一元二次方程培优提高题.doc
(完整版)一元二次方程综合培优(难度大-含参考答案)

一元二次方程拓展提高题1、已知0200052=--x x,则()()211223-+---x x x 的值是 . 2、已知0120042=+-a a ,则_________120044007222=++-a a a . 3、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=b a.4、已知方程043222=-+-a ax x 没有实数根,则代数式_____21682=-++-a a a .5、已知x x y -+=62,则y 的最大值为 .6、已知0=++c b a ,2=abc ,0φc ,则( )A 、0πabB 、2-≤+b aC 、3-≤+b aD 、4-≤+b a 7、已知8=-b a ,0162=++c ab ,则________=++c b a . 8、已知012=-+m m ,则________2006223=-+m m . 9、已知4=-b a ,042=++c ab ,则________=+b a .10、若方程02=-+q px x 的二根为1x ,2x ,且11φx ,03φ++q p ,则2x ( ) A 、小于1 B 、等于1 C 、大于1 D 、不能确定11、已知α是方程0412=-+x x 的一个根,则ααα--331的值为 .12、若132=-x x ,则=+--+200872129234x x x x ( )A 、2011B 、2010C 、2009D 、2008 13、方程22323=--+x x 的解为 . 14、已知06222=+-y x x ,则x y x 222++的最大值是( )A 、14B 、15C 、16D 、18 15、方程m x x =+-2||22恰有3个实根,则=m ( )A 、1B 、1.5C 、2D 、2.5 16、方程9733322=-+-+x x x x 的全体实数根之积为( )A 、60B 、60-C 、10D 、10-17、关于x 的一元二次方程0522=--a x x (a 为常数)的两根之比3:2:21=x x ,则=-12x x ( )A 、1B 、2C 、21 D 、23 18、已知是α、β方程012=-+x x 的两个实根,则_______34=-βα. 19、若关于x 的方程xax x x x x a 1122++-=-只有一解,求a 的值。
一元二次方程专题能力培优(含答案)

⼀元⼆次⽅程专题能⼒培优(含答案)第2章⼀元⼆次⽅程 2.1 ⼀元⼆次⽅程专题⼀利⽤⼀元⼆次⽅程的定义确定字母的取值1.已知2(3)1m x -+=是关于x 的⼀元⼆次⽅程,则m 的取值范围是()A.m ≠3B.m ≥3C.m ≥-2D. m ≥-2且m ≠32. 已知关于x 的⽅程21(1)(2)10mm x m x +++--=,问:(1)m 取何值时,它是⼀元⼆次⽅程并写出这个⽅程;(2)m 取何值时,它是⼀元⼀次⽅程?专题⼆利⽤⼀元⼆次⽅程的项的概念求字母的取值3.关于x 的⼀元⼆次⽅程(m-1)x 2+5x+m 2-1=0的常数项为0,求m 的值.4.若⼀元⼆次⽅程2(24)(36)80a x a x a -+++-=没有⼀次项,则a 的值为 .专题三利⽤⼀元⼆次⽅程的解的概念求字母、代数式5.已知关于x 的⽅程x 2+bx+a=0的⼀个根是-a (a≠0),则a-b 值为() A.-1 B.0 C.1 D.26.若⼀元⼆次⽅程ax 2+bx+c=0中,a -b+c=0,则此⽅程必有⼀个根为 .7.已知实数a 是⼀元⼆次⽅程x 2-2013x+1=0的解,求代数式22120122013a a a +--的值.知识要点:1.只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次),等号两边都是整式的⽅程,叫做⼀元⼆次⽅程.2.⼀元⼆次⽅程的⼀般形式是ax 2+bx+c=0(a ≠0),其中ax 2温馨提⽰:1.⼀元⼆次⽅程概念中⼀定要注意⼆次项系数不为0的条件.2.⼀元⼆次⽅程的根是两个⽽不再是⼀个.⽅法技巧:1.ax k+bx+c=0是⼀元⼀次⽅程的情况有两种,需要分类讨论.2.利⽤⼀元⼆次⽅程的解求字母或者代数式的值时常常⽤到整体思想,需要同学们认真领会. 答案:1. D 解析:3020mm-≠+≥,解得m≥-2且m≠32.解:(1)当212,10mm+=+≠时,它是⼀元⼆次⽅程.解得:m=1.当m=1时,原⽅程可化为2x2-x-1=0;(2)当20,10m+=或者当m+1+(m-2)≠0且m2+1=1时,它是⼀元⼀次⽅程.解得:m=-1,m=0.故当m=-1或0时,为⼀元⼀次⽅程.3.解:由题意,得:210,10.mm-=-≠解得:m=-1.4.a=-2 解析:由题意得360,240.aa+=-≠解得a=-2.5. A 解析:∵关于x的⽅程x2+bx+a=0的⼀个根是-a(a≠0),∴a2-ab+a=0.∴a(a-b+1)=0.∵a≠0,∴1-b+a=0.∴a-b=-1.6.x=-1 解析:⽐较两个式⼦会发现:(1)等号右边相同;(2)等号左边最后⼀项相同;(3)第⼀个式⼦x2对应了第⼆个式⼦中的1,第⼀个式⼦中的x对应了第⼆个式⼦中的-1.故==-.解得x=-1.7.解:∵实数a是⼀元⼆次⽅程x2-2013x+1=0的解,∴a2-2013a+1=0. ∴a2+1=2013a,a2-2013a=-1.∴2.2 ⼀元⼆次⽅程的解法专题⼀利⽤配⽅法求字母的取值或者求代数式的极值1.若⽅程25x2-(k-1)x+1=0的左边可以写成⼀个完全平⽅式;则k的值为()A.-9或11 B.-7或8 C.-8或9 C.-8或92.如果代数式x2+6x+m2是⼀个完全平⽅式,则m= .3.⽤配⽅法证明:⽆论x为何实数,代数式-2x2+4x-5的值恒⼩于零.专题⼆利⽤△判定⼀元⼆次⽅程根的情况或者判定字母的取值范围4.已知a,b,c分别是三⾓形的三边,则⽅程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有⼀个实数根C.有两个相等的实数根D.有两个不相等的实数根5.关于x的⽅程kx2+3x+2=0有实数根,则k的取值范围是()6.定义:如果⼀元⼆次⽅程ax2+bx+c=0(a≠0)满⾜a+b+c=0,那么我们称这个⽅程为“凤凰”⽅程.已知ax2+bx+c=0(a≠0)是“凤凰”⽅程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c专题三解绝对值⽅程和⾼次⽅程7.若⽅程(x2+y2-5)2=64,则x2+y2= .8.阅读题例,解答下题:例:解⽅程x2-|x-1|-1=0.解:(1)当x-1≥0,即x≥1时,x2-(x-1)-1=0,∴x2-x=0.解得:x1=0(不合题设,舍去),x2=1.(2)当x-1<0,即x<1时,x2+(x-1)-1=0,∴x2+x-2=0.解得x1=1(不合题设,舍去),x2=-2.综上所述,原⽅程的解是x=1或x=-2.10.请先阅读例题的解答过程,然后再解答:代数第三册在解⽅程3x (x+2)=5(x+2)时,先将⽅程变形为3x (x+2)-5(x+2)=0,这个⽅程左边可以分解成两个⼀次因式的积,所以⽅程变形为(x+2)(3x-5)=0.我们知道,如果两个因式的积等于0,那么这两个因式中⾄少有⼀个等于0;反过来,如果两个因式有⼀个等于0,它们的积等于0.因此,解⽅程(x+2)(3x-5)=0,就相当于解⽅程 x+2=0或3x-5=0,得到原⽅程的解为x 1=-2,x 2=53.根据上⾯解⼀元⼆次⽅程的过程,王⼒推测:a ﹒b >0,则有 0,0a b >??>?或者0,0.a b请判断王⼒的推测是否正确?若正确,请你求出不等式51023x x ->-的解集,如果不正确,请说明理由.专题五利⽤根与系数的关系求字母的取值范围及求代数式的值11. 设x 1、x 2是⼀元⼆次⽅程x 2+4x -3=0的两个根,2x 1(x 22+5x 2﹣3)+a =2,则a = . 12.(2012·怀化)已知x 1、x 2是⼀元⼆次⽅程()0262=++-a ax x a 的两个实数根,⑴是否存在实数a ,使-x 1+x 1x 2=4+x 2成⽴?若存在,求出a 的值;若不存在,请你说明理由;⑵求使(x 1+1)(x 2+1)为负整数的实数a 的整数值.13.(1)教材中我们学习了:若关于x 的⼀元⼆次⽅程ax 2+bx+c=0的两根为x 1、x 2,x 1+x 2=-b a ,x 1·x 2=ca .根据这⼀性质,我们可以求出已知⽅程关于x 1、x 2的代数式的值.例如:已知x 1、x 2为⽅程x 2-2x-1=0的两根,则:(1)x 1+x 2=____,x 1·x 2=____,那么x 12+x 22=( x 1+x 2)2-2 x 1·x 2=__ __.请你完成以上的填空..........(2)阅读材料:已知2210,10m m n n --=+-=,且1mn ≠.求1mn n+的值.解:由210n n +-=可知0n ≠.∴21110n n +-=.∴211是⽅程210x x --=的两根.∴11m n +=.∴1mn n+=1.(3)根据阅读材料所提供的的⽅法及(1)的⽅法完成下题的解答.已知222310,320m m n n --=+-=,且1mn ≠.求221m n+的值.知识要点:1.解⼀元⼆次⽅程的基本思想——降次,解⼀元⼆次⽅程的常⽤⽅法:直接开平⽅法、配⽅法、公式法、因式分解法.2.⼀元⼆次⽅程的根的判别式△=b-4ac 与⼀元⼆次⽅程ax 2+bx+c=0(a ≠0)的根的关系:当△>0时,⼀元⼆次⽅程有两个不相等的实数解;当△=0时,⼀元⼆次⽅程有两个相等的实数解;△<0时,⼀元⼆次⽅程没有实数解.3.⼀元⼆次⽅程ax 2+bx+c=0(a ≠0)的两根x 1、x 2与系数a 、b 、c 之间存在着如下关系: x 1+x 2=﹣,x 1?x 2=.温馨提⽰: 1.x 2+6x+m 2是⼀个完全平⽅式,易误以为m=3.2.若⼀元⼆次⽅程ax 2+bx+c=0(a ≠0)的两根x 1、x 2有双层含义:(1)ax 12+bx 1+c=0,ax 22+bx 2+c=0;(2)x 1+x 2=﹣,x 1?x 2=.⽅法技巧:1.求⼆次三项式ax 2+bx+c 极值的基本步骤:(1)将ax 2+bx+c 化为a (x+h )2+k ;(2)当a>0,k>0时,a (x+h )2+k ≥k ;当a<0,k<0时,a (x+h )2+k ≤k.2.若⼀元⼆次⽅程ax 2+bx +c =0的两个根为x 1.x 2,则ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2).3.解绝对值⽅程的基本思路是将绝对值符号去掉,所以要讨论绝对值符号内的式⼦与0的⼤⼩关系.4.解⾼次⽅程的基本思想是将⾼次⽅程将次转化为关于某个式⼦的⼀元⼆次⽅程求解.5.利⽤根与系数求解时,常常⽤到整体思想.答案: 1.A 解析:根据题意知,-(k-1)=±2×5×1,∴k-1=±10,即k-1=10或k-1=-10,得k=11或k=-9.2. ±3 解析:据题意得,m 2=9,∴m=±3.3.证明:-2x 2+4x -5=-2(x 2-2x )-5=-2(x 2-2x+1)-5+2=-2(x -1)2∴⽆论x 为何实数,代数式-2x 2+4x-5的值恒⼩于零.4.A 解析:△=(2c )2﹣4(a +b )(a +b )=4(a +b +c )(c ﹣a ﹣b ).根据三⾓形三边关系,得c ﹣a ﹣b <0,a +b +c >0.∴△<0.∴该⽅程没有实数根.5.A 解析:当kx 2+3x+1=0为⼀元⼀次⽅程⽅程时,必有实数根,此时k=0;当kx 2+3x+1=0为⼀元⼆次⽅程且有实数根时,如果有实数根,则203420k k ≠?-??≥?.解得98k ≤且k ≠0.综上所述98k ≤.6.A 解析:∵⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个相等的实数根,∴△=b 2-4ac=0,⼜a +b +c =0,即b =-a -c ,代⼊b 2-4ac =0得(-a -c )2-4ac =0,化简得(a-c )2=0,所以a =c .7.13 解析:由题意得x 2+y 2-5=±8.解得x 2+y 2=13或者x 2+y 2=-3(舍去).8.解:①当x+2≥0,即x≥-2时,x 2+2(x+2)-4=0,∴x 2+2x=0.解得x 1=0,x 2=-2;②当x+2<0,即x <-2时,x 2-2(x+2)-4=0,∴x 2-2x -8=0. 解得x 1=4(不合题设,舍去),x 2=-2(不合题设,舍去).综上所述,原⽅程的解是x=0或x=-2. 9.4 1-,﹣3;41,3.发现的⼀般结论为:若⼀元⼆次⽅程ax 2+bx +c =0的两个根为x 1.x 2,则ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2).11.8 解析:∵x 1x 2=-3,x 22+4x 2-3=0,∴2x 1(x 22+5x 2-3)+a =2转化为2x 1(x 22+4x 2-3+ x 2)+a =2. ∴2x 1x 2+a =2.∴2×(-3)+a =2.解得a =8.12.解:(1)根据题意,得△=(2a )2-4×a (a -6)=24a ≥0.∴a ≥0.⼜∵a -6≠0,∴a ≠6.由根与系数关系得:x 1+x 2=-62-a a ,x 1x 2=6-a a. 由-x 1+x 1x 2=4+x 2 得x 1+x 2 +4=x 1x 2.∴-62-a a +4 =6-a a,解得a =24.经检验a =24是⽅程-62-a a +4 =6-a a的解.(2)原式=x 1+x 2 +x 1x 2 +1=-62-a a +6-a a +1=a-66为负整数,∴6-a 为-1或-2,-3,-6.解得a =7或8,9,12.13.解:(1)2,-1, 6.(3)由n 2+3n-2=0可知n ≠0,∴1+3n -2n 2=0.∴2n 2- 3n -1=0.⼜2m 2-3m-1=0,且mn ≠1,即m ≠1n .∴m 、1n是⽅程2x 2-3x-1=0的两根.∴m+1n = 32,m ·1n =-12,∴m 2+ 1n 2=(m+ 1n )2-2m ·1n =( 32)2-2·(-12)= 134.2.3 ⼀元⼆次⽅程的应⽤专题⼀、利⽤⼀元⼆次⽅程解决⾯积问题 1.在⾼度为2.8m 的⼀⾯墙上,准备开凿⼀个矩形窗户.现⽤9.5m 长的铝合⾦条制成如图所⽰的窗框.问:窗户的宽和⾼各是多少时,其透光⾯积为3m 2(铝合⾦条的宽度忽略不计).条所占⾯积为原矩形图案⾯积的三分之⼀,应如何设计每个彩条的宽度?3. 数学的学习贵在举⼀反三,触类旁通.仔细观察图形,认真思考,解决下⾯的问题:(1)在长为a m,宽为b m的⼀块草坪上修了⼀条1m宽的笔直⼩路(如图(1)),则余下草m;坪的⾯积可表⽰为2(2)现为了增加美感,设计师把这条⼩路改为宽恒为1m的弯曲⼩路(如图(2)),则此时m;余下草坪的⾯积为2(3)聪明的鲁鲁结合上⾯的问题编写了⼀道应⽤题,你能解决吗?相信⾃⼰哦!(如图(3)),在长为50m,宽为30m的⼀块草坪上修了⼀条宽为xm的笔直⼩路和⼀条长恒m.求⼩路的宽x.为xm的弯曲⼩路(如图3),此时余下草坪的⾯积为14212专题⼆、利⽤⼀元⼆次⽅程解决变化率问题4.据报道,我省农作物秸杆的资源巨⼤,但合理利⽤量⼗分有限,2012年的利⽤率只有30%,⼤部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利⽤量的增长率相同,要使2014年的利⽤率提⾼到60%,求每年的增长率.(取2≈1.41)5.某种电脑病毒传播⾮常快,如果⼀台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你⽤学过的知识分析,每轮感染中平均⼀台电脑会感染⼏台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?6.(2012·⼴元)某中⼼城市有⼀楼盘,开发商准备以每平⽅⽶7000元的价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价后,决定以每平⽅⽶5670 元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开放商建议:先公布下调5%,再下调15%,这样更有吸引⼒.请问房产销售经理的⽅案对购房者是否更优惠?为什么?专题三、利⽤⼀元⼆次⽅程解决市场经济问题7.(2012·济宁)⼀学校为了绿化校园环境,向某园林公司购买了⼀批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司⽀付树苗款8800元.请问该校共购买了多少棵树苗?8.(2012·南京)某汽车销售公司6⽉份销售某⼚家的汽车,在⼀定范围内,每部汽车的售价与销售量有如下关系:若当⽉仅售出1部汽车,则该部汽车的进价为27万元,每多售出1 部,所有售出的汽车的进价均降低0.1万元/部;⽉底⼚家根据销售量⼀次性返利给销售公司,销售10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当⽉售出3部汽车,则每部汽车的进价为万元.(2)如果汽车的售价为28万元/部,该公司计划当⽉盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)专题四、利⽤⼀元⼆次⽅程解决⽣活中的其他问题9. (1)经过凸n边形(n>3)其中⼀个顶点......的对⾓线有条.(2)⼀个凸多边形共有14条对⾓线,它是⼏边形?10.如图每个正⽅形是由边长为1的⼩正⽅形组成.(1)观察图形,请填与下列表格:正⽅形边长 1 3 5 7 … n (奇数)红⾊⼩正⽅形个数 … 正⽅形边长 2 4 6 8 … n (偶数)红⾊⼩正⽅形个数…(2)在边长为n (n≥1)的正⽅形中,设红⾊⼩正⽅形的个数为P 1,⽩⾊⼩正⽅形的个数为P 2,问是否存在偶数n ,使P 2=5P 1?若存在,请写出n 的值;若不存在,请说明理由.知识要点:列⽅程解决实际问题的常见类型:⾯积问题,增长率问题、经济问题、疾病传播问题、⽣活中的其他问题. 温馨提⽰:1.若设每次的平均增长(或降低)率为x ,增长(或降低)前的数量为a ,则第⼀次增长(或降低)后的数量为a(1±x),第⼆次增长(或降低)后的数量为a(1±x)2.2.⾯积(体积)问题属于⼏何图形的应⽤题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与已知量的内在联系,根据⾯积(体积)公式列出⼀元⼆次⽅程.3.列⽅程解决实际问题时,⽅程的解必须使实际问题有意义,因此要注意检验结果的合理性. ⽅法技巧:1. 变化率问题中常⽤a (1±x )n=b ,其中a 是起始量,b 是终⽌量,n 是变出次数,x 是变化率.变化率问题⽤直接开平⽅法求解简单.2.解决⾯积问题常常⽤到平移的⽅法,利⽤平移前后图形⾯积不变建⽴等量关系.答案:1.解:设⾼为x ⽶,则宽为9.50.523x --⽶.由题意,得9.50.5233xx --?=. 解得121.5,3x x == (舍去,⾼度为2.8m 的⼀⾯墙上). 当x=1.5时,宽9.50.529.50.53233x ----==.答:⾼为1.5⽶,宽为2⽶.2.解:设横、竖彩条的宽度分别为2xcm 、3xcm ,由题意,得(20-6x )(30-4x )=(1-13)×20×30.整理,得6x 2-65x +50=0.。
九年级上册:第21章《一元二次方程》期末培优测验试卷(含答案)

人教版初中九年级上册:第21章《一元二次方程》期末培优测验一.选择题(共10小题)1.下列方程中,一定是一元二次方程的是()A.2x2﹣+1=0B.(x+2)(2x﹣1)=2x2C.5x2﹣1=0D.ax2+bx+c=02.已知x1,x2是一元二次方程x2﹣6x﹣5=0的两个根,则x1+x2的值是()A.6B.﹣6C.5D.﹣53.若关于x的方程x2+mx﹣6=0有一个根为2.则另一个根为()A.﹣2B.2C.4D.﹣34.已知关于x的一元二次方程x2+2x﹣(m﹣3)=0有实数根,则m的取值范围是()A.m>2B.m<2C.m≥2D.m≤25.组织一次篮球联赛,每两队之间都赛一场,计划安排15场比赛,应邀请()个球队参加比赛.A.5B.6C.7D.96.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛.设参赛球队的支数为x,则根据题意所列的方程是()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28×2D.x(x﹣1)=28×27.在宽为20m,长为32m的矩形田地修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小矩形田地,作为良种试验田,要使每小块试验田的面积为135m2,设道路的宽为x米,则可列方程为()A.(32﹣x)(20﹣x)=135B.4(32﹣x)(20﹣x)=135C.D.(32﹣x)(20﹣x)﹣x2=1358.关于方程85(x﹣2)2=95的两根,则下列叙述正确的是()A.一根小于1,另一根大于3B.一根小于﹣2,另一根大于2C.两根都小于0D.两根都大于29.为宣传“”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x米,则根据题意可列出方程()A.90%×(2+x)(1+x)=2×1B.90%×(2+2x)(1+2x)=2×1C.90%×(2﹣2x)(1﹣2x)=2×1D.(2+2x)(1+2x)=2×1×90% 10.若一元二次方程x2﹣4x+3=0的两个实数根分别是a、b,则一次函数y=abx+a+b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共7小题)11.若关于x的方程(a+2)x|a|﹣3x+2=0是一元二次方程,则a的值为.12.定义新运算:m,n是实数,m*n=m(2n﹣1),若m,n是方程2x2﹣x+k=0(k<0)的两根,则m*m﹣n*n=.13.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.14.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成发如图所示①②③的三块矩形区域,而且这三块矩形区域面积相等.已知矩形区域ABCD的面积为30m2,设BC的长度为xm,所列方程为.15.已知等腰三角形的两边长是方程x2﹣9x+18=0的两个根,则该等腰三角形的周长为.16.一元二次方程(x+1)(x+3)=9的一般形式是,二次项系数为,常数项为17.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是.三.解答题(共7小题)18.解方程:(1)x2+4x﹣5=0.(2)x2﹣3x+1=0.19.已知关于x的方程x2﹣2(m+2)x+m2+5=0没有实数根.(1)求m的取值范围;(2)试判断关于x的方程(m+5)x2﹣2(m+1)x+m=0的根的情况.20.某电脑销售商试销某一品牌电脑1月份的月销售额为400000,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.求1月份到3月份销售额的月平均增长率.21.列一元二次方程解应用题某公司今年1月份的纯利润是20万元,由于改进技术,生产成本逐月下降,3月份的纯利润是22.05万元.假设该公司2、3、4月每个月增长的利润率相同.(1)求每个月增长的利润率;(2)请你预测4月份该公司的纯利润是多少?22.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若=﹣1,则m的值为多少?23.如图,矩形ABCD中,AB=6cm,BC=8cm,点P从点A沿边AB以1cm/s的速度向点B移动,同时点Q从点B沿边BC以2cm/s的速度向点C移动,当P、Q两点中有一个点到终点时,则另一个点也停止运动.当△DPQ的面积比△PBQ的面积大19.5cm2时,求点P运动的时间.24.已知关于x的方程x2﹣2mx+m2﹣4m﹣1=0(1)若这个方程有实数根,求m的取值范围;(2)若此方程有一个根是1,请求出m的值.参考答案一.选择题(共10小题)1.【解答】解:A,2x2﹣+1=0,不是整式方程,故不是一元二次方程;B,原方程变形为:3x﹣2=0,故不是一元二次方程;C,5x2﹣1=0是一元二次方程;D,ax2+bx+c=0,当a=0时,不是一元二次方程;故选:C.2.【解答】解:∵x1,x2是一元二次方程x2﹣6x﹣5=0的两个根,∴x1+x2=6,故选:A.3.【解答】解:设方程的另一个根为α,根据根与系数的关系,2α=﹣6,∴α=﹣3.故选:D.4.【解答】解:根据题意得:△=22+4(m﹣3)=4+4m﹣12=4m﹣8≥0,解得:m≥2,故选:C.5.【解答】解:设应邀请x个球队参加比赛,根据题意得:x(x﹣1)=15,解得:x1=6,x2=﹣5(不合题意,舍去).故选:B.6.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,根据题意可得:=28,即:x(x﹣1)=28×2,故选:D.7.【解答】解:设道路的宽为x米,则每块小矩形田地的长为(32﹣x)m,宽为(20﹣x)m,根据题意得:(32﹣x)×(20﹣x)=135,即(32﹣x)(20﹣x)=135.故选:C.8.【解答】解:(x﹣2)2=,x﹣2=±,所以x1=2﹣,x2=2+,而1<<2,所以x1<1,x2>3.故选:A.9.【解答】解:设白边的宽为x米,则整幅宣传版面的长为(2+2x)米、宽为(1+2x)米,根据题意得:90%(2+2x)(1+2x)=2×1.故选:B.10.【解答】解:∵一元二次方程x2﹣4x+3=0的两个实数根分别是a、b,∴a+b=4,ab=3,∴一次函数的解析式为y=3x+4.∵3>0,4>0,∴一次函数y=abx+a+b的图象经过第一、二、三象限.故选:D.二.填空题(共7小题)11.【解答】解:∵关于x的方程(a+2)x|a|﹣3x+2=0是一元二次方程,∴|a|=2,a+2≠0,解得,a=2.故答案为:2.12.【解答】解:∵m,n是方程2x2﹣x+k=0(k<0)的两根,∴2m2﹣m+k=0,2n2﹣n+k=0,即2m2﹣m=﹣k,2n2﹣n=﹣k,则m*m﹣n*n=m(2m﹣1)﹣n(2n﹣1)=2m2﹣m﹣(2n2﹣n)=﹣k﹣(﹣k)=﹣k+k=0,故答案为:0.13.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.14.【解答】解:∵矩形区域ABCD的面积=AB•BC,∴3(﹣x+10)•x=30,整理得x2﹣40x+400=0.故答案是:x2﹣40x+400=0.15.【解答】解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,所以x1=3,x2=6,因为3+3=6,所以等腰三角形的两腰为6、6,底边长为3,所以三角形周长=6+6+3=15.故答案为:15.16.【解答】解:由(x+1)(x+3)=9,得x2+4x+3﹣9=0,即x2+4x﹣6=0.其中二次项系数是1,一次项系数是4,常数项是﹣6.故答案是:x2+4x﹣6=0;1;﹣6.17.【解答】解:∵1,﹣3是已知方程x2+2x﹣3=0的解,由于另一个方程(2x+3)2+2(2x+3)﹣3=0与已知方程的形式完全相同∴2x+3=1或2x+3=﹣3解得x1=﹣1,x2=﹣3.故答案为:x1=﹣1,x2=﹣3.三.解答题(共7小题)18.【解答】解:(1)因式分解得,(x﹣1)(x+5)=0,x﹣1=0,x+5=0,∴x1=1,x2=﹣5;(2)a=1,b=﹣3,c=1,∴△=b2﹣4ac=9﹣4=5>0,∴方程有两个不相等的实数根,∴x==,∴x1=,x2=.19.【解答】解:(1)∵关于x的方程x2﹣2(m+2)x+m2+5=0没有实数根,∴△=[﹣2(m+2)]2﹣4×1×(m2+5)=16m﹣4<0,解得:m;(2)∵m<,∴m+5≠0,∴原方程是一元二次方程,△=[﹣2(m+1)]2﹣4(m+5)m=4﹣12m,∵m<,∴4﹣12m>0,∴原方程有两个不相等的实数根.20.【解答】解:设1月份到3月份销售额的月平均增长率为x,根据题意得:400000(1+x)2=576000,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:1月份到3月份销售额的月平均增长率为20%.21.【解答】解:(1)设每个月增长的利润率为x,根据题意得:20×(1+x)2=22.05,解得:x1=0.05=5%,x2=﹣2.05(不合题意,舍去).答:每个月增长的利润率为5%.(2)22.05×(1+5%)=23.1525(万元).答:4月份该公司的纯利润为23.1525万元.22.【解答】解:(1)由题意知,(2m+3)2﹣4×1×m2≥0,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m2,∵=﹣1,∴=﹣1,∴=﹣1,m2﹣2m﹣3=0(m﹣3)(m+1)=0m1=﹣1,m1=3,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为3.23.【解答】解:设当△DPQ的面积比△PBQ的面积大19.5cm2时,点P运动了x秒.根据题意得:×8×x+×2x(6﹣x)+×6(8﹣2x)+[×2x(6﹣x)+19.5]=6×8,化简得:2x2﹣10x+=0,解得:x1=,x2=.∵当x2=时,8﹣2x=﹣1<0,∴x2=舍去.答:当△DPQ的面积比△PBQ的面积大19.52时,点P经过了秒.24.【解答】解:(1)根据题意知△=(﹣2m)2﹣4(m2﹣4m﹣1)≥0,解得:m≥﹣;(2)将x=1代入方程得1﹣2m+m2﹣4m﹣1=0,整理,得:m2﹣6m=0,解得:m1=0,m2=6,∵m≥﹣,∴m=0和m=6均符合题意,故m=0或m=6.。
一元二次方程专题能力培优(含答案)

一元二次方程专题能力培优(含答案)解得:m≠2m10当m≠2时,原方程可化为x-m+1=0.2.C解析:将方程化简可得(m-6)x+(m-6)=0,由于常数项为0,所以m-6=0,即m=6.3.a=2解析:由于一次项系数为0,所以根据一元二次方程的求根公式可得:x1=x2=-b/2a,代入a-b+c=0中得a=2.4.a=2解析:将方程化简可得(2a-4)x+(3a+6)x+(a-8)=0,由于一次项系数为0,所以2a-4+3a+6=0,解得a=2.5.D解析:由题可得另一个根为-b,代入x1x2=a/c=-a/b得到b=-2a,代入a-b得到a=2b,所以a-b=2b-b=b=2.6.a/2解析:由于a-b+c=0,所以c=b-a,代入一元二次方程的求根公式可得x1=(b+√(b^2-4ac))/2a,x2=(b-√(b^2-4ac))/2a,代入x1x2=a/c得到a=(b^2-a^2)/(b-a),解得a/2=b-a,即a=2b-2a,解得a/2.7.2012解析:由一元二次方程的求根公式可得a=2013/2+√(2013^2/4-1),代入a-2012a-2013/2得到2012.2或者当m+1+(m-2)≠0且m+1=1时,它是一元一次方程。
解得:m=-1,m=0.因此,当m=-1或m=0时,为一元一次方程。
给定方程m^2-1=0,解得m=-1.因为m-1≠0,所以这是一元一次方程。
解方程3a+6=0,得到a=-2.因此,这是一元一次方程。
根据题意,方程x+bx+a=0的一个根是-a(a≠0)。
由此得到a-b=-1.解方程x^2=1,得到x=±1.因此,x=-1.已知实数a是一元二次方程x-2013x+1=0的解,因此a-2013a+1=0.解得a=-1/2012.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为-8或9.如果代数式x+6x+m是一个完全平方式,则m=9.用配方法证明:无论x为何实数,代数式-2x^2+4x-5的XXX小于零。
《一元二次方程的根与系数的关系》解答题专题培优提升训练(附答案)

2021-2022学年北师大版九年级数学上册《2.5一元二次方程的根与系数的关系》解答题专题培优提升训练(附答案)1.已知关于x的方程2mx2﹣(5m﹣1)x+3m﹣1=0.(1)求证:无论m为任意实数,方程总有实数根.(2)如果这个方程的根的判别式的值等于1,求m的值.2.关于x的一元二次方程x2﹣2x+3m﹣2=0有实数根.(1)求m的取值范围;(2)若m为正整数,求出此时方程的根.3.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根,求m的取值范围.4.已知关于x的一元二次方程x2﹣3x+a﹣1=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数时,求此时方程的解.5.已知y1=x2﹣2x+3.y2=x+m.(1)若m=1,当x取何值时y1=y2?(2)若y1=2y2,当m为何范围时,存在两个不同的x值?6.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.7.已知关于x的一元二次方程x2+(2k﹣1)x+k2﹣3=0有实数根.(ⅰ)求实数k的取值范围;(ⅱ)当k=2时,方程的根为x1,x2,求代数式(x12+2x1﹣1)(x22+4x2+3)的值.8.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c,恰好是这个方程的两个实数根,求△ABC的周长.(3)若方程的两个实数根之差等于3,求k的值.9.已知关于x的一元二次方程x2﹣(2m+4)x+m2+4m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根.(2)设方程的两个实数根分别为x1,x2;①求代数式﹣4x1x2的最大值;②若方程的一个根是6,x1和x2是一个等腰三角形的两条边,求等腰三角形的周长.10.关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根.(1)求k的取值范围;(2)若方程的两根x1,x2满足(x1﹣1)(x2﹣1)=6,求k的值.11.已知关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)设两个实数根是x1和x2,且x1+x2﹣2x1x2=2,则k的值为.12.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.14.关于x的一元二次方程x2﹣4x+k﹣3=0的两个实数根是x1、x2.(1)已知k=2,求x1+x2+x1x2.(2)若x1=3x2,试求k值.15.已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.16.已知m为实数,关于x的方程为mx2+(m﹣2)x﹣1=0.(1)求证:不论m为何实数,方程总有实数根.(2)若方程有两实根x1,x2,当x1x2﹣2x1﹣2x2=3时,求m的值.17.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0(1)若该方程有两个实数根,求k的最大整数值.(2)若该方程的两个实数根为x1,x2,是否存在实数k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.18.关于x的一元二次方程x2+(2m﹣3)x+m2=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1、x2是方程的两根,且+=1,求m的值.19.若x1,x2与是方程x2+x﹣3=0的两个实数根,求x13﹣4x22+22的值.20.已知关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)若方程的两个根为x1,x2,且=0,求k的值.21.已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.参考答案1.解:(1)①当m=0时,该方程是关于x的一元一次方程,符合题意;②关于x的一元二次方程2mx2﹣(5m﹣1)x+3m﹣1=0.∵△=(5m﹣1)2﹣8m(3m﹣1)=(m﹣1)2≥0,∴无论m为任何实数,方程总有实根.(2)由题意得,△=(m﹣1)2=1,解得m1=0,m2=2,而m≠0,∴m=2.2.解:(1)∵方程有实数根,∴(﹣2)2﹣4×1×(3m﹣2)≥0,∴m≤1;(2)∵m为正整数,∴m=1,∴方程为:x2﹣2x+1=0,∴x1=x2=1.3.解:∵关于x的一元二次方程x2﹣2(m+1)x+m2+5=0有两个实数根,∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16≥0,∴m≥2.4.解:(1)∵关于x的一元二次方程x2﹣3x+a﹣1=0有实数根,∴△=(﹣3)2﹣4(a﹣1)=﹣4a+13≥0,解得:a≤,即a的取值范围是a≤;(2)∵a的取值范围是a≤,∴整数a的最大值是3,把a=3代入方程x2﹣3x+a﹣1=0得:x2﹣3x+2=0,解得:x1=1,x2=2.5.解:(1)当m=1时,根据题意,得x2﹣2x+3=x+1,整理,得(x﹣1)(x﹣2)=0.所以x﹣1=0或x﹣2=0.解得x1=1,x2=2;(2)根据题意,得x2﹣2x+3=2x+2m,整理,得x2﹣4x+3﹣2m=0,所以△=(﹣4)2﹣4×1×(3﹣2m)>0.解得m>﹣.所以当m>﹣时,存在两个不同的x值.6.解:(1)把k=3代入|x2﹣1|=(x﹣1)(kx﹣2)中,得|x2﹣1|=(x﹣1)(3x﹣2),当x2>1,即x>1或x<﹣1时,原方程可化为:x2﹣1=(x﹣1)(3x﹣2),解得,x=1(舍),或x=;当x2≤1,即﹣1≤x≤1时,原方程可化为:1﹣x2=(x﹣1)(3x﹣2),解得,x=1,或x=;综上,方程的解为x1=,x2=1,x3=;(2)∵x=1恒为方程|x2﹣1|=(x﹣1)(kx﹣2)的解,∴当x≠1时,方程两边都同时除以x﹣1得,,要使此方程只有一个解,只需函数y=与函数y=kx﹣2的图象只有一个交点.∵函数:,作出函数图象,由图象可知,当k<0时,直线y=kx﹣2与函数y=图象只有一个交点;当k=0时,直线y=kx﹣2=﹣2与函数y=图象只有一个交点;当k=1时,y=kx﹣2=x﹣2与y=x+1平行,则与函数y=图象只有一个交点;∵当直线y=kx﹣2过(1,2)点时,2=k﹣2,则k=4,∴函数图象可知,当k≥4时,直线y=kx﹣2与函数y=图象也只有一个交点,∴要使函数图象与y=kx﹣2图象有且只有一个交点,则实数k的取值范围是k≤0或k=1或k≥4.综上,实数k的取值范围:k≤0或k=1或k≥4.7.解:(i)∵方程有实数根,∴△=(2k﹣1)2﹣4(k2﹣3)≥0,解得:k≤;(ii)当k=2时,方程化为x2+3x+1=0,∴x1+x2=﹣3,x1x2=1,∵x1,x2是方程的解,∴x12+3x1+1=0,x22+3x2+1=0,∴x12+3x1=﹣1,x22+3x2=﹣1,∴原式=(﹣1﹣x1﹣1)(﹣1+x2+3)=﹣(x1+2)(x2+2)=﹣[x1x2+2(x1+x2)+4]=﹣(1﹣6+4)=1.8.解:(1)△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取何值,(2k﹣3)2≥0,故这个方程总有两个实数根;(2)由求根公式得x=,∴x1=2k﹣1,x2=2.∵另两边长b、c,恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a,b为腰时,则a=b=4,即2k﹣1=4,计算得出k=,此时三角形周长为4+4+2=10;当b,c为腰时,b=c=2,此时b+c=a,构不成三角形,故此种情况不存在.综上所述,△ABC周长为10.(3)∵方程的两个实数根之差等于3,∴,解得:k=0或3.9.解:(1)△=(2m+4)2﹣4(m2+4m)=16,16>0,∴此方程总有两个不相等的实数根.(2)①﹣4x1x2=(x1+x2)2﹣6x1x2,∵x1+x2==2m+4,x1x2=m2+4m,∴(x1+x2)2﹣6x1x2=(2m+4)2﹣6(m2+4m)=﹣2m2﹣8m+16=﹣2(m+2)2+24,∴当m=﹣2时﹣4x1x2的最大值为24.②把x=6代入原方程可得m2﹣8m+12=0,解得m=2或m=6,当m=2时,原方程化简为x2﹣8x+12=0,解得x=2或x=6,三角形三边长为6,6,2时三角形周长为14,三角形边长为2,2,6时不存在.当m=6时,原方程化简为x2﹣16x+60,解得x=6或x=10.三角形三边长为6,6,10时三角形周长为22,三角形三边长为10,10,6时,三角形周长为26.∴等腰三角形周长为14或22或26.10.解:(1)∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=[2(k﹣1)]2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.∴k的取值范围为:k≤1.(2)由根与系数关系得:x1+x2=﹣2(k﹣1),x1x2=k2﹣1,所以(x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1=k2﹣1+2(k﹣1)+1=6.解得k=2(舍去)或k=﹣4.故k的值是﹣4.11.解:(1)∵一元二次方程x2+2x+k﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4(k﹣1)>0,解得k<2,即k的取值范围是k<2;(2)∵一元二次方程x2+2x+k﹣1=0的两个实数根是x1和x2,∴x1+x2=﹣2,x1x2=k﹣1,∵x1+x2﹣2x1x2=2,∴﹣2﹣2(k﹣1)=2,∴k=﹣1,故答案为:﹣1.12.解:(1)根据题意得:△=(2m)2﹣4(m2+m)>0,解得:m<0.∴m的取值范围是m<0.(2)根据题意得:x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=12,∴﹣2x1x2=12,∴(﹣2m)2﹣2(m2+m)=12,∴解得:m1=﹣2,m2=3(不合题意,舍去),∴m的值是﹣2.13.解:(1)由题意得:△≥0且m﹣2≠0,∴(2m+1)2﹣4m(m﹣2)≥0解得m≥﹣且m≠2(2)由题意得有两种情况:①当x1=x2,则△=0,所以m=﹣,x1=x2=﹣×=.②当x1=﹣x2时,则x1+x2=0.,所以m=﹣,因为m≥﹣且m≠2,所以此时方程无解.综上所述,m=﹣,x1=x2=.14.解:(1)∵方程x2﹣4x+k﹣3=0的两个实数根是x1、x2,k=2,∴x1+x2=4,x1x2=k﹣3=﹣1,∴x1+x2+x1x2=4﹣1=3.(2)∵x1+x2=4,x1=3x2,∴x1=3,x2=1,∴k=x1x2+3=6.15.解:(1)证明:∵在方程x2﹣6x﹣k2=0中,△=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.16.(1)证明:当m=0时,已经方程为﹣2x﹣1=0,有实数根;当m≠0时,已经方程是一元二次方程,△=(m﹣2)2﹣4m×(﹣1)=m2+4>0,该方程有两个不等实根;综上,不论m为何实数,方程总有实数根;(2)由根与系数的关系可得,,,∵x1x2﹣2x1﹣2x2=3,∴x1x2﹣2(x1+x2)=3,∴,解得m=﹣5,经检验,m=﹣5是原分式方程的解,即m的值是﹣5.17.解:(1)由题意得:此方程的根的判别式△=[﹣(2k+1)]2﹣4(k2+2k)≥0,整理得:﹣4k+1≥0,解得,则k的最大整数值是0;(2)存在,由根与系数的关系得:x1+x2=2k+1,x1x2=k2+2k,∵=,∴﹣(2k+1)2+3(k2+2k)=﹣16,整理得:k2﹣2k﹣15=0,解得k=﹣3或k=5,由(1)可知,,则k=﹣3.18.解:(1)根据题意,知(2m﹣3)2﹣4m2>0,解得m<;(2)由题意知x1+x2=﹣(2m﹣3)=3﹣2m,x1•x2=m2,由+=1,即=1可得=1,解得:m=1(舍去)或m=﹣3,所以m的值是﹣3.19.解:∵x1是方程x2+x﹣3=0的实数根,∴x12+x1﹣3=0,∴x12=﹣x1+3,x1=﹣x12+3,∴x13=﹣x12+3x1,∴x13﹣4x22+22=﹣x12+3x1﹣4x22+22=﹣4x12+9﹣4x22+22=﹣4(x1+x2)2+8x1•x2+31,∵x1、x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,∴原式=﹣4×(﹣1)2+8×(﹣3)+31=3.20.(1)证明:①当k=1时,该方程有一个实数根,符合题意.②当k≠1时,∵△=(2k)2﹣4(k﹣1)×2=4(k﹣1)2+4>0,∴当k≠1时,方程总有实数根.综上所述,无论k取任何值,方程总有实数根.(2)∵x1、x2是方程的两个根,∴x1+x2=,x1•x2=,∴=+x1x2=+=0.解得k=2或k=﹣1.经检验,k=2或k=﹣1都符合题意.所以k=2或k=﹣1.21.解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.。
(完整版)一元二次方程培优提高例题

考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0"; ②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
针对练习:★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m xm 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程.★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m+x n—2x 2=0是一元二次方程,则下列不可能的是( )A 。
m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 .例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数 式的值。
人教版九年级上册数学试题:第二十一章《一元二次方程》培优练习题

第二十一章《一元二次方程》培优练习题一.选择题1.一元二次方程x2﹣4x﹣3=0的二次项系数、一次项系数和常数项分别是()A.1,4,3 B.0,﹣4,﹣3 C.1,﹣4,3 D.1,﹣4,﹣3 2.一元二次方程x2+11x﹣1=0()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是()A.9 B.4.5 C.3 D.﹣34.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个5.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()A.14 B.15 C.16 D.256.关于方程x2﹣6x﹣15=0的根,下列说法正确的是()A.两实数根的和为﹣6 B.两实数根的积为﹣15C.没有实数根D.有两个相等的实数根7.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110 B.x(x﹣1)=110C.x(x+1)=110 D.x(x﹣1)=1108.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是09.若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为()A.2019 B.2020 C.2021 D.202210.如图,把长40cm,宽30cm的长方形纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A.3cm B.4cm C.4.8cm D.5cm11.若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1 B.1或﹣1 C.1 D.212.下列方程中,无实数根的是()A.x2+1=0 B.x2+x=0 C.x2+x﹣1=0 D.x2﹣x﹣1=0二.填空题13.若关于x的方程x2﹣mx+m=0有两个相等实数根,则代数式2m2﹣8m+10的值为.14.已知关于x的一元二次方程2x2﹣kx﹣24=0的一个根为x=﹣3,则k的值是.15.关于x的一元二次方程kx2+(k+3)x+2=0的根的情况是.16.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为.17.设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为.18.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.三.解答题19.解方程:(1)x2﹣3x﹣4=0(2)2x2﹣2x+1=020.已知,关于x的方程x2+2(2﹣k)x+3﹣6k=0.(Ⅰ)若x=1是方程的一个根,求k的值及方程的另一根;(Ⅱ)若k为任意实数,判断此时方程的根情况.21.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?22.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.23.已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.24.火锅是重庆人民非常喜爱的食物,某火锅店今年2月推出了线上服务,根据消费者的喜好在美团上推出A、B两种套餐外卖,其中A套餐建议用餐人数2到4人,售价160元,成本100元,B套餐建议用餐人数4到6人,售价300元,成本160元,平均每天A的销售量是B的3倍,A的销售额比B多900元.(1)求线上服务平均每天A套餐的销售数量;(2)4月,该火锅店在线上销售的同时开始线下试营业,套餐价格不变,每个套餐增加人工成本20元,线上两种套餐销量和2月份一样,线上线下平均每天总销售量之比为2:3,每天总获利3600元;五一期间为了回馈顾客,B套餐推出了优惠活动,线下在原售价的基础上降价2a,当天销量增加5a%,线上降价a%,销量不变;A套餐线上线下的价格和销量都不变,五一当天的总利润3700元,求a的值.参考答案一.选择题1.解:一元二次方程x2﹣4x﹣3=0的二次项系数、一次项系数和常数项分别为1,﹣4,﹣3.故选:D.2.解:∵a=1,b=11,c=﹣1,∴△=b2﹣4ac=112﹣4×1×(﹣1)=125>0,∴一元二次方程x2+11x﹣1=0有两个不相等的实数根.故选:A.3.解:把x=﹣3代入方程x2+ax+a=0得9﹣3a+a=0,解得a=4.5.故选:B.4.解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.5.解:设平均每天一人传染了x人,根据题意得:1+x+x(1+x)=225,(1+x)2=225,解得:x1=14,x2=﹣16(舍去).答:平均每天一人传染了14人.故选:A.6.解:∵a=1,b=﹣6,c=﹣15,∴△=b2﹣4ac=(﹣6)2﹣4×1×(﹣15)=96>0,∴该方程有两个不相等的实数根.设方程x2﹣6x﹣15=0的两根分别为m,n,则m+n=﹣=6,mn==﹣15.故选:B.7.解:设有x个队参赛,则x(x﹣1)=110.故选:D.8.解:根据图象可得k>0,b<0,所以kb<0,因为△=(﹣2)2﹣4(kb+1)=4﹣4kb﹣4=﹣4kb,所以△>0,所以方程有两个不相等的实数根.故选:A.9.解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2020=1+2020=2021.故选:C.10.解:依题意,得:40×30﹣2x2﹣2x•(x+)=950,整理,得:x2+20x﹣125=0,解得:x1=5,x2=﹣25(不合题意,舍去).故选:D.11.解:由题意可知:△=(m+1)2﹣4m2=﹣3m2+2m+1,由题意可知:m2=1,∴m=±1,当m=1时,△=﹣3+2+1=0,当m=﹣1时,△=﹣3﹣2+1=﹣4<0,不满足题意,故选:C.12.解:A、方程x2+1=0,∵a=1,b=0,c=1,∴△=﹣4<0,则此方程无实数根,符合题意;B、x2+x=0,∵a=1,b=1,c=0,∴△=1>0,则此方程有两个不相等实数根,不符合题意;C、x2+x﹣1=0,∵a=1,b=1,c=﹣1,∴△=5>0,则此方程有两个不相等实数根,不符合题意;D、x2﹣x﹣1=0,∵a=1,b=﹣1,c=﹣1,∴△=5>0,则此方程有两个不相等实数根,不符合题意.故选:A.二.填空题(共6小题)13.解:∵关于x的方程x2﹣mx+m=0有两个相等实数根,∴△=(﹣m)2﹣4m=0,∴2m2﹣8m+10=2(m2﹣4m)+10=0+10=10.故答案为:10.14.解:把x=﹣3代入方程2x2﹣kx﹣24=0,可得2×9+3k﹣24=0,即k=2,故答案为:2.15.解:△=(k+3)2﹣4×2k=(k﹣1)2+8,∵(k﹣1)2≥0,∴(k﹣1)2+8>0,即△>0,∴原方程有两个不相等的实数根.故答案为:有两个不相等的实数根.16.解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1056.故答案为:x(x﹣1)=1056.17.解:∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.故答案为:1000.18.解:设道路的宽为x m,根据题意得:(10﹣x)(15﹣x)=126,解得:x1=1,x2=24(不合题意,舍去),则道路的宽应为1米;故答案为:1.三.解答题(共6小题)19.解:(1)∵x2﹣3x﹣4=0,∴(x+1)(x﹣4)=0,则x+1=0或x﹣4=0,解得:x1=4,x2=﹣1;(2)∵2x2﹣2x+1=0,∴(x﹣1)2=0,则x﹣1=0,解得:x1=x2=.20.解:(Ⅰ)设方程的另一个根为m,根据题意,得:,解得:,∴方程的另一个根为﹣3,k的值为1;(Ⅱ)△=4(2﹣k)2﹣4(3﹣6k)=4k2+8k+4=4(k2+2k+1)=4(k+1)2≥0,∴方程有两个实数根.21.(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得100(1+x)2=196解得x1=0.4=40%,x2=﹣2.4(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y元,则每天可售出(200+50y)千克根据题意,得(20﹣12﹣y)(200+50y)=1750整理得,y2﹣4y+3=0,解得y1=1,y2=3∵要减少库存∴y1=1不合题意,舍去,∴y=3答:售价应降低3元.22.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.23.解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.24.解:(1)设线上服务平均每天A套餐的销售数量为x份,则平均每天B套餐的销售数量为份,依题意,得:160x﹣300×=900,解得:x=15.答:线上服务平均每天A套餐的销售数量为15份.(2)由(1)可知:=5,x+=20.设线下平均每天A套餐的销售量为m份,则平均每天B套餐的销售量为(20×﹣m)份,依题意,得:(160﹣100)×15+(300﹣160)×5+(160﹣100﹣20)m+(300﹣160﹣20)(20×﹣m)=3600,解得:m=20,∴20×﹣m=10.又∵五一当天的总利润3700元,∴(160﹣100)×15+(160﹣100﹣20)×20+[300(1﹣a%)﹣160]×5+(300﹣2a ﹣160﹣20)×10(1+5a%)=3700,整理,得:a2﹣25a+100=0,解得:a1=5,a2=20.当a=5时,10(1+5a%)=12.5,∵12.5不为整数,∴不合题意,舍去;当a=20时,10(1+5a%)=20,合适.答:a的值为20.。
一元二次方程培优题

1、已知关于x 的一元二次方程()0122=+--k x k kx 有两个不相等的实根,求k 的取值范围2、关于x 的方程0122=--x k x 有实根,求k 的取值范围 3、已知关于x 的方程0342=+-x kx 有实根,则k 的非负整数值是 4、方程012=--x x 的两根为 5、解方程03222=-+a x a x6、 设c b a ,,是ABC ∆三边的长,且关于x 的方程()())0(0222>=--++n ax n n x c n x c 有两个相等的实数根,求证ABC ∆是直角三角形。
7、已知关于x 的方程()()011222=++---m x m x m ,当m 为何非负整数时, (1)方程只有一个实数根 (2)方程有两个相等的实根 (3)方程有两个不相等的实根8、 求证:k 为何实数,方程()()0112122=---+x k x k 一定有两个不相等的实根。
9、 已知n m ,为整数,关于x 的三个方程:()0372=++--n x m x 有两个不相等的实根; ()0642=++++n x m x 有两个相等的实根;()0142=++--n x m x 没有实根; 求n m ,的值。
10、若方程),(022是实数q p q px x =-+没有实根,(1)求证41<+q p ; (2)试写出上述命题的逆命题。
11、 关于x 的方程()()024*******=++++++b ab a x a x 有实根,求b a ,的值。
12、 设m 是有理数,问k 为何值时,方程04234422=+-++-k m m x mx x 的根是有理数。
13、 设0≠c ,关于x 的一元二次方程02=++bc ax x 和02=++ca bx x 有一个公共根,求证:这两个方程的其他二根为方程02=++ab cx x 的根。
14、若关于x 的两个方程02=++b ax x 和02=++a bx x 只有一个公共解,(1)求此公共解; (2)求非公共解之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备 欢迎下载第一节求根公式【例题求解 】【例 1】满足 (n 2n 1)n 21的整数 n 有个.【例 2】设 x 1 、 x 2 是二次方程 x 2x 3 0 的两个根,那么 x 1 3 4x 2219 的值等于()A . 一 4B .8C . 6D . 0【例 3】 解关于 x 的方程 (a 1) x 2 2ax a 0 .【例 4】设方程 x 2 2 x14 0 ,求满足该方程的所有根之和.【练习题 】1. 已知 a 、 b 是实数,且 2a 6 b2 0 ,那么关于 x 的方程 (a2)x 2 b 2 x a 1 的根为.2. 已知 x23x2 0 ,那么代数式 (x 1)3x 2 1的值是.x 13. 若两个方程 x2ax b0 和 x 2 bx a 0 只有一个公共根,则 ()A . a bB . a b 0C . a b 1D . a b 1 4. 若 x 2 5x 1 0 ,则 2x 2 9 x 351 =.x 25. 已知 m 、 n 是有理数,方程 x 2mx n 0 有一个根是5 2 ,则 m n 的值为 .6. 已知 a 、 b 都是负实数,且1 1 1 b 0 ,那么 b的值是 ( )a b a aA . 5 1B .1 5C . 1 5D .1 522227. 已知 x 22x 2 0 ,求代数式 (x 1)2( x 3)( x 3)( x 3)( x 1) 的值.8. 已知 x198 3 ,求x 4 6x3 2x218 x23的值.x28x 159. 已知 m 、n 是一元二次方程x 22001 7 0 的两个根,求 ( m 22000m 6)(m22002n 8)x的值.10. 已知方程 x 23x1 0 的两根 、 也是方程 x4px 2 q 0 的根,求 p 、 q 的值.第二节 根的判别式【例题求解 】【例 1】已知关于 x 的一元二次方程 (12 ) x 2 2 k1 1 0有两个不相等的实数根,那么kxk 的取值范围是 .【例 2】已知关于 x 的方程 x 2(k 2)x2 k 0,(1) 求证:无论 k 取任何实数值,方程总有实数根;(2) 若等腰三角形△ ABC 的一边长 a = 1,另两边长 b 、 c 恰好是这个方程的两个根,求△ ABC 的周长.【例 3】设方程 x 2 ax 4 ,只有 3 个不相等的实数根,求 a 的值和相应的 3 个根.【例 4】已知关于 x 的方程 x 22(2 m) x 3 6m 0(1) 求证:无论 m 取什么实数,方程总有实数根;(2) 如果方程的两实根分别为 x 1 、 x 2 ,满足 x 1 =3 x 2 ,求实数 m 的值.【练习题 】1. 已知 a 4 b 10 ,若方程 kx 2 ax b 0 有两个相等的实数根,则 k = . 2. 若关于 x 的方程 x22 k x 1 0有两个不相等的实数根,则k 的取值范围是.3. 已知关于 x 方程 x22 k4x k 0有两个不相等的实数解, 化简 k 2k 2 4k 4 =.4. 若关于 x 的一元二次方程 (m2) 2 x 2 (2m 1) x 1 0 有两个不相等的实数根,则m 的取值范围是 ()A . m3 B . m3 C . m3且 m 2D . m3且 m 24444 5. 已 知 一 直 角 三 角 形 的 三 边 为 a 、 b 、 c , ∠ B = 90 ° , 那 么 关 于 x 的 方 程a(x 2 1) 2cx b( x 2 1) 0 的根的情况为 ()A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定6. 如 果 关 于 x 的 方 程(m2)x 2 2(m 1)x m0 只 有 一 个 实 数 根 , 那 么 方 程mx 2 ( m 2) x (4 m)0 的根的情况是 ()A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .只有一个实数根7. 在等腰三角形 ABC 中,∠ A 、∠ B 、∠ C 的对边分别为 a 、 b 、 c ,已知 a 3 , b 和 c 是 关于 x 的方程 x2mx2 1 m 0的两个实数根,求△ ABC 的周长.28. 已知一元二次方程x2 bx c 0 ,且 b 、c可在 1、2、3、4、5 中取值,则在这些方程中有实数根的方程共有( )A . 12 个B . 10 个C. 7 个D. 5 个9. 如果关于x的方程mx2 2(m 2) x m 5 0 没有实数根,那么关于 x 的方程( m 5) x2 2(m 2)x m 0 的实根的个数 ( )A . 2 B. 1 C.0 D .不能确定a2x2 (c2 a 2 b 2 ) x b2 0 ,则方10. 已知△ ABC 的三边长为a、b、 c,且满足方程程根的情况是 ( )A .有两相等实根B.有两相异实根C.无实根D.不能确定11. a、 b 为实数,关于x的方程 x2 ax b 2 有三个不等的实数根.(1)求证: a 2 4b 8 0 ;(2)若该方程的三个不等实根,恰为一个三角形三内角的度数,求证该三角形必有一个内角是60°;(3) 若该方程的三个不等实根恰为一直角三角形的三条边,求 a 和b的值.12. 关于x的方程kx2(k 1) x 1 0 有有理根,求整数是的值.第三节韦达定理【例题求解】【例 1】已知、是方程 x2 x 1 0 的两个实数根,则代数式 2 ( 2 2) 的值为.【例 2】如果、都是质数,且 2 13 0 2 b aa ba m ,b 13b m 0 ,那么的值为 ( )a a bA. 123 B.125或 2 C. 125 D.123或 222 22 22 22【例 3】已知关于x的方程: x2 (m 2) x m2 04(1)求证:无论 m 取什么实数值,这个方程总有两个相异实根.(2) 若这个方程的两个实根x1、 x2满足 x2 x1 2 ,求 m 的值及相应的 x1、 x2.【例 4】设 x1、x2是方程 2x2 4mx 2m2 3m 2 0 的两个实数根,当 m 为何值时,x1 2 x 2 2 有最小值 ?并求出这个最小值.【例 5 】已知:四边形ABCD 中, AB ∥ CD ,且 AB 、 CD 的长是关于x的方程x 2 2mx ( m 1)2 7 0 的两个根.2 4(1)当 m= 2 和 m>2 时,四边形 ABCD 分别是哪种四边形 ?并说明理由.(2)若 M 、N 分别是 AD 、BC 的中点,线段 MN 分别交 AC 、BD 于点 P,Q,PQ= 1,且 AB<CD ,求 AB 、 CD 的长.【练习题】1. (1) 已知 x1 和 x 为一元二次方程2x2 2x 3m 1 0 的两个实根,并 x 和 x2满足不等式2 1x1 x21 ,则实数m取值范围是.x1 x2 4(2) 已知关于x的一元二次方程8x 2 (m 1) x m 7 0 有两个负数根,那么实数m 的取值范围是.2. 已知、是方程的两个实数根,则代数式 3 2 2 2 的值为.3. CD 是 Rt△ABC 斜边上的高线, AD 、BD 是方程 x2 6x 4 0 的两根,则△ ABC 的面积是.4. 设 x1、 x2是关于x的方程 x2 px q 0 的两根, x1 +1 、 x2 +1 是关于x的方程x2 qx p 0 的两根,则 p 、 q 的值分别等于 ( )A . 1, -3B. 1,3C. -1, -3 D . -1, 35.在 Rt△ ABC 中,∠ C= 90°, a、 b、 c 分别是∠ A 、∠ B 、∠ C 的对边, a、 b 是关于x的方程 x 2 7x c 7 0 的两根,那么AB 边上的中线长是 ()A .3B .5D. 2C.52 26. 方程 x 2 px 1997 0 恰有两个正整数根x1、 x2,则(x1 p 的值是 () 1)(x2 1)A . 1 B. -l C.1D.1 2 27. 已知、是方程 x 2 x 1 0 的两个根,则 4 3 的值为.8. △ ABC 的一边长为5,另两边长恰为方程 2 2 12x m 0的两根,则m 的取值范围x是.9. 已知关于x 的方程x2 (2k 3) x k2 1 0 .(1)当 k 是为何值时,此方程有实数根;(2) 若此方程的两个实数根x1、 x2满足:x2x1 3 ,求 k 的值.10.如图,在矩形 ABCD 中,对角线 AC 的长为 10,且 AB 、 BC(AB>BC) 的长是关于x的方程的两个根.(1)求 rn 的值;(2)若 E 是 AB 上的一点, CF⊥ DE 于 F,求 BE 为何值时,△ CEF 的面积是△ CED 的面积的1,请说明理由.311. 如图,已知在△ ABC 中,∠ ACB=90°,过 C 作 CD ⊥ AB 于 D,且 AD = m,BD=n ,AC 2:BC 2= 2:1;又关于x 的方程1x22(n 1) x m212 0 两实数根的差的平方小于192,求4整数 m、 n 的值.。