浙江省苍南县“姜立夫杯”2018年高二上学期数学竞赛试卷 Word版含答案

合集下载

2018年浙江省高中数学竞赛预赛真题含答案

2018年浙江省高中数学竞赛预赛真题含答案
2 f (1) 1 a b f (0) b ,所以 f (1) 1 a b 1,
解得 a 1 . (2)当 0 a 1 时,即 1 a 0 ,此时函数 f (x) 的最值在抛物线的顶点和右端点取得,而对
22 b 0 有 f (1) 1 a 1, f ( a ) a2 1 .
24 (3)当 1 a 1时,即 2 a 1,此时函数 f (x) 的最值在抛物线的顶点和左端点取得,而对
22 b 0 有 f (0) b 1 , f ( a ) a2 1 .
24 (4)当 a 1 时,即 a 2 ,此时函数 f (x) 的最值在抛物线的左右端点取得,对任意 b 1有
2018
13.设实数
x1

x2
,…,
x2018
满足
x2 n1

xn xn2 (n

1,
2, ,
2016)

xn 1,证明: x x 1009 1010 1.
n1
14.将 2n(n 2) 个不同整数分成两组 a1 , a2 ,…, an ; b1 , b2 ,…, bn .证明

8.设 f (x) x 1 x x 2 ,则 f ( f (x)) 1 0 有
个不同的解.
9.设 x, y R 满足 x 6 y 4 x y 12 0 ,则 x 的取值范围为

10.四面体 P ABC , PA BC 6 , PB AC 8 , PC AB 10 ,则该四面体外接球的半径
2 f (0) b 1 ,所以 f (1) 1 a b 1,解得 a 3 .

高二数学竞赛试题及答案.doc

高二数学竞赛试题及答案.doc

高二数学竞赛试题及答案高二数学竞赛模拟试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.AF1.如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任意一点为始点,与始点不BE同的另一点为终点的所有向量中,除向量外,与向量OA共线的向量共有( )A.2个B. 3个C.6个D. 7个213CD2.若(3a -2a) n 展开式中含有常数项,则正整数n的最小值是( )A.4B.5C. 6D. 83. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为( )3311A. 20B. 10C. 20D. 104.抛物线y2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)5.已知向量m=(a,b),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a,-b)B.(-a,b)C.(b,-a)D.(-b,-a)6.如图,在正方体ABCDA1B1C1D1中,P为BD1的中点,则△PAC 在该正方体各个面上的射影可能是( )DCAB A B③②①④111A.①④B.②③C.②④D.①②7.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A.36种B.48种C.72种D.96种8.已知直线l、m,平面?、β,且l⊥?,m?β.给出四个命题:(1)若?∥β,则l⊥m;(2)若l⊥m,则?∥β;(3)若?⊥β,则l∥m;(4)若l∥m,则?⊥β,其中正确的命题个数是( )A.4B.1C.3D.29.已知函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)10.4名乘客乘坐一列火车,有5节车厢供他们乘坐。

假设每个人进入各节车厢是等可能的,那么这4名乘客分别在不同车厢的概率为( )A54A54A44A44 A、4 B、4 C、5 D、5 5544二、填空题:本大题共4小题,每小题5分,共20分.答案填在题中横线上.11.从?a?b?的二项展开式的各项中任取两项,这两项中至少有一项含有的二项式系1 7数的概率为。

2018年全国高中数学联赛浙江赛区预赛试题+答案

2018年全国高中数学联赛浙江赛区预赛试题+答案

|m|
l
O
O
l
1√
= 1.
5
1+ k2
y = kx + m
A(x1, y1), B(x2, y2)
x2 + 9y2 − 9 = 0
(1 + 9k2)x2 + 18kmx + (9m2 − 9) = 0
第3页
(
)
18km
9km m
x1 + x2 = − 1 + 9k2
AB
(
− 1 +)9k2 , 1 + 9k2 .
f (x) = −2
x = −1 f (x) = 0
1
x = −3, x =
3
3
9. x, y ∈ R
x

6√y

√ 4x

y
+
12
=
0
x


答案 14 − 2 13 ≤ x ≤ 14 + 2 13.
解析
x

6√y

√ 4x

y
+
12
=
0

√ (x

y

2)2
+
(√y

3)2
=
1
.
. . √ x − y − 2 = cos θ
1≤i≤n,1≤j≤n
1≤i<j≤n
证明


Tn =
|ai − bj| −
(|aj − ai| + |bj − bi|)
1≤i≤n,1≤j≤n
1≤i<j≤n

最新-2018年度苍南县“姜立夫杯”数学竞赛高二试题答

最新-2018年度苍南县“姜立夫杯”数学竞赛高二试题答

2018年苍南县“姜立夫杯”数学竞赛高二试题参考答案二、填空题9、(1,1)- 10、2004 11 12 13、0x =14、10a -<< 三、解答题15、解:设l 方程为1(1)y m x -=--,则1(1,0)P m +,(0,1)Q m +-----------------1分 从而可得直线PR 和QS 的方程分别为120m x y m+--=和22(1)0x y m -++=--------2分 又||PRQS,11|221|32||m m RS +++++∴== 又22|||PR QS +==-----------------------------------------------------------------------5分 所以四边形PRSQ 的面积为:2123212PRSQ m S +++==21191()5480m m ++--------------------------------8分 219118(2)54805≥+-=。

所以四边形PRSQ 面积的最小值为185--------------------------------------------------------------10分16、解:设椭圆的离心率为e ,则1||MF e d=,即1||MF de =,--------------------------1分 又12||||2MF MF a +=,所以2||2MF a de =-,---------------------------------------3分由题意可得212||||MF d MF =,所以22(2)d e d a de =-,故22a d e e=+,------5分 由d 不小于左顶点到左准线的距离且不大于右顶点到左准线的距离,即2222222112a a a a a e e ca d a e c c a a ae e c⎧≥-⎪⎪+-≤≤+⇒⇒≤<⎨⎪≤+⎪+⎩-----------------------------9分 11e ≤<时,符合条件的点M 存在, 当01e <<时,点M 不存在。

浙江省高中数学联赛试题及参考答案

浙江省高中数学联赛试题及参考答案

n
n
n
n
∑ ∑ ∑ ∑ T= n+1
bn+1 − ai + an+1 − bi − an+1 − ai − bn+1 − bi + bn+1 − an+1 + Tn
解得 a ≥ 1。………………………………………………………………10 分
(2)当 0 < − a ≤ 1 时,即 −1 ≤ a < 0 ,此时函数 f (x) 的最值在抛物线的顶点和右 22
端点取得,而对 b = 0 有 f (1) = 1 + a < 1, f (− a ) = −a2 < 1。
x≤0 x≤2
由 f ( f (x)) +1 =0 得 到
x + 3, x > 2
f (x) = −2, 或 f (x) = 0 。 由 f (x) = −2, 得 一 个 解 x = −1 ; 由 f (x) = 0 得 两 个 解
x = −3, x = 1 ,共 3 个解。 3
9. 设 x, y ∈ R 满足 x − 6 y − 4 x − y +12=0 ,则 x 的取值范围为 ______________。 解 由 x − 6 y − 4 x − y +12=0 ⇒ ( x − y − 2)2 + ( y − 3)2 =1。令

2018 4
=5 16
(52018
− 1)

2018 4
=52019 16

8077 16

3.
已知α , β


3π 4


, cos(α

浙江省高二上学期苍南县、龙港市“姜立夫杯”竞赛数学试卷含答案

浙江省高二上学期苍南县、龙港市“姜立夫杯”竞赛数学试卷含答案

2020年苍南县“姜立夫杯”数学竞赛高二试卷考生注意事项:1本卷共有17道题目,全卷满分100分,考试时间120分钟.2答题前,务必在试题卷、答题卷的密封线内填写好自己的学校、姓名和准考证号. 3本卷所有试题都必须用蓝色或黑色签字笔在答题卷上书写,在试题卷上作答无效. 4本卷解答一律不准使用计算器.一、选择题(本大题共8小题,每小题4分,满分32分,每小题有且仅有一个正确的答案) 1.已知集合{}2|1A x y x ==-,集合{}2|1B y y x ==-,则A B =()A .φB .{}|1x x ≥C .{}|0x x ≥D .{}|01x x ≤≤2.函数x a x x f cos sin )(+=的图象关于直线6π=x 对称,则实数a 的值是( )A .21B .2C .23D .33.设3log 2a =,5log 2b =,1()3c π-=,则( )A .a c b >>B .b c a >>C .c b a >>D .c a b >>4.如图,已知正四面体A BCD -中,E 为棱CD 的中点,F 为棱BC 上的动点,则cos EAF ∠的最大值为() A .23B .63C .73D .335.已知函数()||f x x x =,若存在[)1,x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是()A .(2,)+∞B .(1,)+∞C .1(,)2+∞D .1(,)4+∞6.在面积为2的ABC ∆中,,E F 分别是,AB AC 的中点,点P 在直线EF 上,则2PC PB BC +的最小值是()A .1B .2C .23D .437.如图,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=4.三角形AMN ∆的另外两个顶点,M N 恰好在圆O :x 2+y 2=1上,则||||||||NA MB NB MA +的值为( ) A .25B .52-C .52+D .2558.设[]x 为不超过x 的最大整数,n a 为[][)(0,)x x x n ⎡⎤∈⎣⎦可能取到所有值的个数,n S 是数列121n a n ⎧⎫⎨⎬++⎩⎭前n 项的和,则下列四个结论中正确的个数为( )① 2020是数列{}n a 中的项 A .1个B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题6分,满分36分.)9.已知函数212()log (45)f x x x =--,则函数()f x 的单调递减区间为_____________.10.已知(3,4),(1,2)a b ==-,则|2|a b +=___________.11.对任意的实数,a b ,直线()()(22)0a b x b a y a b ++-++=恒经过的一个定点的坐标是___________.12.已知函数()2221f x x ax a =-+-,若关于x 的不等式()()0f f x <的解集为空集,则实数a 的取值范围是.13.已知实数,,a b c 满足2a b c ++=,2224a b c ++=,且a b c >>,则a 的取值范围是_____________.14.定义()S n 为正整数n 的各位数字之和,例如(2020)20204S =+++=,当10009999n ≤≤时,()nS n 的最小值为___________. 三、解答题(本大题共3小题,第15、16题各10分,第17题12分,满分32分.要求写出必要的解答过程)15.已知函数x x x x f cos sin sin 3)(2⋅+=.(1) 求函数)(x f 的最小正周期;(2) 求函数)(x f 在],0[π的单调递增区间和最大值.16.已知实数0a >,关于x 的方程2|1|x ax bx -+=恰有三个不同的实数根123,,x x x .且123x x x <<;(1) 当2b =时,求实数a 的值;(2) 记函数2()|1|f x x ax bx =-++,证明:132()()2()f x f x f x +>.17.已知11111211,1,,14n n n n n n n n nb a b a a b bc b a b +++==-===+-,, 记n S 为数列{}n c 的前n 项和. (1) 求数列{}{},n n a b 的通项公式;(2) 证明:11.n nS a <- 2020年苍南县“姜立夫杯”数学竞赛高二答题卷一、选择题(本大题共8小题,每小题4分,满分32分.每小题有且仅有一个正确的答案)二、填空题(本大题共6个小题,每小题6分,满分36分. 请将正确的答案填在横线上)9.________________10.________________11.________________ 12.________________ 13.________________ 14.________________三、解答题(本大题共3小题,第15、16题各10分,第17题12分,满分32分.要求写出必要的解答过程)15.已知函数x x x x f cos sin sin 3)(2⋅+=.(1)求函数)(x f 的最小正周期;(2)求函数)(x f 在],0[π的单调递增区间和最大值.16.已知实数0a >,关于x 的方程2|1|x ax bx -+=恰有三个不同的实数根123,,x x x .且123x x x <<;(1)当2b =时,求实数a 的值;(2)记函数2()|1|f x x ax bx =-++,证明:132()()2()f x f x f x +>.17.已知11111211,1,,14n n n n n n n n nb a b a a b bc b a b +++==-===+-,, 记n S 为数列{}n c 的前n 项和. (1)求数列{}{},n n a b 的通项公式;(2)证明:11.n nS a <- 2018年苍南县“姜立夫杯”数学竞赛高二试题参考答案一、 选择题(本大题共8小题,每小题4分,满分32分.每小题有且仅有一个正确的答案)二、填空题(本大题共6个小题,每小题6分,满分36分. 请将正确的答案填在横线上)9.___()5,+∞_______10.____11.___()2,0-______ 12.____(],2-∞-____13._____4,23⎛⎫ ⎪⎝⎭____ 14.______109919__________ 三、解答题(本大题共3小题,第15、16题各10分,第17题12分,满分32分.要求写出必要的解答过程)15.已知函数x x x x f cos sin sin 3)(2⋅+=.(1)求函数)(x f 的最小正周期;(2)求函数)(x f 在],0[π的单调递增区间和最大值.16.已知实数0a >,关于x 的方程2|1|x ax bx -+=恰有三个不同的实数根123,,x x x .且123x x x <<;(1)当2b =时,求实数a 的值;(2)记函数2()|1|f x x ax bx =-++,证明:132()()2()f x f x f x +>.解:1(1)0,||2x x a x>+-=由题意知,恰有三个不同实数根, 12x a x ∴+-=有两个不同实数根,12x a x +-=-恰有一个实数根,4a ∴=211111(2)|1|,()2,x ax bx f x bx -+=∴=同理,2233()2,()2,f x bx f x bx ==要证明132()()2()f x f x f x +>,只要证:1322x x x +>,由题意知:20,0,00,10b x x a x ax <<<>∴-+>若则而当时,21x ax bx -+=不存在三个实数根,0b ∴> 2x 是方程21x ax bx -+=-的唯一实数根,22()40,2,21a b a b a b x ∴∆=--=∴=+=-∴=(舍去)13,x x 是方程21x ax bx -+=的两个不等实根,131x x ∴=1322x x x ∴+>=,132()()2()f x f x f x ∴+>成立。

2018年苍南县“姜立夫”杯数学竞赛高二试卷 精品

2018年苍南县“姜立夫”杯数学竞赛高二试卷 精品

2018年苍南县“姜立夫杯”数学竞赛高二试卷考生注意事项:1本卷共有17道题目,全卷满分100分,考试时间120分钟.2答题前,务必在试题卷、答题卷的密封线内填写好自己的学校、姓名和准考证号. 3本卷所有试题都必须用蓝色或黑色签字笔在答题卷上书写,在试题卷上作答无效. 4本卷解答一律不准使用计算器.一、选择题(本大题共8小题,每小题4分,满分32分,每小题有且仅有一个正确的答案)1.若函数()2log 1a y x ax =-+有最小值,则a 的取值范围是 ( )A.01a <<B.02,1a a <<≠C.12a <<D.2a ≥2. 设)2008sin(sin 0=a ,)2008sin(cos 0=b ,)2008cos(sin 0=c ,)2008cos(cos 0=d ,则d c b a ,,,的大小关系是 ( )A.d c b a <<< B.c d a b <<< C.a b d c <<< D.b a c d <<<3.函数()f x 是(0,)+∞上的单调递增函数,当*n N ∈时,*()f n N ∈,且[()]3f f n n=,则(1)f的值等于 ( ) A.1 B.2 C.3 D.44.5名志愿者随意进入3个不同的奥运场馆参加接待工作,则每个场馆至少有一名志愿者的概率为 ( ) A.53 B.151 C.85 D.81505.已知圆4)3(22=+-y x 和过原点的直线kx y =的交点为P 、Q ,则|OP|·|OQ|的值为( )A.215k+ B.21k + C.10 D.5 6.已知()122007122007f x x x x x x x =+++++++-+-++- (x ∈R ),且2(32)(1),f a a f a -+=- 则a 的值有 ( ) A.2个 B.3个 C.4个 D.无数个7. 设函数1463)(23+++=x x x x f ,且1)(=a f ,19)(=b f ,则=+b a ( )A.2B.1C.0D.2-8.连结球面上两点的线段称为球的弦. 半径为4的球的两条弦AB 、CD 的长度分别等于72和34,M 、N 分别为AB 、CD 的中点,每两条弦的两端都在球面上运动,有下面四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为1其中真命题为 ( ) A.①③④ B.①②③ C.①②④ D.②③④二、填空题(本大题共6个小题,每小题6分,满分36分. 请将正确的答案填在横线上)9.已知平面上三个点A 、B 、C 满足||3,||4,|A B B C C A ===,则···A B B C B C C A C A A B++=____________. 10.右图的发生器对于任意函数()x f ,D x ∈可制造出一系列的数据,其工作原理如下:①若输入数据D x ∉0则发生器结束工作;②若输入数据D x ∈0时,则发生器输出1x ,其中()01x f x =,并将1x 反馈回输入端.定义()12+=x x f ,)50,0(=D .若输入10=x ,那么当发生器结束工作时,输出数据的总个数为 .11.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 .12. 从m 个男生,n 2个人当组长,假设事件A 表示选出的2个人性别相同,事件B 表示选出的2个人性别不同.若A 的概率和B 的概率相等,则(),m n 的可能值为 . 13.若关于,x y 的方程组22110ax by x y +=⎧⎨+=⎩有解,且所有的解都是整数,则有序数对(),a b 的数目为 .14.已知数列}{n a 满足10a =,),2,1(1211 =+++=+n a a a n n n ,则n a =___ .三、解答题(本大题共3小题,第15题8分,第16、17题各12分,满分32分. 要求写出必要的解答过程)15.已知函数()a x x x x f ++=2cos cos sin 3(a 为常数). (Ⅰ)求函数()x f 的最小正周期,并指出其单调减区间;(Ⅱ)若函数()x f 在⎥⎦⎤⎢⎣⎡20π, 上恰有两个x 的值满足()2=x f ,试求实数a 的取值范围.16.已知数列{}n a 中11a =,.关于x 的方程21sin(cos )(21)sin10n n x a x a +-++=有唯一解. (1) 求数列{}n a 的通项公式;(2) 设n n b na =,求数列{}n b 的前n 项和n s ; (3) 设21[1]log (1)n n n c a =++,求证:3n c <.17.是否存在一个二次函数)(x f ,使得对任意的正整数k ,当 5555个k x =时,都有52555)(个k x f =成立?请给出结论,并加以证明.。

最新-2018年度苍南县“姜立夫杯”数学竞赛高二试题 精

最新-2018年度苍南县“姜立夫杯”数学竞赛高二试题 精

2018年苍南县“姜立夫杯”数学竞赛高 二 试 题命题人:薛祖坚一、选择题(每小题5分,共40分)1、动点P 在抛物线26y x =-上运动,定点(0,1)A ,线段PA 中点的轨迹方程是( ).A 、2(21)12y x +=-B 、2(21)12y x +=C 、2(21)12y x -=-D 、2(21)12y x -=2、实数x 、y 满足不等式组010,1220y y x y x x y ω≥⎧-⎪-≥=⎨+⎪--≥⎩,则有( )A 、113ω-≤≤B 、1123ω-≤≤C 、12ω≥-D 、112ω-≤<3、直线y x m =+与抛物线22x y =交于A 、B 两点,O 为坐标原点,且0OA OB ⋅= ,则m 的值等于( )A 、1B 、-1C 、2D 、-24、在圆22(3)(5)2x y -+-=的切线中,在两坐标轴上截距绝对值相等的直线共有( )A 、4条B 、5条C 、6条D 、8条 5、方程(1)(1)1(0)x y x +-=≠表示的曲线关于( )对称.A 、y x =B 、2y x =+C 、y x =-D 、(1,1)-6、平面直角坐标系中,横、纵坐标都是整数的点称为整点。

那么满足不等式22(||1)(||1)2x y -+-<的整点(,)x y 的个数为( )个.A 、16B 、17C 、18D 、257、已知()(2005)(2006)f x x x =-+的图象与x 轴、y 轴有3个不同的交点,有一个圆恰好经过这三个点,则此圆与坐标轴的另一个交点的坐标是( ) A 、(0,1) B 、(0,2) C、 D、 8、设,,x y z 都是正数,则2222xy yzx y z +++的最大值为( )A 、1B 、2 C、2 D、59、不论,a b 为何值,直线0ax by a b +-+=过定点______________________. 10、若函数()f x 满足()()(),f a b f a f b +=且(1)1f =,则(2)(3)(2005)(1)(2)(2004)f f f f f f +++的值等于__________________.11、若P 是双曲线2213x y -=的右支上的动点,F 是双曲线的右焦点,已知(3,1)A ,则||||PA PF +的最小值是_____________________________. 12、正项数列{}n a 的前n 项和为n S ,且11()2n n nS a a =+,则该数列的通项公式n a =__________ 13、方程221(1)cos2202x x x x--++--=的解为____________________. 14、如果关于x 的不等式|||||1|x a x x -<++的解集为一切实数,那么实数a 的取值范围是_____________________答题卷一、选择题(每小题5分,共40分)二、填空题(每小题5分,共30分)9、_________________ 10、__________________ 11、____________________12、________________ 13、__________________ 14、____________________15、已知过点(1,1)A 且斜率为(0)m m ->的直线l 与,x y 轴分别交于点,P Q ,过,P Q 作直线20x y +=的垂线,垂足为,R S . 求四边形PRSQ 面积的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年苍南县“姜立夫杯”数学竞赛高二试卷考生注意事项:1本卷共有17道题目,全卷满分100分,考试时间120分钟.2答题前,务必在试题卷、答题卷的密封线内填写好自己的学校、姓名和准考证号. 3本卷所有试题都必须用蓝色或黑色签字笔在答题卷上书写,在试题卷上作答无效. 4本卷解答一律不准使用计算器.一、选择题(本大题共8小题,每小题4分,满分32分,每小题有且仅有一个正确的答案) 1.若集合{0}A x x =≥,且A B B ⋂=,则集合B 可能是( ) A.{}1,2 B.{1}x x ≤ C.{1,0,1}- D.R2.若对任意实数x 错误!未找到引用源。

都有x x x f x f sin cos 3)(2)(-=-+错误!未找到引用源。

,则函数()y f x =错误!未找到引用源。

的图象的对称轴方程为( ) A .Z k k x ∈+=,4ππ 错误!未找到引用源。

B .Z k k x ∈-=,4ππ 错误!未找到引用源。

C . Z k k x ∈+=,8ππ 错误!未找到引用源。

D .Z k k x ∈-=,6ππ 错误!未找到引用源。

3.一个水平放置的一个的正三棱锥,其底面是边长为6的正三角形、侧棱长均为5, 其主视图,俯视图如图所示,则其侧视图( )A.形状是等腰三角形,面积为133B.形状是等腰三角形,面积为2393 C.不是等腰三角形,面积为 133 D.不是等腰三角形,面积为2393 4.已知在△ABC 中,∠ACB=,AB=2BC ,现将△ABC 绕BC 所在直线旋转到△PBC ,设二面角P﹣BC ﹣A 大小为θ,PB 与平面ABC 所成角为α,PC 与平面PAB 所成角为β,若0<θ<π,则α、sin β的范围分别是( ))33,0(],3,0(.πA ]33,0(],3,0(.πB)21,0(],3,0(.πC 1.(0,],(0,)62D π 5.202,()342x f x x x x ≤≤=+-函数的最大值是( )A. 5B. 6C.7D.86.已知点()1,1A --.若曲线T 上存在两点,B C ,使ABC ∆为正三角形,则称T 为“正三角形”曲线.给定下列三条曲线:①222x y +=;②()3003x y x +-=≤≤;③1(0)y x x=->. 其中,“正三角形”曲线的个数是( ) A . 0 B . 1 C . 2 D . 37.如图,圆C 分别与x 轴、y 轴正半轴相切于A 、B ,过劣弧AB 上一点T 作圆C 的切线,分别交x 轴、y 轴正半轴于M 、N 两点,若点Q (2,1)是 切线上一点,则∆MON 周长的最小值为( ) A . 8 B . 10 C . 12 D . 548.已知平面向量a ,b ,|a |=1,|b |=2, e r 为平面单位向量且|a ·e r |+|b r ·e r|的最大值为7,则下列结论成立的是( )A .|a +b r |=|a -b r | B.b r ·(a -b )=0 C. a ·(a -b )=0 D. min ,||3t R b ta ∈-=r r二、填空题(本大题共6个小题,每小题6分,满分36分.) 9. 在ABC △中,2a =,3b =,4c =,则sin 2sin AC= ▲ . 10. 设{}n a 的公比为q 的等比数列,其前n 项和为n S ,且32420192018,S S S =+ 则q = ▲11. 432(1)0[0,)x x x a x a x -+-++≥∈+∞对恒成立,则a= ▲12.2()3,|(())0}|()0},xf x x ax b x f f x x f x a b φ=++⋅===≠+函数若{{则取值范围是 ▲ 13.在三棱锥ABC P -中,BC AB ⊥,32,2,AB BC PA PB ===当三棱锥ABC P -体积取最大时,锐二面角P-AC-B 的大小=θθtan ,则 ▲ . 14.22224560,24x y x y xy x y x y x y +--++=+-+、是实数,则的取值范围是▲三、解答题(本大题共3小题,第15、16题各10分,第17题12分,满分32分.要求写出必要的解答过程)15.已知圆22-(2)40)2x a y a a y kx +-=>=+C:()(与直线交于M 、N 两点, 其中C 为圆心,=2a (1)若, 125CM CN ⋅=-uuu r uuu r , 求k 的值;=1,k (2)若当CMN ∆面积取最大时,求a 的值.16. 已知函数()2f x x ax b =++.(1) 0a ≠且1b =,求()y f x =在区间0,a ⎡⎤⎣⎦上的最大值; (2) 若,a b Z ∈,且()a b f x +是的零点,求所有可能b 的值.17. 已知{a n }满足,++∈+==N n a a a a n n n ,144,812211 (1)证明:;811≤<+n n a a (2)证明:1211121119n n a a a +++>-+++L2018年苍南县“姜立夫杯”数学竞赛 高二答题卷一、选择题(本大题共8小题,每小题4分,满分32分.每小题有且仅有一个正确的答案)二、填空题(本大题共6个小题,每小题6分,满分36分. 请将正确的答案填在横线上)9.________________ 10.________________ 11.________________ 12.________________ 13.________________ 14.________________三、解答题(本大题共3小题,第15、16题各10分,第17题12分,满分32分.要求写出必要的解答过程)15.已知圆22-(2)40)2x a y a a y kx +-=>=+C:()(与直线交于M 、N 两点, 其中C 为圆心,=2a (1)若, 125CM CN ⋅=-uuu r uuu r , 求k 的值;=1,k (2)若当CMN ∆面积取最大时,求a 的值.16. 已知函数()2f x x ax b =++.(1) 0a ≠且1b =,求()y f x =在区间0,a ⎡⎤⎣⎦上的最大值; (2) 若,a b Z ∈,且()a b f x +是的零点,求所有可能b 的值.17.已知{a n }满足,++∈+==N n a a a a n n n ,144,812211 (1)证明:;811≤<+n n a a (2)证明:9211111121->++++++n a a a n Λ2018年苍南县“姜立夫杯”数学竞赛高二试题参考答案一、 选择题(本大题共8小题,每小题4分,满分32分.每小题有且仅有一个正确的答案)二、填空题(本大题共6个小题,每小题6分,满分36分. 请将正确的答案填在横线上)9.8710. 12018 11.212.[0,4) 13.2 14. ]3,313[-- 三、解答题(本大题共3小题,第15、16题各10分,第17题12分,满分32分.要求写出必要的解答过程)15.已知圆22-(2)40)2x a y a a y kx +-=>=+C:()(与直线交于M 、N 两点 其中C 为圆心,=2a (1)若,125CM CN ⋅=-uuu r uuu r , 求k 的值; =1,k (2)若当CMN∆面积取最大时,求a 的值.解析:(1) 125CM CN ⋅=-uuu r uuu r 得3cos ,5MCN ∠=- ……2分……2分 1=22k =或 ……1分(其他方法酌情给分)(2)设圆心到直线的距离为d ,S ==……2分当CMN ∆面积取最大时d (2)=4a = ……1分(其他方法酌情给分)16. 已知函数()2f x x ax b =++.(1) 0a ≠且1b =,求()y f x =在区间0,a ⎡⎤⎣⎦上的最大值; (2) 若,a b Z ∈,且()a b f x +是的零点,求所有可能b 的值.解析:(1)当a>0时,()222max 1[1,21],|()|21f x x ax a f x a =++∈+=+ ……2分当a<0时, ()222max 4-4-1[,1],|()|max ||,144a a f x x ax f x ⎧⎫=++∈=⎨⎬⎩⎭……2分=2441,0a a -≤-<⎧⎪⎨⎪⎩,a ……1分(2)()()()20f a b a b a a b b +=++++=得22230a ab b b +++= ……1分2=b -8b ∆必为完全平方数 ……1分2222=b -8b=,()16m N m ∆∈-=令m 得(b-4){{{{42444-44-848444-44-2b m b m b m b m b m b m b m b m --=--=--=--=-+=-+=-+=-+=或或或所有可能b 的值为9、8、-1、0 ……3分17. 已知{a n }满足,++∈+==N n a a a a n n n ,144,812211 (1)证明:;811≤<+n n a a (2)证明:9211111121->++++++n a a a n Λ 解析:(1)0>n a 易得=-+n n a a 1014)12(141441442223222≤+--=+--=-+n n n n n n n n n a a a a a a a a a ……2分∴≤≤∴+,811n n a a 014)12(22<+--n n n a a a ;811≤<∴+n n a a ……2分(用nnn n n n a a a a a a 14114421+=+=+同样给分) (2)284414422221+=+≤+=+n nn n n n n n a a a a a a a a ……2分 12211+=+≥+n n n n a a a a ,)11(2111+≥++nn a a 111292)11(11--⋅=⋅+≥+n n n a a ,1)21(911-⋅≤+n n n a a ……3分 =+11n a 1)21(91111-⋅-≥+-n n n a a ……2分 92])21()21(211[911111111221->+++-≥++++++-n n a a a n n ΛΛ…1分。

相关文档
最新文档