一元二次方程培优专题讲义(最新整理)
培优专题01 一元二次方程的解法-解析版

培优专题01 一元二次方程的解法◎方法一直接开平方法(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,.对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a(2)直接开平方法适用于解形如x2 = p或(mx+a)2 = p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
1.(2022·浙江绍兴·八年级期末)一元二次方程x2 -1=0的根是()A.x1=x2=1B.x1=1,x2=-1C.x1=x2=-1D.x1=1,x2=0【答案】B【分析】先移项,再两边开平方即可.【详解】解:∵x2-1=0,∴x2=1,∴x=±1,即x1=-1,x2=1.故选:B.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2.(2022·安徽滁州·八年级期末)如果关于x 的方程2(9)4x m -=+可以用直接开平方法求解,那么m 的取值范围是( )A .3m >B .3m ³C .4m >-D .4m ³-【答案】D【分析】根据直接开平方法求解可得.【详解】解:∵2(9)4x m -=+,且方程2(9)4x m -=+可以用直接开平方法求解,∴40m +³,∴4m ³-.故选:D .【点睛】此题主要考查了直接开平方法解一元二次方程,正确化简方程是解题关键.3.(2022·全国·九年级课时练习)关于x 的方程2x p =.(1)当0p >时,方程有__________的实数根;(2)当0p =时,方程有__________的实数根;(3)当0p <时,方程__________.4.(2022·安徽合肥·八年级期末)方程290x -=的解为______.5.(2022·全国·九年级单元测试)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成a cb d ,定义a cad bcb d=-,上述记号就叫做2阶行列式.(1)若21493xx=,求x的值.(2)若11611x xx x+-=-+,求x的值.◎方法二 配方法1、配方法的一般步骤可以总结为:一移、二除、三配、四开;2、把常数项移到等号的右边;3、方程两边都除以二次项系数;4、方程两边都加上一次项系数一半的平方,把左边配成完全平方式;5、若等号右边为非负数,直接开平方求出方程的解。
一元二次方程讲义全

一元二次方程讲义全一元二次方程讲义考点一、概念1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。
2)一般表达式:ax^2+bx+c=(a≠0)注:当b=0时可化为ax^2+c=0,这是一元二次方程的配方式。
3)四个特点:只含有一个未知数;且未知数次数最高次数是2;是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为ax^2+bx+c=(a≠0)的形式,则这个方程就为一元二次方程。
4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。
4)难点:如何理解“未知数的最高次数是2”:①该项系数不为0;②未知数指数为2;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是()A。
(x+1)^3=2(x+1)B。
2√x+1-11=0C。
ax^2+bx+c=0D。
x^2+2x=x^2+1变式:当k≠0时,关于x的方程kx^2+2x=x^2+3是一元二次方程。
例2、方程(m+2)x^m+3mx+1=0是关于x的一元二次方程,则m的值为。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y^2+y-3的值为2,则4y^2+2y+1的值为。
例2、关于x的一元二次方程(a-2)x^2+x+(a^2-4)=0的一个根为-2,则a的值为。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制。
例3、已知关于x的一元二次方程ax^2+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。
例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为。
一元二次方程讲义

一元二次方程讲义1.解方程2(2)9x -=. 2(3x ﹣1)2=8.例题3:配方法1.已知方程260xx q +=-可以配方成27x p =(-)的形式,那么262x x q +=-可以配方成下列的( ) A. 25x p =(-) B. 29x p =(-) C. 229x p +=(-) D. 225x p +=(-) 2.用配方法解方程:2420x x ++=练习:1. 用配方法解方程:x 2﹣7x+5=0. 2x 2﹣3x+1=0.x 2﹣6x ﹣7=0.例题4.公式法1.一元二次方程4x 2﹣2x+=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断2.用公式法解方程:03822=+-x x.练习:1.用公式法解方程:3x 2+5(2x+1)=0.练习:1.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.”互联网+”时代,中国的在线教育得到迅猛发展.根据中国产业信息网数据统计分析,2015年中国在线教育市场产值约为1600亿元,2017年中国在线教育市场产值在2015年的基础上增加了900亿元.(1)求2015年到2017年中国在线教育市场产值的年平均增长率;(2)若增长率保持不变,预计2018年中国在线教育市场产值约为多少亿元?例题2:利润问题1.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?练习:1.今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)例题3:面积问题1.某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米.求人行道的宽。
《一元二次方程》复习经典讲义--绝对经典实用

《一元二次方程》复习经典讲义基础知识1、一元二次方程方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如脳」「冰4;"『:寫占门的一般形式,我们把这样的方程叫一元二次方程。
其中'分别叫做一元二次方程的二次项、一次项和常数项,a b分别是二次项和一次项的系数。
如|满足一般形式「丁:、1,工宀L分别是二次项、一次项和常数项,2,—4分别是二次项和一次项系数。
注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。
2.—元二次方程求根方法(1)直接开平方法形如•的方程都可以用开平方的方法写成' ,求出它的解,这种解法称为直接开平方法。
(2)配方法通过配方将原方程转化为V;工己丿的方程,再用直接开平方法求解。
配方:组成完全平方式的变形过程叫做配方。
配方应注意:当二次项系数为1时,原式两边要加上一次项系数一半的平方,若二次项系数不为1,只需方程两边同时除以二次项系数,使之成为1。
(3)公式法求根公式:方程小* X 「的求根公式_b 丄v b2-4ac2ti步骤:1)把方程整理为一般形式::匚『“甩.m」:,确定a b、c。
2)计算式子卜In的值。
3)当八心心-时,把a、b和卜L LI的值代入求根公式计算,就可以求出方程的解。
(4)因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。
3、一兀二次方程根的判别式的定义运用配方法解一元二次方程过程中得到显然只有当护仏“时,才能直接开平方得:也就是说,一元二次方程卅r吐m沁珥只有当系数'耳、满足条件託=眇一盘供訣氐时才有实数根.这里「n 叫做一元二次方程根的判别式.4、判别式与根的关系在实数范围内,一元二次方程'的根由其系数「、耳、确定,它的根的情况(是否有实数根)由二•,确定.设一元二次方程为' 7 ' 11■ 「,其根的判别式为:则hbph' ■4tjcr①1■- ' =■方程门厂山应二::緘町有两个不相等的实数根■br V ——丫——…_ _②方程' f'有两个相等的实数根•一.③.匸方程农用沁没有实数根.若I,4,匸为有理数,且二为完全平方式,则方程的解为有理根;若△为完全平方式,同时血是%的整数倍,则方程的根为整数根.说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,:;有两个相等的实数根时,人-J;没有实数根时,「1⑵在解一元二次方程时,一般情况下,首先要运用根的判别式—氐判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根)•当亠忙仝:时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当时二抛物线开口向上二顶点为其最低点;②当…「时=抛物线开口向下二顶点为其最高点.5、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用:⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.6韦达定理b如果能畋;:;的两根是;:,贝U " -丿.(隐含的条件:•「「)特别地,当一元二次方程的二次项系数为1时,设',’‘是方程"'的两个根,贝U '-7、韦达定理的逆定理以两个数,”为根的一元二次方程(二次项系数为1 )是F -(x t ^x2)x^x l x2 -0一般地,如果有两个数’,•满足<,「,那么',•'必定是加亠脉V.U =比爭為的两个根.8、韦达定理与根的符号关系在£已护仏心1J的条件下,我们有如下结论:-<0 丄邸⑴当・时,方程的两根必一正一负•若- ,则此方程的正根不小于负-*<0根的绝对值;若「,则此方程的正根小于负根的绝对值.->0 --> o⑵当J 时,方程的两根同正或同负.若」,则此方程的两根均为正--<0根;若「,则此方程的两根均为负根.更一般的结论是:若,'■是煜。
初二数学培优讲义十七#一元二次方程

第17讲 一元二次方程知识讲解1.一元二次方程的一般形式ax 2+bx+c=0(a ,b ,c 是常数,a ≠0) 2.一元二次方程的解法(1)直接开平方法;(2)配方法;(3)公式法;(4)因式分解法.一元二次方程的求根公式是b 2-4ac ≥0).3.二元三项式ax 2+bx+c=a (x -x 1)(x -x 2).其中x 1,x 2是关于x 的方程ax 2+bx+c=0•的两个实数根.4.一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac .当△>0时,•方程有两个不相等的实数根x 1=2b a -+,x 2=2b a-;当△=0时,方程有两个相等实数根x 1=x 2=-2ba;当△<0时,方程没有实数根. 5.若一元二次方程ax 2+bx+c=0(a ≠0)的两个实数根为x 1,x 2,则x 1+x 2=-b a ,x 1x 2=c a. 6.以x 1,x 2为根的一元二次方程可写成x 2-(x 1+x 2)x+x 1x 2=0.7.使用一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac•解题的前提是二次项系数a ≠0.8.若x 1,x 2是关于x 的方程ax 2+bx+c=0的两根,则ax 12+bx 1+c=0,ax 22+bx 2+c=0.反之,若ax 12+bx 1+c=0,ax 22+bx 2+c=0,且x 1≠x 2,则x 1,x 2是关于x 的一元二次方程ax 2+bx+c=0的两根.9.一元二次方程的应用列一元二次方程解应用问题的步骤和解法与前面讲过的列方程解应用题的方法步骤相同,但在解题中心须注意所求出的方程的解一定要使实际问题有意义,凡不满足实际问题的解(虽然是原方程的解)一定要舍去.◆例题解析例1 (2006,四川绵阳)若0是关于x 的方程(m -2)x 2+3x+m 2+2m -8=0的解,求实数m 的值,并讨论此方程解的情况.【分析】这是一道确定待定系数m的一元二次方程,•又讨论方程解的情况的优秀考题,需要考生具备分类讨论的思维能力.【解答】由题知:(m-2)×02+3×0+m2+2m-8=0,∴m2+2m-8=0.利用求根公式可解得m1=2,或m2=-4.当m=2时,原方程为3x=0,此时方程只有一个解,x=0.当m=-4时,原方程可化为2x2-x=0,解得x1=0,x2=12.例2 (2006,北京海淀)已知下列n(n为正整数)个关于x的一元二次方程:x2-1=0 (1)x2+x-2=0 (2)x2+2x-3=0 (3)……x2+(n-1)x-n=0 (n)(1)请解上述一元二次方程(1),(2),(3),(n);(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【分析】由具体到一般进行探究.【解答】(1)<1>(x+1)(x-1)=0,所以x1=-1,x2=1.<2>(x+2)(x-1)=0,所以x1=-2,x2=1.<3>(x+3)(x-1)=0,所以x1=-3,x2=1.……<n>(x+n)(x-1)=0,所以x1=-n,x2=1.(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等.【点评】本例从教材要求的基本知识出发,探索具有某种特点的方程的解题规律及方程根与系数之间的关系,注重了对学生观察、类比及联想等数学思想方法的考查.例3 (2005,黄冈市)张大叔从市场上买回一块矩形铁皮,•他将此矩形铁片的四个角各剪去一个边长为1m的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体运输箱.且此长方体运输箱底面的长比宽多2m,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?【分析】首先化无形为有形,画出示意图,分清底面、侧面,底面的长与宽和长方体的高各用什么数或式子表示,然后利用体积相等列出方程求解.【解答】设这种运输箱底部宽为xm,则长为(x+2)m,依题意,有x(x+2)×1=15化简,得x2+2x-15=0.∴x1=-5(舍去)x2=2.所求铁皮的面积为:(3+2)(5+2)m2=35m2.所购矩形铁皮所需金额为:35×20元=700元.答:张大频购回这张矩形铁皮花了700元钱.【点评】画出示意图是解题的关键.另外本题所采用的是间接设未知数的方法.若直接设出购买铁皮所需金额就困难了.◆强化训练一、填空题1.方程(2x-1)(3x+1)=x2+2化为一般形式为______,其中a=____,b=____,c=____.2.方程(x-1)2=2的解是_______.3.关于x的一元二次方程mx2+nx+m2+3m=0有一个根为零,则m的值等于_____.4.配方:x2-6x+_____=(x-____)2;x2-52x+______=(x-_____)2.5.方程(x-1)(x+2)(x-3)=0的根是_______.6.关于x的一元二次方程x2+mx+n=0的两个根为x1=1,x2=-2,则x2+mx+n分解因式的结果是______.7.若关于x的方程x2+px+1=0的一个实数根的倒数恰好是它本身,则p的值是____.8.两个连续整数的积为210,则这两个数分别是_____.9.若一个三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为_____.10.如果a,b,c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14与bc=a2-4a-5,那么a的取值范围是______.二、选择题11.关于x的一元二次方程2x2-3x-a2+1=0的一个根为2,则a的值是()A.1 B C D12.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m的值等于()A.1 B.2 C.1或2 D.013.关于x 的一元二次方程x 2-(k+1)x+k -2=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法判断14.已知关于x 的方程x 2-(2k -1)x+k 2=0有两个不相等的实数根,那么k•的最大整数值是( )A .-2B .-1C .0D .1 15.方程mx 2-4x+1=0的根( )A .14B C D .以上都不对16.关于x 的一元二次方程x 2-3x+k=0有实数根,则k 的取值范围是( ) A .k<94 B .k>94 C .k ≤94 D .k ≥9417.方程组18ax y x by -=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,那么方程x 2+ax+b=0 ( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .有两个根为2和318.若a ,b 是方程x 2+2x -2002=0的两个不相等的实数根,则a 2+3a+b 的值是( ) A .-2002 B .2002 C .2001 D .2000 三、解答题 19.解方程:(1)x 2-6x+9=(5-2x )2 (2)x 2-4x+1=020.汽车产业的发展,•有效促进我国现代化建设,•某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,•每年盈利的年增长率相同. (1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?21.如果方程ax2-bx-6=0与方程ax2+2bx-15=0有一个公共根是3,求a,b的值,•并求方程的另一个根.22.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内沿前侧内墙保留3m宽的空地,其他三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?23.黄冈百货商店服装柜在销售中发现:•“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,•商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存,经市场调查发现,•如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,•那么每件童装应降价多少元?24.近年来,由于受国际石油市场的影响,汽油价格不断上涨,•请你根据图所示的信息,帮小明计算今年5月份汽油的价格.25.机械加工需用油进行润滑以减小摩擦,•某企业加工一台大型机械设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36kg.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70kg,•用油的重复利用率仍然为60%,问甲车间技术革新后,•加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12kg.问乙车间技术革新后,加工一台大型机械设备的润滑用油量是多少千克?用油的重复利用率是多少?。
(完整word版)一元二次方程讲义

第23章 一元二次方程1.一元二次方程只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.一般形式:c b a c bx ax ,,(02=++是已知数,)0≠a 。
其中c b a ,,分别叫做二次项的系数,一次项的系数,常数项。
(1)下列方程中,是关于x 的一元二次方程的是( )A x 1+x 2=1B 212+x -21-x =1C x 2-x +1=0D 2x 3-5xy -4y 2=0(2)将方程x 2+3=x +3x 化成一般形式是____________,二次项系数是____________,一次项系数是____________,常数项是____________。
(3)关于x 的方程m 2x -3x=2x -mx+2是一元二次方程,m 应满足什么条件?(4)已知关于x 的一元一次方程(m -2)2x +3x+2m -4=0,有一个解是0,求m 的值.(1)下列方程 ①-x 2+2=0 ②2x 2-3x =0 ③ -3x 2=0 ④ -3x 2=0 ⑤ x 2+x1=0 ⑥232+x =5x ⑦ 2x 2-3=(x -3)(x 2+1)中是一元二次方程的有( ) A 2个 B 3个 C 4个 D 5个(2)方程(m+1)2x -(2m+2)x+3m -1=0有一个根为0,则m 的值为( ) A 32 B 31 C -32 D -31(1)若()5112=-+m x m 是一元二次方程,则m= 。
(2)一元二次方程()()0112=-+++c x b x a 化成一般形式为01342=++x x ,试求(2a+b )·3c 的值.2.一元二次方程的解法(1)直接开平方法(1)方程2x =1 的实数根的个数是 。
(2)用直接开平方法解下列方程① 92x -25=0 ② ()422=+x若方程()0212=--n m x ,试说明方程根的情况. (2)因式分解法(1)方程2x -1=0的根是 。
一元二次方程培优专题讲义

数学培优专题讲义:一元二次方程 一.知识的拓广延伸及相关史料1. 一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1) 配方法:如2670x x ++=,经配方得2(3)2x +=,再直接用开平方法; (2) 公式法;(3) 因式分解法。
这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程2670x x ++=,只要变形为22(3)0x +-=即可,或原方程2670x x ++=经配方化为2(3)2x +=,再求解时,还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。
公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。
由此可见,对因式分解法应予以足够的重视。
因式分解法还可推广到高次方程。
2. 我国古代的一元二次方程 提起代数,人们自然就把它和方程联系起来。
事实上,过去代数的中心问题就是对方程的研究。
我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。
下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.” 这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题.上面的问题选自杨辉所著的《田亩比类乘除算法》。
原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解.3. 掌握数学思想方法,以不变应万变。
本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。
(1)转化思想 我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。
因此,转化思想就是解方程过程中思维活动的主导思想。
在本章,转化无所不在,无处不有,可以说这是本章的精髓和特色之一,其表现主要有以下方面: ① 未知转化为已知,这是解方程的基本思路:② 一元二次方程转化为一元一次方程,这是通过将原方程降次达到的: ③ 特殊转化为一般,一般转化为特殊。
(完整版)一元二次方程讲义——绝对经典实用

一元二次方程基础知识1、 一元二次方程 方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如ax bx c a 200++=≠()的一般形式,我们把这样的方程叫一元二次方程。
其中ax bx c 2,,分别叫做一元二次方程的二次项、一次项和常数项,a 、b 分别是二次项和一次项的系数。
如:24102x x -+=满足一般形式ax bx c a 200++=≠(),2412x x ,,-分别是二次项、一次项和常数项,2,-4分别是二次项和一次项系数。
注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。
2. 一元二次方程求根方法 (1)直接开平方法形如x m m 20=≥()的方程都可以用开平方的方法写成x m =±,求出它的解,这种解法称为直接开平方法。
(2)配方法通过配方将原方程转化为()x n m m +=≥20()的方程,再用直接开平方法求解。
配方:组成完全平方式的变形过程叫做配方。
配方应注意:当二次项系数为1时,原式两边要加上一次项系数一半的平方,若二次项系数不为1,只需方程两边同时除以二次项系数,使之成为1。
(3)公式法求根公式:方程ax bx c a 200++=≠()的求根公式x b b ac ab ac =-±--≥224240()步骤:1)把方程整理为一般形式:ax bx c a 200++=≠(),确定a 、b 、c 。
2)计算式子b ac 24-的值。
3)当b ac 240-≥时,把a 、b 和b ac 24-的值代入求根公式计算,就可以求出方程的解。
(4)因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。
3、一元二次方程根的判别式的定义运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:2b x a += 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.4、判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根1,2x =.②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a ==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 若a ,b ,c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时b -2a 的整数倍,则方程的根为整数根.说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有 两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,0∆<.⑵在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ∆=-判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ∆=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当0a >时⇔抛物线开口向上⇔顶点为其最低点;②当0a <时⇔抛物线开口向下⇔顶点为其最高点.5、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用: ⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围; ⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.6、韦达定理如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a =.(隐含的条件:0∆≥)特别地,当一元二次方程的二次项系数为1时,设1x ,2x 是方程20x px q ++=的两个根,则12x x p +=-,12x x q ⋅=.7、韦达定理的逆定理2一般地,如果有两个数1x ,2x 满足12b x x a +=-,12cx x a =,那么1x ,2x 必定是20(0)ax bx c a ++=≠的两个根.8、韦达定理与根的符号关系在24b ac ∆=-≥0的条件下,我们有如下结论:⑴当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0b a -<,则此方程的正根小于负根的绝对值.⑵当0c a >时,方程的两根同正或同负.若0b a ->,则此方程的两根均为正根;若0b a -<,则此方程的两根均为负根. 更一般的结论是:若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地:① 121()()0x m x m x m --<⇔>,2x m <② 12()()0x m x m -->且12()()0x m x m -+->1x m ⇔>,2x m >③ 12()()0x m x m -->且12()()0x m x m -+-<1x m ⇔<,2x m <特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件.其他有用结论:⑴若有理系数一元二次方程有一根a +a a ,b 为有理数).⑵若0ac <,则方程20(0)ax bx c a ++=≠必有实数根. ⑶若0ac >,方程20(0)ax bx c a ++=≠不一定有实数根. ⑷若0a b c ++=,则20(0)ax bx c a ++=≠必有一根1x =. ⑸若0a b c -+=,则20(0)ax bx c a ++=≠必有一根1x =-.9、韦达定理的应用⑴已知方程的一个根,求另一个根以及确定方程参数的值; ⑵已知方程,求关于方程的两根的代数式的值; ⑶已知方程的两根,求作方程;⑷结合根的判别式,讨论根的符号特征;⑸逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑹利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱10、整数根问题对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ∆=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.方程有整数根的条件:如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件:⑵ 2b ak -=或2b ak -=,其中k 为整数. 以上两个条件必须同时满足,缺一不可.另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数)11、一元二次方程的应用1.求代数式的值;2. 可化为一元二次方程的分式方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学培优专题讲义:一元二次方程
一.知识的拓广延伸及相关史料
1.一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1)配方法:如,经配方得
2670x x ++=,再直接用开平方法;
2(3)2x +=(2)公式法;(3)因式分解法。
这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程,只2670x x ++=要变形为
即可,或原方程
22(3)0x +-=经配方化为,再求解时,
2670x x ++=2(3)2x +=还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。
公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。
由此可见,对因式分解法应予以足够的重视。
因式分解法还可推广到高次方程。
2.我国古代的一元二次方程
提起代数,人们自然就把它和方程联系起来。
事实上,过去代数的中心问题就是对方程的研究。
我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。
下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.”
这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题.
上面的问题选自杨辉所著的《田亩比类乘除算法》。
原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解.
3. 掌握数学思想方法,以不变应万变。
本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。
(1)转化思想
我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。
因此,转化思想就是解方程过程中思维活动的主导思想。
在本章,转化无所不在,无处不有,
可以说这是本章的精髓和特色之一,其表现主要有以下方面:
①未知转化为已知,这是解方程的基本思路:
②一元二次方程转化为一元一次方程,这是通过将原方程降次达到的:
③特殊转化为一般,一般转化为特殊。
例如,通过用配方法解数字系数的一元二次方程归纳出用配方法解一般形式2670x x ++=的一元二次方程的方法,进而得出20ax bx c ++=一元二次方程的求根公式,而用公式法又可以解各种具体的一元二次方程,推导出一元二次方程根与系数的关系。
又如,通过设未知数,找出等量关系,列方程,把实际问题转化为解方程问题,等等。
掌握转化思想并举一反三,还可以解决很多其他方程问题,如高次方程转化为一元一次或一元二次方程,分式方程转化为整式方程,无理方程转化为有理方程,二元二次方程组转化为二元一次方程组,总之,本章学习的关键之一是学会如何”转化”.
练习:
;222
1
1.510a x x a a -+=+
是方程的一根,求的值
2421032.
a x a ⋅--=--是方程x 的一根,求a 的值 2
2
42
3101
x x x x x --=-+、若,求的值。
(2)类比思想
本章多次运用类比找出新旧知识的联系,在新旧知识间进行对比,以利于更快更好地掌握新知识.
如用配方法解一元二次方程时,可类比平方根的概念和意义,列一元二次方程解应用题,可类比列一元一次方程解应用题的思路和一般步骤.
类比思想是联系新旧知识的纽带,有利于帮助我们开阔思路,研究解题途径和方法,有利于掌握新知识、巩固旧知识,学习时应特别重视。
掌握了类比和转化这两大数学思想,举一反三,还可解决许多方程的相关问题。
我们来看下面两个例子。
例1.解分式方程2142
1
242x x x x
++=+--例2.解方程组7
12
x y xy +=⎧⎨
=⎩4.配方法的妙用
所谓配方,就是把一个多项式经过适当变形配成完全平方式。
配方法除一元二次方程求根公式推导这一典型应用外,在因式分解、化简二次根式、证明恒等式、解方程、求代数式最值等问题中都有广泛应用,是一种很重要、很基本的数学方法。
例1. 分解因式21203456
x x -+例2.
例3.解方程421510240
x x x -++=例4.求的最小值
2242415x y y x +--+5.怎样巧用韦达定理解“看错数”问题小红和小明一起做作业,在解一道一元二次方程时,小明在化简过程中写错了常数项,因而得方程的两个根是8和2;小红在化简过程中写错了一次项的系数,因而得到方程的两个根是-9和-1.你知道原来的方程是什么吗?
6. 二次三项式的因式分解
我们把形如的多项式叫做的2
(0)ax bx c a ++≠x 二次三项式。
在了解了形如的二次2
()x p q x pq +++三项式分解因式的方法的基础上,现在介绍利用求出一元二次方程的根的方法,将一般的二次三项式分解
因式。
222121212()()(x x )().b c
ax bx c a x x a x x x x x x a x x a a
⎡⎤++=++=-++=--⎣⎦这就是说,在分解二次三项式2(0)ax bx c a ++≠的因式时,可先求出方程的两个根20ax bx c ++=,然后再写成1,2x x 212(x x )().
ax bx c a x x ++=--例:在实数范围内分解因式:
(1) (2)221x x --231
x x --(3) (4)2283x x --22
32x xy y
--
二、拓展性问题 1.回答下列问题:
(1)若方程有一个根是1,则的
22(2)10m x --=m 的值是多少?
(2)已知2和-1是方程的两个根,
220x mx n ++=求和的值。
m n (3)若方程有一个根是,则
2
3520x x --=a 的值是多少?
2610a a -(4)已知方程的一个根是1,那
2
(0)ax bx c a ++≠么的值是多少?
a b c ++2. 解方程
(1)
222(3)3(3)2y y y y -=-- (2) 22
(1)(2)4
t t t t +-++=3.已知m 、n 是二次方程的两个
2199970x x ++=根,求
的值。
22(19996)(20008)m m n n ++++4.已知关于方程,
x 2
(2)2(1)(1)0a x a a ---++=为何非负整数时,(1)方程只有一个实数根?(2)a 方程有两个相等的实数根?(3)方程有两个不相等的实数根?
5. 在实数范围内分解因式:
(1) (2)2243x x --+2441x x --
6. 对于向上抛的物体,在没有空气阻力的条件下,有这样的关系 : ,其中是上升高度, 212
h vt gt =-h v
是初速, 是重力加速度(为方便起见,本题目
g ),抛出后所经历的时间,如果将一物体以2g 取10m /s t 的初速度向上抛,物体何时处在离抛出点25/v m s =高的地方?
20m 7. 某零售商购进一批单价为16元的玩具,销售一段时间后,为了获得更多的利润,商店决定提高销售价格.经过试验发现,若按每件20元的价格销售时,每月能卖360件;若按每件25元的价格销售时,每月能卖210件,假定每月销售件数为(件)是价格 (元/件)的一次函数.y y (1)试求与之间的关系式;
y x (2)在商品不积压且不考虑其他因素的条件
下,问销售价定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
8. 根与系数的关系:
①(2012内江市)若方程的两根分20x px q ++=别是,那么,请根据以上结1,2x x 1212,x x p x x q +=-=论,解决下列问题:
⑴已知关于的方程,求出x 26(0)x mx n n ++=≠一个一元二次方程,使它的两个根分别是已知方程两根的倒数;
⑵已知满足,求,a b 221550,1550a a b b --=--=的值;a b
b a
+⑶已知满足,求正数,,a b c 0,16a b c abc ++==c 的最小值.
②(2012孝感)已知关于的方程x 2(3)10
x m x m ++++=⑴求证:无论为何值时,原方程总有两个不相等的实
m 数根.
⑵若是原方程的两根,且,求的1,
2x x 12x x -=m 值和此时方程的两根.
三、数学思考
小明有5张人民币,面值合计20元。
(1)小明的5张人民币的面值分别是_______元、________元、________元、_______元、
_______元。
(2)小明到水果店,称了千克苹果(是整数),
x x 按标价应付元,正好等于小明那5张人民币中的两张y 面值之和,这时果筐里还剩下6千克苹果,店主便对小明说:“如果你把剩下的也都买去,那么连同刚才你称的,一共就付款10元吧。
”小明一算,这样相当于每千克比标价减少了0.5元,本着互利的原则,小明便答应了,试求和.
x y。