T -=++++++++()()()22414212141nnn-=-⋅-+-()()1821213n n +=--. ∴()()1421213nn n T +=-⋅-.…………………………………………………………8分(3)∵()()1421213nn n T +=-⋅-, ∴()()112323114212142121n n n n n n n T ++⨯⎛⎫==- ⎪---⋅-⎝⎭。