最新一元二次方程培优提高例题
专题01 一元二次方程(经典基础题7种题型+优选提升题)(原卷版)

专题01 一元二次方程(经典基础题7种题型+优选提升题)一元二次方程的定义1.(2022秋广东珠海九年级校考期中)下面关于x 的方程中:①ax 2+bx +c =0;②3(x ﹣9)2﹣(x+1)2=1;③x 2+1x +5=0;④x 2+5x 3﹣6=0;⑤3x 2=3(x ﹣2)2;⑥12x ﹣10=0,是一元二次方程个数是( )A .1B .2C .3D .4 2.(2022秋广西柳州九年级统考期中)方程254(1)20m m m x x +---=是关于x 的一元二次方程,则m的值为( )A .1B .6-C .6D .1或6-一元二次方程的解3.(2023春•玄武区期中)若m 是方程x 2+x ﹣1=0的一个根,则代数式2023﹣m 2﹣m 的值为 .4.(2023春•射阳县校级期中)已知a 是方程x 2﹣2020x +4=0的一个解,则的值为( )A.2023 B.2022 C.2021 D.2020一元二次方程的解法5.(2023春•滨海县期中)如果有理数a、b同时满足(a2+b2+3)(a2+b2﹣3)=16,那么a2+b2的值为()A.±5 B.5C.﹣5 D.以上答案都不对6.(2023春•东台市期中)方程x2+2x=0的根是.7.(2023春•江阴市期中)解方程:x2﹣4x+1=0;8.(2023春•无锡期中)解方程:x2﹣2x﹣4=0;9.(2023春•锡山区期中)解方程:x2﹣6x+5=0;10.(2023春•东台市期中)解方程:3x(x﹣4)=x﹣4.根的判别式11.(2023春•东台市校级期中)关于x的一元二次方程x2+2x+k=0有两个相等的实数根,则k的取值范围是()A.k=﹣1 B.k>﹣1 C.k=1 D.k>112.(2023春•射阳县校级期中)若关于x的方程kx2+4x﹣1=0有实数根,则k的取值范围是.13.(2023春•灌云县期中)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.14.(2023春•海州区校级期中)已知关于x的方程x2﹣4x﹣2k+8=0有两个实数根,则k的取值范围.15.(2023春•清江浦区校级期中)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为.16.(2023春•东台市期中)若关于x的一元二次方程kx2+2x﹣1=0有两个实数根,则实数k的取值范围是.根与系数的关系17.(2023春•鼓楼区期中)设x1,x2是一元二次方程x2﹣5x+4=0的两个实数根,则的值为.18.(2023春•东台市期中)若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.一元二次方程的实际应用19.(2023春•东台市期中)为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x,则可列方程为.20.(2023春•东台市期中)某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:.21.(2023春•东台市校级期中)某地区加大教育投入,2020年投入教育经费2000万元,以后每年逐步增长,预计2022年,教育经费投入为2420万元,则年平均增长率为.配方法的应用22.(2023春•江都区期中)若M=2x2﹣12x+15,N=x2﹣8x+11,则M与N的大小关系为()A.M≥N B.M>N C.M≤N D.M<N23.(2023春•仪征市期中)若代数式x2﹣4x+a可化为(x﹣b)2﹣1,则a+b是()A.5 B.4 C.3 D.224.(2023春•梁溪区校级期中)在求解代数式2a2﹣12a+22的最值(最大值或最小值)时,老师给出以下解法:解:原式=2(a2﹣6a)+22=2(a2﹣6a+9)﹣18+22=2(a﹣3)2+4,∵无论a取何值,2(a﹣3)2≥0,∴代数式2(a﹣3)2+4≥4,即当a=3时,代数式2a2﹣12a+22有最小值为4.仿照上述思路,则代数式﹣3a2+6a﹣8的最值为()A.最大值﹣5 B.最小值﹣8 C.最大值﹣11 D.最小值﹣5 25.(2023春•高邮市期中)若M=2x2﹣12x+15,N=x2﹣8x+11,则M与N的大小关系为.26.(2023春•江都区期中)将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一.例如,求代数式x2+2x+3的最小值.解:原式=x2+2x+1+2=(x+1)2+2.∵(x+1)2≥0,∴(x+1)2+2≥2.∴当x=﹣1时,x2+2x+3的最小值是2.(1)在横线上添加一个常数项,使代数式x2+10x+25成为完全平方式;(2)请仿照上面的方法求代数式x2+6x﹣1的最小值;(3)已知△ABC的三边a,b,c满足a2﹣6b=﹣14,b2﹣8c=﹣23,c2﹣4a=8.求△ABC的周长.27.(2023春•赣榆区期中)(1)已知3m=6,3n=2,求32m+n﹣1的值;(2)已知a2+b2+2a﹣6b+10=0,求(a﹣b)﹣3的值.28.(2023春•江阴市期中)【阅读材料】初一上学期我们已学过:由(x+3)2+(y﹣1)2=0知,x+3=0,y﹣1=0,∴x=﹣3,y=1.这不禁让人赞叹:精美的包装(数学模型),总可以给人满意的答案.初一下学期:利用完全平方式对上述式子进行变形:由(x+3)2+(y﹣1)2=0知,(x2+6x+9)+(y2﹣2y+1)=0,即x2+y2+6x﹣2y+10=0.反之,若x2+y2+6x﹣2y+10=0,则有(x2+6x+9)+(y2﹣2y+1)=0,即(x+3)2+(y﹣1)2=0,∴x+3=0,y﹣1=0,∴x=﹣3,y=1.精心挑选,合理搭配,让结果精彩纷呈.【知识应用】(1)若x2+y2﹣4x+6y+13=0,求x y的值;(2)若△ABC的三边为a、b、c,且满足4a2+4b2=4ab+18b﹣27,求最长边c的取值范围.29.(2023春•吴江区期中)我们可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,例如x2+4x﹣5=x2+4x+22﹣22﹣5=(x+2)2﹣9,我们把这样的变形叫做多项式ax2+bx+c (a≠0)的配方法.已知关于a,b的代数式满足a2+b2+2a﹣4b+5=0,请你利用配方法求a+b的值.30.(2023春•吴江区期中)阅读材料:若m2﹣2mn+2n2﹣2n+1=0,求m、n的值.解:∵m2﹣2mn+2n2﹣2n+1=0,∴(m2﹣2mn+n2)+(n2﹣2n+1)=0∴(m﹣n)2+(n﹣1)2=0,∴(m﹣n)2=0,(n﹣1)2=0,∴n=1,m=1.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x、y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52,且△ABC是等腰三角形,求c 的值.一.选择题(共2小题)1.(2022秋•建邺区期中)关于x的一元二次方程ax2+bx=c(ac≠0)一个实数根为2022,则方程cx2+bx =a一定有实数根()A.2022 B.C.﹣2022 D.﹣2.(2022秋•宿城区期中)要组织一次排球邀请赛,参赛的每两支球队之间都要进行一场比赛,共要比赛28场,参加比赛的球队有x支,则x的值为()A.8 B.9 C.18 D.10二.填空题(共4小题)3.(2023春•溧阳市期中)已知:x2﹣3x+5=(x﹣2)2+a(x﹣2)+b,则a+b=.4.(2022秋•泗洪县期中)如果x满足一元二次方程(x﹣4)(x+5)=0,则代数式x﹣4的值是.5.(2022秋•泗洪县期中)已知x=﹣1是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是.6.(2022秋•句容市期中)为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率.三.解答题(共14小题)7.(2022秋•太仓市期中)某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用40米长的篱笆围成一个矩形花园ABCD(篱笆只围AB,AD两边),设AB=x米.(1)若花园的面积为300米2,求x的值;(2)若在直角墙角内点P处有一棵桂花树,且与墙BC,CD的距离分别是10米,24米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为400米2?若能,求出x的值;若不能,请说明理由.8.(2022秋•梁溪区校级期中)某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.9.(2022秋•高邮市期中)某剧院可容纳1200人,经调研在一场文艺演出中,票价定为每张50元时,可以售出800张门票如果票价每降低1元,那么售出的门票就增加40张.要使门票收入达到47560元,票价应降低多少元?10.(2022秋•邗江区期中)2019年12月以来,湖北省武汉市发现一种新型冠状病毒感染引起的急性呼吸道传染病.(1)在“新冠”初期,有1人感染了“新冠”,经过两轮传染后共有144人感染了“新冠”(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?11.(2021秋•邗江区校级期中)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A 开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于2cm?(2)在(1)中,△PQB面积能否等于4cm2?请说明理由.12.(2021秋•洪泽区校级期中)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.(1)若现在按每千克60元销售,则月销售量千克,月销售利润元.(2)针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?13.(2021秋•邗江区校级期中)2021年8月,扬州疫情暴发,口罩供不应求,某药店在疫情前恰好新进了一批口罩,若按每个盈利1元销售,每天可售出200个;如果每个口罩的售价每上涨0.5元,则销售量就减少10个.(1)问应将每个口罩涨价多少元,才能让顾客得到实惠的同时每天利润为480元?(2)店主想要获得每天620元的利润,小红同学认为不可能,你同意小红的说法吗?请说明理由.14.(2022春•泗洪县期中)利用完全平方公式(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2的特点可以解决很多数学问题.下面给出两个例子:例1.分解因式:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)例2.求代数式2x2﹣4x﹣6的最小值:2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2[(x﹣1)2﹣1]﹣6=2(x﹣1)2﹣8又∵2(x﹣1)2≥0∴当x=1时,代数式2x2﹣4x﹣6有最小值,最小值是﹣8.仔细阅读上面例题,模仿解决下列问题:(1)分解因式:m2﹣6m﹣7;(2)当x、y为何值时,多项式2x2+y2﹣8x+6y+20有最小值?并求出这个最小值;(3)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2=8a+6b﹣25,求△ABC周长的最大值.15.(2022秋•苏州期中)如图,一个边长为8m的正方形花坛由4块全等的小正方形组成.在小正方形ABCD中,点G,E,F分别在CD,AD,AB上,且DG=1m,AE=AF=x,在△AEF,△DEG,五边形EFBCG三个区域上种植不同的花卉,每平方米的种植成本分别是20元、20元、10元.(1)当x=2时,小正方形ABCD种植花卉所需的费用;(2)试用含有x的代数式表示五边形EFBCG的面积;(3)当x为何值时,大正方形花坛种植花卉所需的总费用是715元?16.(2020秋•鼓楼区期中)方程是含有未知数的等式,使等式成立的未知数的值称为方程的“解”.方程的解的个数会有哪些可能呢?(1)根据“任何数的偶数次幂都是非负数”可知:关于x的方程x2+1=0的解的个数为;(2)根据“几个数相乘,若有因数为0,则乘积为0”可知方程(x+1)(x﹣2)(x﹣3)=0的解不止一个,直接写出这个方程的所有解;(3)结合数轴,探索方程|x+1|+|x﹣3|=4的解的个数;(写出结论,并说明理由)(4)进一步可以发现,关于x的方程|x﹣m|+|x﹣3|=2m+1(m为常数)的解的个数随着m的变化而变化…请你继续探索,直接写出方程的解的个数与对应的m的取值情况.17.(2022秋•盱眙县期中)已知关于x的一元二次方程(m﹣1)x2+6x+m2﹣1=0的一个根是0,(1)求m的值.(2)求方程的另一根.18.(2023春•邗江区期中)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.19.(2020秋•锡山区期中)小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?20.(2021春•工业园区校级期中)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知等腰△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC 的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.。
一元二次方程专题能力培优(含答案)

一元二次方程专题能力培优(含答案)解得:m≠2m10当m≠2时,原方程可化为x-m+1=0.2.C解析:将方程化简可得(m-6)x+(m-6)=0,由于常数项为0,所以m-6=0,即m=6.3.a=2解析:由于一次项系数为0,所以根据一元二次方程的求根公式可得:x1=x2=-b/2a,代入a-b+c=0中得a=2.4.a=2解析:将方程化简可得(2a-4)x+(3a+6)x+(a-8)=0,由于一次项系数为0,所以2a-4+3a+6=0,解得a=2.5.D解析:由题可得另一个根为-b,代入x1x2=a/c=-a/b得到b=-2a,代入a-b得到a=2b,所以a-b=2b-b=b=2.6.a/2解析:由于a-b+c=0,所以c=b-a,代入一元二次方程的求根公式可得x1=(b+√(b^2-4ac))/2a,x2=(b-√(b^2-4ac))/2a,代入x1x2=a/c得到a=(b^2-a^2)/(b-a),解得a/2=b-a,即a=2b-2a,解得a/2.7.2012解析:由一元二次方程的求根公式可得a=2013/2+√(2013^2/4-1),代入a-2012a-2013/2得到2012.2或者当m+1+(m-2)≠0且m+1=1时,它是一元一次方程。
解得:m=-1,m=0.因此,当m=-1或m=0时,为一元一次方程。
给定方程m^2-1=0,解得m=-1.因为m-1≠0,所以这是一元一次方程。
解方程3a+6=0,得到a=-2.因此,这是一元一次方程。
根据题意,方程x+bx+a=0的一个根是-a(a≠0)。
由此得到a-b=-1.解方程x^2=1,得到x=±1.因此,x=-1.已知实数a是一元二次方程x-2013x+1=0的解,因此a-2013a+1=0.解得a=-1/2012.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为-8或9.如果代数式x+6x+m是一个完全平方式,则m=9.用配方法证明:无论x为何实数,代数式-2x^2+4x-5的XXX小于零。
一元二次方程的解法大题培优专练(十大题型提分练)(原卷版)

21.4一元二次方程的解法大题培优专练(十大题型提分练)题型一、直接开平方法1.用开平方法解下列方程:(1)9x2﹣16=0;(2)−23−(x﹣1)2=﹣3.2.用直接开方法解下列方程:(1)(x+5)(x−5)=8;(2)4(2y﹣3)2=9(y﹣1)2.3.解下列方程:(1)x2﹣1=11;(2)16x2=5;(3)0.2x2−35=0;(4)9﹣(x﹣1)2=0.4.用直接开方法解下列方程:(1)13x2﹣27=0;(2)(x﹣2)2=6;(3)3(x﹣3)2=75;(4)(y+4)(y﹣4)﹣9=0.5.用直接开平方法解方程:(1)(2−2)2=6;(2)3(x﹣1)2﹣6=0;(3)(x+3)(x﹣3)=9;(4)(x+2)2=(1+2)2.6.用直接开平方法解下列方程:(1)x2﹣25=0;(2)4x2=1;(3)0.8x2﹣4=0;(4)4.3﹣6x2=2.8.7.用直接开平方法解下列方程:(1)(2x﹣3)2−14=0;(2)4(x﹣2)2﹣36=0;(3)x2+6x+9=7;(4)4(3x﹣1)2﹣9(3x+1)2=0.8.用直接开平方法解下列方程:(1)3(x+1)2=13;(2)(3x+2)2=25;(3)(x+1)2﹣4=0;(4)(2﹣x)2﹣9=0.题型二、配方法9.用配方法解下列方程(1)3x2﹣4x﹣2=0;(2)6x2﹣2x﹣1=0;(3)2x2+1=3x;(4)(x﹣3)(2x+1)=﹣5.10.用配方法解方程:(1)x2﹣2x=5(2)x2−3x﹣2=0;(3)4x2﹣6x﹣4=0(4)−122+3x=92.11.用配方法解下列方程:(1)2x2+4x=8;(2)2x2﹣4x﹣1=0;(3)2x2+2x﹣6=0;(4)2t2﹣7t﹣4=0.12.用配方法解下列方程:(1)x2﹣6x﹣4=0;(2)x2+x−74=0;(3)x2−23x+1=0;(4)(x﹣1)(x﹣3)=8.13.用配方法解下列方程:(1)3x2﹣12x+1=0;(2)4x2﹣12x﹣1=0;(3)﹣2x2+x+1=0;(4)12x2﹣2x﹣1=0.14.用配方法解方程:(1)x2﹣4x+2=0;(2)x2﹣4x+1=0.15.用配方法解下列方程:(1)x2+6x=﹣7;(2)x2﹣22x﹣3=0;(3)x(x﹣4)=2﹣8x;(4)4x2﹣8x+1=0.16.用配方法解方程:(1)(2x﹣1)2=5;(2)x2+6x+9=2;(3)x2﹣2x+4=﹣1.题型三、公式法17.用公式法解下列方程:(1)2x2﹣3x﹣4=0;(2)16x2+8x=3;(3)x2+5=3(x+2).18.用公式法解下列方程:(2)2x2﹣x﹣1=0;(3)y2=3y﹣2;(4)3x2﹣1=6x;(5)2x2+5x﹣1=0;(6)6x(x+1)=5x﹣1.19.用公式法解关于x的方程:(1)x2+mx+2=mx2+3x(m≠1)(2)x2﹣4ax+3a2+2a﹣1=0 20.用公式法解方程:(1)x2﹣3x+2=0;(2)x2﹣1=2(x+1);(3)2x2﹣3x﹣1=0(用公式法);(4)x2+3x﹣4=0.21.使用“公式法”解一元二次方程(1)x2−2x−14=0;(2)2x2﹣22+1=0;(3)3x2+20=2x2+8x.22.用公式法解下列方程.(1)x2﹣x=﹣2;(2)x2﹣2x=2x+1;(3)(3x﹣1)(x+2)=11x﹣4.23.用公式法解方程:(1)x2﹣4x+1=0(2)5x2=4x﹣1(3)2x2﹣2x﹣1=0(4)4x(x−52)=8.24.用公式法解下列方程:(2)3x2﹣10x﹣8=0;(3)y(2y+7)=4;(4)(x+2)(2x﹣9)=﹣6.题型四、因式分解法25.用因式分解法解一元二次方程:(1)x2﹣2x=0;(2)4x2﹣4x+1=0;(3)4(x﹣2)2﹣9=0;(4)(x+1)2﹣4(2x﹣1)2=0.26.用因式分解法解方程:(1)x2﹣6x=0;(2)4y2﹣16=0;(3)x(x﹣2)=x﹣2;(4)9(x+1)2﹣16(x﹣2)2=0.27.用因式分解法解方程:(1)4x2=2012x(2)x(x+2)﹣4x=0(3)(2y+1)=4y+2(4)x2+24x+144=0(5)4x2﹣121=0(6)(x﹣4)2=(5﹣2x)2.28.用因式分解法解下列方程(1)x(x﹣2)﹣x+2=0;(2)(x﹣3)2﹣4x2=0.29.用因式分解法解下列方程:(1)(x﹣1)2﹣2(x﹣1)=0(2)9x2﹣4=0(3)(3x﹣1)2﹣4=0(4)5x(x﹣3)=(x﹣3)(x+1)30.用因式分解法解下列方程:(1)16x2=(x﹣2)2;(2)3x(x﹣1)=2﹣2x;(3)(m+2)(2m﹣5)=﹣10.31.用因式分解法解下列方程:(1)(x﹣1)2﹣2(x﹣1)=0(2)9x2﹣4=0(3)(3x﹣1)2﹣4=0(4)5x(x﹣3)=(x﹣3)(x+1)(5)x2﹣4x﹣12=0(6)x2﹣12x+35=0.32.用因式分解法解下列方程:(1)(x﹣3)2=3﹣x(2)(x+3)2=(2x﹣5)2(3)(3x﹣1)(x﹣1)=(4x+1)(x﹣1)题型五、用指定的方法解方程33.按指定的方法解方程:(1)9(x﹣1)2﹣5=0(直接开平方法)(2)2x2﹣4x﹣8=0(配方法)(3)6x2﹣5x﹣2=0(公式法)(4)(x+1)2=2x+2(因式分解法)34.按指定方法解方程:(1)x2﹣4x﹣2=0(配方法);(2)2y2﹣3y﹣1=0(公式法);(3)3x(x﹣1)=2﹣2x(适当方法);(4)2x2﹣x﹣1=0(配方法).35.用指定的方法解方程:(1)2x2﹣9x+8=0(公式法);(2)x2﹣2x﹣3=0(用配方法).36.用指定的方法解方程:(1)122−2−5=0(用配方法);(2)x2=8x+20(用公式法);(3)(x﹣3)2+4x(x﹣3)=0(用因式分解法);(4)(x+2)(3x﹣1)=10(用适当的方法).37.用指定方法解方程:(1)(公式法)x2+4x﹣5=0;(2)(配方法)2x2﹣4x﹣3=0.38.请按指定的方法解方程.(1)x2﹣4x﹣21=0(配方法);(2)x2﹣2x﹣5=0(公式法).39.请按指定的方法解方程.①用公式法解方程:x2﹣x﹣5=0;②用配方法解方程:x2+4x﹣1=0.40.按指定的方法解方程:(1)(x﹣1)2﹣9=0;(2)x2+4x﹣8=0(配方法);(3)(x﹣2)2+10(x﹣2)+25=0(因式分解法);(4)3x2﹣8x+2=0(公式法).题型六、用合适的方法解方程41.适当的方法解方程:(1)3x2+2x﹣1=0;(2)(x+2)(x﹣1)=2﹣2x;(3)(2x﹣1)2+3(2x﹣1)=0.42.用适当方法解方程(1)(6x﹣1)2﹣25=0;(2)y2﹣y=3(y﹣1);(3)x2+18=;(4)(x+1)(x﹣1)+2(x+3)=8.43.用适当的方法解方程:(1)x2﹣2x=0;(2)3x2﹣6x=1;(3)x2+8x﹣1=0(用配方法);(4)x(x﹣2)=2﹣x.44.用适当的方法解方程;(1)x2﹣2x﹣3=0;(2)3x(x﹣1)=2(x﹣1);(3)(x+1)(x﹣1)=22.45.用适当的方法解方程:(1)122=2.(2)y2+4y=10.(3)2−6−2=0.46.用适当的方法解方程:(1)2(x﹣1)2﹣18=0;(2)9x2﹣12x﹣1=0;(3)x2+5x=6;(4)3x(2x﹣5)=4x﹣10.题型七、用换元法解方程47.阅读材料,解答问题.材料:为解方程(x2﹣1)2﹣3(x2﹣1)=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2.原方程化为y2﹣3y=0,①解得y1=0,y2=3.当y=0时,x2﹣1=0,所以x2=1,x=±1;当y=3时,x2﹣1=3,所以x2=4,x=±2.所以原方程的解为x1=1,x2=﹣1,x3=2,x4=﹣2.解答问题:(1)填空:在由原方程得到方程①的过程中,利用法达到了降幂的目的,体现了的数学思想;(2)解方程:(x2+3)2﹣4(x2+3)=0.48.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.49.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.50.解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.(3)解方程x2﹣3|x|=18.题型八、解方程过程出错性问题51.小明解一元二次方程2x2+5x+3=0的过程如下,请你仔细阅读,并回答问题:(1)小明解此方程使用的是法;小明的解答过程是从第步开始出错的.(2)请写出此题正确的解答过程.52.王明在学习了用配方法解一元二次方程后,解方程2x2﹣8x+3=0的过程如下:解:移项,得2x2﹣8x=﹣3.第一步二次项系数化为1,得x2﹣4x=﹣3.第二步配方,得x2﹣4x+4=﹣3+4.第三步因此(x﹣2)2=1.第四步由此得x﹣2=1或x﹣2=﹣1.第五步解得x1=3,x2=1.第六步(1)王明的解题过程从第步开始出现了错误;(2)请利用配方法正确地解方程2x2﹣8x+3=0.53.阿进用因式分解法解一元二次方程5x2﹣15x=6﹣2x时,他的做法如下:解:方程两边分解因式,得5x(x﹣3)=2(3﹣x),(第一步)方程变形为5x(x﹣3)=﹣2(x﹣3),(第二步)方程两边同时除以(x﹣3),得5x=﹣2,(第三步)系数化为1,得=−25.(第四步)(1)阿进的解法是不正确的,他从第步开始出现了错误.(2)请用阿进的方法完成这个题的解题过程.54.甲、乙两位同学解方程2(x﹣2)=(x﹣2)2的过程如框:甲:2(x﹣2)=(x﹣2)2两边同除以(x﹣2),得:2=x﹣2则x=4()乙:移项得2(x﹣2)﹣(x﹣2)2=0提公因式(x﹣2)(2﹣x﹣2)=0则x﹣2=0或2﹣x﹣2=0∴x1=2,x2=0()你认为他们的解法是否正确?若正确请在括号内打“√”;若错误打“×”,并写出你的解答过程.题型九、新定义材料探究题55.定义新运算:对于任意实数a、b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.(1)若x⊕(﹣4)=6,求x的值;(2)若m、n均为实数,且3⊕m的值小于10,判断关于x的方程2x2﹣nx﹣m=0的根的情况.56.定义:如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.(1)请判断关于x的方程x2﹣ax+a﹣1=0根的情况,并说明理由.(2)若(1)中的方程两个实数根都是整数,且该方程是“倍根方程”,请求出a的值.57.请阅读下列材料,并完成相应的任务.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有一个根是1,那么我们称这个方程为“方正方程”.(1)判断一元二次方程3x2﹣5x+2=0是否为“方正方程”,请说明理由;(2)已知关于x的一元二次方程5x2﹣bx+c=0是“方正方程”,求b2﹣2c的最小值.58.定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程4x2+11x+7=0是否为“黄金方程”,并说明理由.(2)已知3x2﹣mx+n=0是关于x的“黄金方程”,若m是此方程的一个根,则m的值为多少?题型十、配方法的应用59.我们知道a2≥0,所以代数式a2的最小值为0.学习了多项式乘法中的完全平方公式,可以逆用公式,即用a2±2ab+b2=(a+b)2来求一些多项式的最小值.例如,求x2+6x+3的最小值问题.解:∵x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6,又∵(x+3)2≥0,∴(x+3)2﹣6≥﹣6,∴x2+6x+3的最小值为﹣6.请应用上述思想方法,解决下列问题:(1)探究:2−4+5=(r_______)2+________;(2)求2x2+4x的最小值.(3)比较代数式:x2﹣1与6x﹣12的大小.60.【阅读理解】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,解决问题的策略一般都是进行一定的转化,其中“作差法”就是常用的方法之一.作差法:就是通过作差、变形,利用差的符号确定它们的大小,即要比较代数式A、B的大小,只要算A﹣B的值,若A﹣B>0,则A>B;若A﹣B=0,则A =B;若A﹣B<0,则A<B.【知识运用】(1)请用上述方法比较下列代数式的大小(用“>、=、<”填空):①x﹣1x+3;②若a<b<0,则a2b2;(2)试比较与6x2+2x+1与5x2+4x﹣3的大小,并说明理由;【类比运用】(3)图(1)是边长为4的正方形,将正方形一组对边保持不变,另一组对边增加2a(a>0)得到如图(2)所示的长方形,此长方形的面积为S1;将正方形的边长增加a,得到如图(3)所示的大正方形,此正方形的面积为S2;则S1与S2的大小关系为:S1S2;(4)已知M=2020×2023,N=2021×2022,试运用上述方法比较M、N的大小,并说明理由.1.(23-24八年级下·辽宁沈阳·期中)教科书中这样写道:“形如222a ab b ±+的式子称为完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等问题.例如:分解因式:223x x +-.解:原式()()()()()()2221414121231x x x x x x x =++-=+-=+++-=+-再如:求代数式2246x x +-的最小值.解:()()222246223218x x x x x +-=+-=+-,()2210x +≥ ()22188x ∴+-≥-∴当=1x -时,2246x x +-有最小值,最小值是8-.根据阅读材料,用配方法解决下列问题:(1)分解因式:267x x +-(应用配方法)(2)当x 为何值时,多项式2245x x --+有最大值?并求出这个最大值.(3)利用配方法,尝试求出等式2254210a b ab b +--+=中a ,b 的值.2.(23-24八年级下·安徽淮北·阶段练习)【探究学习】把一个二次式通过添项或拆项的方法得到完全平方式,再利用“20a ≥”这一性质解决问题,这种解题方法叫作配方法.配方法在我们今后的学习中有着广泛的应用.例如:求2612a a ++的最小值.解:()222261263333a a a a a ++=+++=++,因为2(3)0a +≥,所以()2333a ++≥,所以当2(3)0+=a 时,即当3a =-时,2612a a ++有最小值,最小值为3.【解决问题】(1)当x 为何值时,代数式2811x x -+有最小值?最小值为多少?(2)如图1所示的是一组邻边长分别为7,25a +的长方形,其面积为1S ;如图2所示的是边长为6a +的正方形,其面积为2S ,0a >,请比较1S 与2S 的大小,并说明理由.(3)如图3,物业公司准备利用一面墙(墙足够长),用总长度46m 的栅栏(图中实线部分)围成一个长方形场地ABCD ,且CD 边上留两个1m 宽的小门,设BC 的长为m x ,当x 为何值时,长方形场地ABCD 的面积最大?最大值是多少?3.(23-24八年级下·山东淄博·阶段练习)小明在学习有关整式的知识时,发现一个有趣的现象:对于关于x 的多项式223x x -+,由于2223(1)2x x x -+=-+,所以当1x -取任意一对互为相反数的数时,多项式223x x -+的值是相等的,例如,当11x -=±,即2x =或0时,223x x -+的值均为3;当12x -=±,即3x =或1-时,223x x -+的值均为6.于是小明给出一个定义:对于关于x 的多项式,若当x t -取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x t =对称.例如223x x -+关于1x =对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式245x x ++关于x =对称;若关于x 的多项式223x bx -+关于4x =-对称,则b =;(2)关于x 的多项式2x ax c ++关于=1x -对称,且当x a =时,多项式的值为5,求4x =时,多项式24x ax c ++-的值.4.(23-24八年级上·贵州遵义·阶段练习)阅读材料:利用公式法,可以将一些形如()20ax bx c a ++≠的多项式变形为()2a x m n ++的形式,我们把这样的变形方法叫做多项式()20ax bx c a ++≠的配方法.运用多项式的配方法和平方差公式可以解决很多数学问题.下面给出例子:[例]分解因式:223x x +-.()()()()()2222321414121231x x x x x x x x x +-=++-=+-=+++-=+-.根据以上材料,解答下列问题.(1)分解因式:2812m m -+=.(2)请你运用上述配方法分解因式22:45x xy y --.(3)已知ABC 的三边长,,a b c 都是正整数,且满足228625a b a b +=+-,求ABC 周长的最大值5.(23-24八年级下·安徽安庆·期中)阅读下列材料:已知实数m ,n 满足()()2222212180m n m n +++-=,试求222m n +的值.解:设222m n t +=,则原方程变为()()1180t t +-=,整理得2180t -=,281t =,∴9t =±,∵2220m n +≥,∴2229m n +=.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)已知实数x ,y 满足()()222222322327x y x y +++-=,求22x y +的值;(2)设a ,b 满足等式()()22222213a b a b ++-=,求22313+-b a 的值;(3)若四个连续正整数的积为24,求这四个连续正整数.6.(2024·江苏扬州·一模)阅读感悟:已知方程2210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x =.所以2y x =.把2y x =代入已知方程,得221022y y ⎛⎫+⋅-= ⎪⎝⎭.化简,得2440y y +-=,故所求方程为2440y y +-=.这种利用方程的代换求新方程的方法,我们称为“换元法”.请用阅读材料提供的“换元法”求新方程(要求:把所求方程化为一般形式.解决问题:(1)已知方程230x x --=,求一个一元二次方程,使它的根分别比已知方程的根大1.则所求方程为:______;(2)方程20ax bx c ++=()20040a c b ac ≠≠-≥,,的两个根与方程______的两个根互为倒数.(3)已知关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根分别为1和12-,求关于y 的一元二次方程()()()22024420200c y b y b a c -+-=-≠的两个实数根.7.(23-24八年级下·江苏苏州·期中)阅读材料:为解方程()()2221310x x ---=,我们可以将()21x -视为一个整体,然后设21x y -=,将原方程化为230y y -=①,解得120,3y y ==.当0y =时,2210,1,1x x x -=∴=∴=±.当3y =时,2213,4,2x x x -=∴=∴=±.∴原方程的解为12341,1,2,2x x x x ==-==-.由原方程得到①的过程,利用换元法达到了简化方程的目的,体现了整体转化的数学思想.阅读后解答问题:(1)利用上述材料中的方法解方程:()()2222220x x x x +-+-=;(2)已知一元二次方程2()0a x m n ++=的两根分别为3,1-,求方程()2(24)00a x m n a +-+=≠的两根.8.(23-24八年级下·黑龙江哈尔滨·阶段练习)阅读下面的材料,回答问题:解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =.当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±;∴原方程有四个根:11x =,2x =32x =,42x =-.这一方法,在由原方程得到方程①的过程中,利用“换元法”达到降次的目的,体现了数学的转化思想.(1)方程4260x x --=的解为________.(2)仿照材料中的方法,尝试解方程()()2224120x x x x +-+-=.9.(23-24八年级下·安徽蚌埠·阶段练习)定义:若关于x 的一元二次方程20(0)ax bx c a ++=≠中的常数项是该方程的一个根,则该一元二次方程就叫做常数根一元二次方程.(1)已知关于x 的方程20x x c ++=是常数根一元二次方程,则c 的值为_____________;(2)如果关于x 的方程2210x mx m +++=是常数根一元二次方程,则m 的值;(3)若关于x 的常数根一元二次方程20(0)ax bx c a ++=≠中不含零根,求证:关于y 的方程210acy by ++=是常数根一元二次方程.10.(23-24九年级上·江苏宿迁·期中)阅读下列材料:在苏教版九年级数学上册15P 页中,我们通过探索知道:关于x 的一元二次方程20(0)ax bx c a ++=≠,如果240b ac -≥时,这个方程的实数根就可以表示为2b x a-=,其中24b ac -就叫做一元二次方程根的判别式,我们用∆表示,即24b ac ∆=-,通过观察公式,我们可以发现,如果∆的值是一个完全平方数时,一元二次方程的根不一定都为整数,但是如果一元二次方程的根都为整数,∆的值一定是一个完全平方数.例:方程2210x x --=,2224(1)42(1)93b ac ∆=-=--⨯⨯-==,∆的值是一个完全平方数,但是该方程的根为11x =,212x =-,不都为整数;方程2680x x -+=的两根12x =,24x =,都为整数,此时2224(6)41842b ac ∆=-=--⨯⨯==,∆的值是一个完全平方数.我们定义:两根都为整数的一元二次方程20(0)ax bx c a ++=≠称为“全整根方程”,代数式244ac b a -的值为该“全整根方程”的“最值码”,用(),,Q a b c 表示,即24(,,)4ac b Q a b c a-=;若另一关于x 的一元二次方程20(0)px qx r p ++=≠也为“全整根方程”,其“最值码”记为(,,)Q p q r ,当满足(,,)(,,)Q a b c Q p q r c -=时,则称一元二次方程20(0)ax bx c a ++=≠是一元二次方程20(0)px qx r p ++=≠的“全整根伴侣方程”.(1)关于x 的一元二次方程2(1)0x m x m -++=是一个“全整根方程”①当2m =时,该全整根方程的“最值码”是__________.②若该全整根方程的“最值码”是1-,则m 的值为__________.(2)关于x 的一元二次方程22(23)450x m x m m --+--=(m 为整数..,且415m <<)是“全整根方程”,请求出该方程的“最值码”.(3)若关于x 的一元二次方程2(1)40x m x m +-++=是2(1)0x n x n +--=(m ,n 均为正整数...)的“全整根伴侣方程”,求m n -的值(直接写出答案).11.(22-23九年级上·北京海淀·开学考试)阅读下面材料:小元遇到这样一个问题:如图1,在正方形ABCD 中,点E F 、分别为DC BC 、边上的点,45EAF ∠=︒,连接EF ,设DE a =,EF b =,FB c =,则把关于x 的一元二次方程20ax bx c -+=叫做正方形ABCD 的关联方程,正方形ABCD 叫做方程20ax bx c -+=的关联四边形.探究方程20ax bx c -+=是否存在常数根t .小元是这样思考的:要想解决这个问题,首先应想办法把这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是把ADE V 绕点A 顺时针旋转90︒得到ABG (如图2),此时GF 即是DE BF +.请回答:t =.参考小元得到的结论和思考问题的方法,解决下列问题:(1)如图1,若10AD =,4DE =,则正方形ABCD 的关联方程为;(2)正方形ABCD 的关联方程是2230x bx -+=,则正方形ABCD 的面积=.。
数学 一元二次方程的专项 培优练习题含答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=, 224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.2.已知:关于的方程有两个不相等实数根.(1) 用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10 0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.8.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。
一元二次方程专题培优训练精选

一元二次方程专题培优训练精选专题一利用一元二次方程的定义确定字母的取值1.已知(m-3)x^2+m+2x=1是关于x的一元二次方程,则m 的取值范围是()A.m≠3.B.m≥3.C.m≥-2.D。
m≥-2且m≠3已知(m-3)x^2+m+2x=1是关于x的一元二次方程,则m 的取值范围是()A。
m≠3.B。
m≥3.C。
m≥-2.D。
m≥-2且m≠32.已知关于x的方程(m+1)x^m+1+(m-2)x^-1=,问:1)m取何值时,它是一元二次方程并写出这个方程;2)m取何值时,它是一元一次方程?已知关于x的方程(m+1)x^m+1+(m-2)x^-1=,问:1)m取何值时,它是一元二次方程并写出这个方程;2)m取何值时,它是一元一次方程?3.若一元二次方程ax^2+bx+c=0中,a-b+c=0,则此方程必有一个根为.a^2+1若一元二次方程ax^2+bx+c=0中,a-b+c=0,则此方程必有一个根为.a^2+14.已知实数a是一元二次方程x-2013x+1=0的解,求代数式a-2012a-的值.2013^2已知实数a是一元二次方程x-2013x+1=0的解,求代数式a-2012a-的值.2013^2方法技巧:1.ax+bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会.方法技巧:1.ax+bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会.专题二利用配方法求字母的取值或者求代数式的极值21.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A.-9或11.B.-7或8.C.-8或9.C.-8或9 若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A。
-9或11.B。
-7或8.C。
一元二次方程提高培优题

一元二次方程提高培优题(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2一元二次方程提高题 一、选择题1.已知a 是方程x 2+x ﹣1=0的一个根,则的值为( ) A .B .C .﹣1D .12.一元二次方程(2)2x x x -=-的根是( )=1 =0 =1和x=2 =-1和x=23.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( ) A . 289(1﹣x )2=256 B . 256(1﹣x )2=289 C . 289(1﹣2x )=256 D . 256(1﹣2x )=2894.岑溪市重点打造的天龙顶山地公园在20XX 年12月27日试业了.在此之前,公园派出小曾等人到某旅游景区考察,了解到该景区三月份共接待游客20万人次,五月份共接待游客50万人次.小曾想知道景区每月游客的平均增长率x 的值,应该用下列哪一个方程来求出( )A .20(1+x )2=50B .20(1﹣x )2=50C .50(1+x )2=20D .50(1﹣x )2=205.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .(1)2070x x -= B .(1)2070x x += C .2(1)2070x x += D .(1)2070x x x-= 6.若关于x 的方程x 2﹣4x+m=0没有实数根,则实数m 的取值范围是A .m <﹣4B .m >﹣4C .m <4D .m >47.已知实数a ,b 分别满足22a 6a 40b 6b 40-+=-+=,,且a≠b,则b a a b+的值是【 】A .7B .-7C .11D .-118.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A.当k 0=时,方程无解B.当k 1=时,方程有一个实数解C.当k 1=-时,方程有两个相等的实数解D.当k 0≠时,方程总有两个不相等的实数解9.若224x Mxy y -+是一个完全平方式,那么M 的值是( ) A. 2 B. ±2 C. 4 D.±4二、填空题10.已知方程x 2+(1﹣)x ﹣=0的两个根x 1和x 2,则x 12+x 22=11.已知m 和n 是方程2x 2-5x -3=0的两个根,则1m +1n=________.12.若将方程267x x +=,化为()216x m +=,则m =________.13.已知(x 2+y 2)(x 2-1+y 2)-12=0,则x 2+y 2的值是_________。314.某种药品原价为60元/盒,经过连续两次降价后售价为元/盒.设平均每次降价的百分率为x ,则根据题意,可列方程为 .15.若a 4+b 10--=,且一元二次方程2kx ax b 0++=有实数根,则k 的取值范围是 .三、计算题16.解方程:(x+3)2﹣x (x+3)=0. 按要求解方程:17.0)2(3)2(=-+-x x x 18.0322=--x x 19.012=--x x (公式法) 20.0122=-+x x (配方法)四、解答题21.广东省某市政府为了做到“居者有其屋”,加快了廉租房的建设力度,20XX 年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到20XX 年底三年共累计投资亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. ①求每年市政府投资的增长率.②若这两年内的建设成本不变,求到20XX 年底共建设了多少平方米廉租房.22.已知x 1、x 2是方程2x 2+3x -1=0的两个实数根,不解方程,求①(x 1-x 2)2;②11x +21x 的值. 23.已知关于x 的一元二次方程02)2(2=++-k x k x .(1)若1=x 是这个方程的一个根,求k 的值和它的另一根;(2)对于任意的实数k ,判断原方程根的情况,并说明理由. 24.为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元。
【数学】培优一元二次方程辅导专题训练附答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】 试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-== ;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或,∴12223,223y y =-+=--3.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=4.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=1+62x2=1-621=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x-1)2=32.∴x-1=32±6 2.∴x1=1+62,x2=1-62.(2)由题可得,(x+1)2-6(x+1)=0,∴(x+1)(x+1-6)=0.∴x+1=0或x+1-6=0.∴x1=-1,x2=5.5.已知两条线段长分别是一元二次方程28120x x-+=的两根,(1)解方程求两条线段的长。
(完整版)一元二次方程综合培优(难度大-含参考答案)(最新整理)

A、1
B、2
C、 1 2
D、 3 2
18、已知是 、 方程 x 2 x 1 0 的两个实根,则 4 3 _______ .
19、若关于 x 的方程 2a x ax 1 只有一解,求 a 的值。 x 1 x2 x x
中考真题
1、若 x 1 1 ,则 x3 1 的值为( )
x
D、 1 和 1 2
6、实数 x、y 满足 x 2 xy y 2 2 ,记 u x 2 xy y 2 ,则 u 的取值范围是( )
A、 2 u 6 3
B、 2 u 2 3
C、1 u 6
D、1 u 2
7、已知实数 m,n 满足 m2 m 2009 0 , 1 1 2009 0mn 1 ,则 1 n _____ .
答案: 2005
考点:因式分解的应用。
专题:整体思想。
分析:根据已知条件可得到 m 2 m 1 ,然后整体代入代数式求值计算即可。
解答:∵ m2 m 1 0
∴m2 m 1
∴原式 m m2 m m 2006 m2 m 2006 1 2006 2005
点评:这里注意把要求的代数式进行局部因式分解,根据已知条件,整体代值计算。
∵ x1 1, p q 3 ∴ x2 x1 x2 3 x1 2
∴ x1 x2 x1 x2 3
∴ x2 x1 1 2
7、已知 a b 8 , ab c 2 16 0 ,则 a b c ________ .
D、 a b 4
8、已知 m 2 m 1 0 ,则 m3 2m 2 2006 ________ .
9、已知 a b 4 , ab c 2 4 0 ,则 a b ________ .
4、已知方程 2x 2 2ax 3a 4 0 没有实数根,则代数式 a 2 8a 16 2 a _____ .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点一、概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx xm m 是关于x 的一元二次方程,则m 的值为 。
针对练习:★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=∙+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数 式的值。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。
针对练习:★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
⑴求k 的值;⑵方程的另一个解。
★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2。
★★4、已知a 是0132=+-x x 的根,则=-a a 622。
★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( )A 1-B 1C c b -D a -★★★6、若=∙=-+y x 则y x 324,0352 。
考点三、解法 ⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次类型一、直接开方法:()m x m m x ±=⇒≥=,02※※对于()m a x =+2,()()22n bx m ax +=+等形式均适用直接开方法 典型例题:例1、解方程:();08212=-x ()216252x -=0; ()();09132=--x 例2、解关于x 的方程:02=-b ax 例3、若()()2221619+=-x x ,则x 的值为 。
针对练习:下列方程无解的是( )A.12322-=+x xB.()022=-xC.x x -=+132D.092=+x类型二、因式分解法:()()021=--x x x x 21,x x x x ==⇒或※方程特点:左边可以分解为两个一次因式的积,右边为“0”,※方程形式:如()()22n bx m ax +=+,()()()()c x a x b x a x ++=++ , 0222=++a ax x典型例题:例1、()()3532-=-x x x 的根为( )A 25=xB 3=xC 3,2521==x x D 52=x 例2、若()()044342=-+++y x y x ,则4x+y 的值为 。
变式1:()()=+=-+-+2222222,06b 则a b a b a 。
变式2:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。
例3、方程062=-+x x 的解为( ) A.2321=-=,x x B.2321-==,x x C.3321-==,x x D.2221-==,x x 例4、解方程: ()04321322=++++x x例5、已知023222=--y xy x ,则yx y x -+的值为 。
变式:已知023222=--y xy x ,且0,0>>y x ,则y x y x -+的值为 。
针对练习:★1、下列说法中:①方程02=++q px x 的二根为1x ,2x ,则))((212x x x x q px x --=++② )4)(2(862--=-+-x x x x .③)3)(2(6522--=+-a a b ab a④ ))()((22y x y x y x y x -++=- ⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x正确的有( )A.1个B.2个C.3个D.4个★2、以71+与71-为根的一元二次方程是()A .0622=--x xB .0622=+-x x C .0622=-+y y D .0622=++y y★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数: ★★4、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )A 、-1或-2B 、-1或2C 、1或-2D 、1或25、方程:2122=+xx 的解是 。
类型三、配方法()002≠=++a c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ ※在解方程中,多不用配方法;但常利用配方思想求解代数式 的值或极值之类的问题。
典型例题:例1、试用配方法说明322+-x x 的值恒大于0。
例2、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、已知,x、y y x y x 0136422=+-++为实数,求yx 的值。
例4、分解因式:31242++x x 针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。
★★2、已知041122=---+x x x x ,则=+x x 1 . ★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。
1、关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <02、如果方程022=++m x x 有两个同号的实数根,则m 的取值范围是 ( )A 、 m <1B 、 0<m ≤1C 、 0≤m <1D 、 m >0类型四、公式法⑴条件:()04,02≥-≠ac b a 且 ⑵公式: a ac b b x 242-±-=,()04,02≥-≠ac b a 且 典型例题:例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x ⑷01432=--x x ⑸()()()()5211313+-=+-x x x x 说明:解一元二次方程时,首选方法是因式分解法和直接开方法、其次选用求根公式 法;一般不选择配方法。
例2、在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x -- 说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解, 一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成 c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、 “降次思想”的应用⑴求代数式的值; ⑵解二元二次方程组。
典型例题:例1、已知0232=+-x x ,求代数式()11123-+--x x x 的值。
例2、如果012=-+x x ,那么代数式7223-+x x 的值。
例3、已知a 是一元二次方程0132=+-x x 的一根,求1152223++--a a a a 的值。
说明:在运用降次思想求代数式的值的时候,要注意两方面的问题:①能对已知式进 行灵活的变形;②能利用已知条件或变形条件,逐步把所求代数式的高次幂化为低次 幂,最后求解。
例4、用两种不同的方法解方程组⎩⎨⎧=+-=-)2(.065)1(,6222y xy x y x说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再 消元。
但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已 知的问题.考点四、根的判别式ac b 42- 根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
典型例题:例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m例3、已知关于x 的方程()0222=++-k x k x(1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
例4、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.说明:若二次三项式为一个完全平方式,则其相应方程的判别式0=∆即:若042=-ac b ,则二次三项式c bx ax ++2)0(≠a 为完全平方式;反之,若 c bx ax ++2)0(≠a 为完全平方式,则042=-ac b .例5、m 为何值时,方程组⎩⎨⎧=+=+.3,6222y mx y x 有两个不同的实数解?有两个相同的实数解?针对练习:★1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。
★2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么? ★3、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 . ★★4、k 为何值时,方程组⎩⎨⎧=+--+=.0124,22y x y kx y (1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解.★★★5、当k 取何值时,方程04234422=+-++-k m m x mx x 的根与m 均为有理数? 考点五、方程类问题中的“分类讨论”典型例题:例1、关于x 的方程()03212=-++mx x m ⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。