【真题】2017年海南特岗教师初中数学学科专业知识试卷全解析版

合集下载

初中数学特岗教师考试真题及答案

初中数学特岗教师考试真题及答案

初中数学特岗教师考试真题及答案篇一:哎呀呀,我只是个小学生,初中数学特岗教师考试真题及答案对我来说可太难懂啦!不过我可以想象一下,要是大哥哥大姐姐们准备这个考试,那得多紧张啊!就好像我们小学生考试前,心里总是像揣了只小兔子,蹦跶个不停。

他们准备这个特岗教师考试,是不是也会拿着厚厚的资料,不停地背啊记啊,眼睛都看花了?我猜真题里肯定有各种各样奇奇怪怪的数学题,什么函数啦、几何啦,说不定还有让人头疼的应用题。

就像我们做数学作业时,有时候一道题想半天也想不出来,他们遇到难题时是不是也会抓耳挠腮,急得直跺脚?答案呢,也许是隐藏在那些复杂的公式和计算里。

找到正确答案的感觉,是不是就像在一堆乱糟糟的玩具里找到了自己最心爱的那个?我还想到,如果他们在考场上,看到不会的题,会不会偷偷瞄一眼旁边的人,然后又赶紧收回目光,告诉自己要诚实?哈哈,应该不会啦,大哥哥大姐姐们肯定都是很守纪律的!也许他们在考试结束后,会凑在一起,叽叽喳喳地讨论哪道题难,哪道题简单。

“哎呀,那道函数题我怎么就没做出来呢?”“我也是,我觉得几何题才是最难的!”要是有人考得特别好,那肯定高兴得要飞起来,走路都带风。

可要是没考好,说不定会垂头丧气,心里想着:“下次一定要努力!”总之,初中数学特岗教师考试真题及答案对于准备当老师的大哥哥大姐姐们来说,可真是一场重要的挑战呢!我觉得他们只要认真准备,努力学习,就一定能考出好成绩,成为优秀的老师,教出更多厉害的学生!篇二:哎呀,我是个小学生,初中数学特岗教师考试真题及答案这东西对我来说可太遥远啦!我就想问问,初中数学得多难啊?是不是像走在黑漆漆的山洞里,找不到出口?那些特岗教师考试的真题,是不是像神秘的密码,等着老师们去破解?你说,老师们准备考试的时候得多紧张呀?他们是不是得像小蜜蜂一样,不停地在知识的花丛中飞来飞去,采集花蜜?是不是得把那些数学公式、定理记得牢牢的,就像我们记住喜欢的动画片的情节一样?我猜呀,真题里说不定有那种超级复杂的几何题,就像一个怎么也拼不好的拼图,得费好大的劲儿才能找到头绪。

2017年海南省特岗教师招聘考试试题及答案

2017年海南省特岗教师招聘考试试题及答案

2017年海南省特岗教师招聘考试试题及答案(本套试卷包括公共知识和专业基础知识两部分,本卷只收录公共知识部分真题)一、单项选择题(下列每小题四个选项中只有一个符合题意,请将其代码填在括号内。

错选、多选或未选均不得分。

本大题共30小题,每小题2分,共60分)1.贯彻“以人为本”的教育理念,首先应该做到的是()A.充分地传授知识B.尊重学生人格,关注个体差异C.培养学生正确的学习态度D.将知识转化为巨大的经济利益【答案】B【解析】“以人为本”的教育理念要求尊重学生人格,关注个体差异。

2.下列认知风格中容易给学生带来不利影响的是()A.场独立型B.场依存型C.冲动型D.沉思型【答案】C【解析】冲动型的学生在解决认知任务时。

总是急于给出问题的答案,而不习惯对解决问题的各种可能性进行全面思考,宥时问题还未弄清楚就开始解答。

因此,容易给学习带来不利影响。

3.对末成年人进行思想道德教育,以下哪种做法我们不能提倡()A.联系家庭,形成教育合力B.利用网络平台开展形式多样的教育活动C.精心组织主题班会D.保持学校教育的纯洁,防止社会和家庭介入【答案】D【解析】对未成年人进行思想道德教育要遵循教育影响的一致性和连贯性原则,即要把学校教育和家庭教育、社会教育联系起来,形成教育合力,保证整体教育效果。

故D项说法错误。

4.教师享有的权利不包括()(常考)A.对违纪学生做出体学或开除等处罚B.进行教育教学活动,开展教育教学改革和实验C.指导学生的学习和发展,评定学生的品行和学业成绩D.参加进修或其他方式的培训【答案】A【解析】根据《中华人民(2)国教师法》第七条规定,教师享有下列权利:(1)进行教育教学活动,开展教育(3)改革和实验;(2)从事科学研究、学术交流,参加专业的学术团体,在学术潘勃率充分发表意见;(3)指导学生的学习和发展,评定学生的品行和学业成绩;(4)按时获取工资报酬,享受国家规定的福利待遇以及寒暑假期的带薪休假;(5)对学校教育教学、管理工作和教育行政部门的工作提出意见和建议,通过教职工代表大会或者其他形式,参与学校的民主管理;(6)参加进修或者其他方式的培训。

2017下半年教师资格证考试真题及答案:初中数学学科

2017下半年教师资格证考试真题及答案:初中数学学科

2017下半年教师资格证考试真题及答案:初中数学学科一、单项选择题微信NTCECN1、矩阵……的秩为(5分)正确答案:D.32、当……时,与……是等价无穷小的为(5分)正确答案:A.3、下列……发散的是(5分)正确答案:A.4、……椭圆的论述,正确的是(5分)正确答案:C.从椭圆的一个焦点发出的射线,经椭圆反射后通过椭圆的另一个焦点。

5、……多项式为二次型的是(5分)正确答案:D.6、……随机变量X服从正态分布……设随机变量……那么Y服从的分布是(5分)正确答案:C.7、“矩形”和“菱形”概念…… (5分)正确答案:B.交叉关系8、……图形不是中心对称图形…… (5分)正确答案:B.正五边形二、简答题9、……平面曲线……分别绕y周和x轴旋转一周……旋转曲面分别记作……(1)在空间直角坐标系……写出曲面S1和S2的方程:(4分)(2)平面……与曲面S1所围成的立体得体积。

(3分)正确答案:10、……参加某类职业资格考试的考生中,有60%是本专业考生……40%是非专业考试……某位考生通过了考试,求该考试是本专业考生的概率。

(7分)正确答案:11、……由连续曲线C围成一个封闭图形,证明:存在实数……使直线……平分该图形的面积。

(7分)正确答案:12、……“平行四边形”和“实数”的定义……定义方式。

(7分)正确答案:平行四边形的定义:两组对边分别平行的四边形;定义方式:关系定义(属概念加种差定义法);实数的定义:有理数和无理数统称实数;定义方式:外延定义法.13、……部分选学内容……书达定理……简述……选学内容的意义。

(7分)正确答案:对于选学课程来说,可以扩宽学生的知识与技能化,以韦达定理为例,韦达定理与一元二次方程根的判别式的关系是密不可分的,根的判别式是判定方程是否有实根的充要条件,而韦达定理说明了根与系数的关系,无论方程有无实数根,利用韦达定理可以快速求出两方程根的关系,因此韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现.三、解答题14、在线性空间R3中,已知向量……(1)求子空间V3的维数:(4分)(2)求子空间V3的一组标准正交基。

初中数学特岗教师考试真题及答案

初中数学特岗教师考试真题及答案

初中数学特岗教师考试真题及答案篇一:哎呀呀,我只是个小学生,初中数学特岗教师考试真题及答案对我来说太难懂啦!我都还没上初中呢,哪里知道这些呀!不过我想,那些准备参加初中数学特岗教师考试的大哥哥大姐姐们,面对这些真题的时候,是不是就像我们在期末考试前紧张地复习一样呢?他们是不是也会抓耳挠腮,绞尽脑汁地思考那些难题呀?我猜真题里肯定有各种各样奇怪的数学题,什么函数啦,几何图形啦,还有一堆让人头疼的算式。

说不定有这样的题目:“如果一个三角形的三条边分别是3 厘米、4 厘米和5 厘米,那它是直角三角形吗?” 这得多难想啊!还有答案,那些正确的答案就像是一把把神秘的钥匙,只有找到了才能打开难题的大门。

可是要找到这些钥匙可不容易,得费好大的劲儿呢!大哥哥大姐姐们在准备考试的时候,是不是每天都泡在书堆里,不停地做题、背诵公式?他们是不是会互相讨论,“哎呀,这道题你会做吗?”“这道题的答案到底是什么呀?”我觉得他们就像在知识的海洋里拼命游泳的人,努力地朝着岸边游去。

这考试真题和答案,就是他们前进路上的风浪和灯塔。

不管怎么样,我希望参加考试的大哥哥大姐姐们都能顺利通过,拿到好成绩,成为优秀的老师,以后教我们更多有趣的知识!篇二:哎呀呀,我是个小学生,对初中数学特岗教师考试真题及答案可不懂呀!初中数学对我来说就像天上的星星,遥远又神秘。

我现在每天还在和加减乘除打交道呢,什么一元一次方程都觉得好难好难啦!初中数学特岗教师考试的真题,那得是多高深的知识呀?我就好奇,初中数学特岗教师得懂多少东西才能通过考试呀?是不是要像孙悟空一样,有七十二变的本事,啥数学难题都能轻松解决?说不定他们考试的时候,题目比我们的数学作业难上一百倍!比如说,让他们在很短的时间内算出超级复杂的几何图形的面积和周长,这难道不是在考验他们的大脑是不是超级计算机吗?还有啊,如果让他们证明那些让人头疼的数学定理,那不是像要他们在数学的迷宫里找出正确的出口吗?要是问他们怎么教像我这样对数学有点头疼的小学生,那他们是不是得有像魔法师一样的魔力,让我们一下子就爱上数学?我真想问问那些参加考试的老师,面对这些真题,他们心里会不会也像揣了只小兔子,紧张得不行?反正我觉得,能去参加初中数学特岗教师考试的人都好厉害!他们一定是超级热爱数学,也特别有耐心和智慧,才能去挑战这样的考试。

特岗教师考试真题附参考解析

特岗教师考试真题附参考解析

特岗教师考试真题附参考解析2017年特岗教师考试真题(附参考解析)导语:教育工作,是一项常做常新、永无止境的工作。

一、单项选择题(共25题,每小题2分,共50分)1.2015年2月3日,总书记在中央党校省部级主要领导干部专题研讨班开班式上集中论述了“四个全面”战略布局,“四个全面”是指( )A.全面建成小康社会、全面深化改革、全面依法治国、全面反腐倡廉B.全面建成小康社会、全面深化改革、全面依法治国、全面从严治党C.全面建设小康社会、全面深化改革、全面依法治国、全面反腐倡廉D.全面建设小康社会、全面深化改革、全面依法治国、全面从严治党2.2014年9月9日,总书记在北京师范大学考察时强调,广大教师要做( )A.有理想信念、有高尚道德、有扎实知识、有仁爱之心的好老师B.有理想信念、有道德情操、有专业知识、有仁爱之心的好老师C.有理想信念、有高尚道德、有专业知识、有仁爱之心的好老师D.有理想信念、有道德情操、有扎实知识、有仁爱之心的好老师3.国务院办公厅近期印发的《乡村教师支持计划(2015-2020年)》提出,力争到2017年逐步形成( )A.“下得去、留得住、教得好”的局面B.“走出去、引进来、干得好”的局面C.“下得去、上得来、教得好”的局面D.“下得去、回得来、干得好”的局面4.某教学点张老师根据班级学生人数太少的情况,打破传统课堂讲授惯例,进行讨论式教学改革。

张老师这样做是《中华人民共和国教师法》赋予他的( )A.科学研究权B.教育教学权C.管理学生权D.民主管理权5.苏霍姆林斯基说“教师成为学生道德上的指路人,并不在于他们时时刻刻都在讲大道理,而在于他的态度,能为人表率,在于他有高度的道德水平。

”这句话说明教师职业道德应具有( )A.鲜明的继承性B.强烈的责任性C.独特的示范性D.严格的标准性6.“家人不在身边,老师就是我们的亲人”反映了留守儿童所期待的教师角色是( )A.父母与朋友B.研究者C.管理者D.授业解惑者7.某班主任在工作中时常感到家长难以应付,经常被家长说教甚至发生口角。

2017年海南省初中毕业生学业考试数学试题(解析版)

2017年海南省初中毕业生学业考试数学试题(解析版)

2017年海南省初中毕业生学业考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)1.2017的相反数是()A.﹣2017 B.2017 C.﹣ D.分析&根据相反数特性:若a.b互为相反数,则a+b=0即可解题.解答&解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.点评&本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1分析&把a的值代入原式计算即可得到结果.解答&解:当a=﹣2时,原式=﹣2+1=﹣1,故选C点评&此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3a2=a6D.(a3)2=a9分析&根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.解答&解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.点评&本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥分析&根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.解答&解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.点评&此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°分析&根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.解答&解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.点评&本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.C.分析&首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A 2B2C2,即可得出答案.解答&解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.点评&此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8分析&科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.解答&解:∵2000000=2×106,∴n=6.故选:B.点评&此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1分析&直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.解答&解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.点评&此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数 1 4 3 5 7则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15分析&众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.解答&解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.点评&此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.分析&首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.解答&解:列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.点评&此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20分析&利用菱形的性质结合勾股定理得出AB的长,进而得出答案.解答&解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.点评&此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°分析&先根据OA=OB,∠B AO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.解答&解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.故选B.点评&本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6分析&根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.解答&解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.点评&此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16分析&由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k最大,据此可得出结论.解答&解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.点评&本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.不等式2x+1>0的解集是x>﹣.分析&利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.解答&解:原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣.点评&本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)分析&根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x 1<x2即可得出y1<y2,此题得解.解答&解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.点评&本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.分析&根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.解答&解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.点评&本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠A CB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.分析&根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.解答&解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN=.最大故答案为:.点评&本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)分析&(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.解答&解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.点评&此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.分析&设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.解答&解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.点评&此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.分析&(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.解答&解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.点评&本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)分析&设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x 的方程,求出x的值即可.解答&解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.点评&本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A 和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.分析&(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.解答&解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DC B=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.点评&此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道基础题目.24.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.分析&(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有=或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.解答&解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t, t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t, t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD =S△PCN+S△PDN=PNCE+PNDF=PN= [﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有=或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t, t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t, t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当=时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).点评&本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。

2017年海南省中考数学试题含答案

2017年海南省中考数学试题含答案

2017年中考真题精品解析数学(海南卷)一、选择题(本大题共14小题,每小题3分,共42分)1.2017的相反数是()A.﹣2017 B.2017 C.12017D.12017【答案】A.【解析】试题分析:根据相反数特性:若a.b互为相反数,则a+b=0即可解题.∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.考点:相反数.2.已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【答案】C.【解析】试题分析:把a的值代入原式计算即可得到结果.当a=﹣2时,原式=﹣2+1=﹣1,故选C.考点:代数式求值.3.下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3a2=a6D.(a3)2=a9【答案】B.【解析】考点:同底数幂的运算法则.4.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱 C.圆台 D.圆锥【答案】D.【解析】试题分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选D.考点:三视图.5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45° B.60° C.90° D.120°【答案】C.【解析】试题分析:根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选C.考点:垂线的定义,平行线的性质.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(-3,2)B.(2,-3)C.(1,-2)D.(-1,2)【答案】B.【解析】试题分析:首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.考点:平移的性质,轴对称的性质.7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【答案】B.考点:科学记数法.8.若分式211xx--的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【答案】A.【解析】试题分析:直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.∵分式211xx--的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选A.考点:分式的意义.9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【答案】D.【解析】试题分析:众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.考点:中位数,众数.10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.116【答案】D.【解析】试题分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为116,故选:D.考点:用列表法求概率.11.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【答案】C.考点:菱形的性质,勾股定理.12.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25° B.50° C.60° D.80°【答案】B.考点:圆周角定理及推论,平行线的性质.13.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【答案】B.【解析】试题分析:根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.考点:等腰三角形的性质.14.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数k yx在第一象限内的图象与△ABC有交点,则k的取值范围是()A .1≤k ≤4B .2≤k ≤8C .2≤k ≤16D .8≤k ≤16 【答案】C. 【解析】试题分析:由于△ABC 是直角三角形,所以当反比例函数xy k=经过点A 时k 最小,进过点C 时k 最大,据此可得出结论.∵△ABC 是直角三角形,∴当反比例函数xy k=经过点A 时k 最小,经过点C 时k 最大, ∴k 最小=1×2=2,k 最大=4×4=16,∴2≤k ≤16.故选C . 考点:反比例函数的性质.二、填空题(本大题共4小题,每小题4分,共16分) 15.不等式2x+1>0的解集是 x >﹣2. 【答案】12x >-.【解析】考点:一元一次不等式的解法.16.在平面直角坐标系中,已知一次函数y=x ﹣1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 < y 2(填“>”,“<”或“=”) 【答案】12y y <. 【解析】试题分析:根据k=1结合一次函数的性质即可得出y=x ﹣1为单调递增函数,再根据x 1<x 2即可得出y 1<y 2,此题得解.∵一次函数y=x ﹣1中k=1,∴y 随x 值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.考点:一次函数的性质.17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是5.【答案】35.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF=BABF=35,∴cos∠EFC=35,故答案为:35.考点:轴对称的性质,矩形的性质,余弦的概念.18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN.【解析】试题分析:根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M ,N 分别是AB ,AC 的中点,∴MN=12BC , ∴当BC 取得最大值时,MN 就取得最大值,当BC 是直径时,BC 最大, 连接BO 并延长交⊙O 于点C′,连接AC′, ∵BC′是⊙O 的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′=sin 45AB︒,∴MN 最大.考点:三角形的中位线定理,等腰直角三角形的性质,圆周角定理,解直角三角形. 三、解答题(本大题共62分) 19.计算; (1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x (x ﹣2)﹣(x+1)(x ﹣1) 【答案】(1)-1;(2)22x +.考点:整式的混合运算,实数的混合运算.20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【答案】甲种车辆一次运土8立方米,乙种车辆一次运土12立方米. 【解析】试题分析:设甲种车辆一次运土x 立方米,乙种车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.试题解析:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,5264, 336.x yx y+=⎧⎨+=⎩,解得:8,12.xy=⎧⎨=⎩.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米..考点:二元一次方程组的应用.21.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36° ;(4)已知该校共有1200名学生,请你估计该校约有 240 名学生最喜爱足球活动.【答案】(1)150;(2)见解析;(3)36°;(4)240.【解析】试题分析:(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.试题解析:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.考点:条形统计图,扇形统计图,样本估计总体.22.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..【解析】试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.考点:解直角三角形的应用,坡度.23.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=12时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【答案】(1)见解析;(2)56;(3)不能.【解析】试题分析:(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.试题解析:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,,1 3.D CBF DC BC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴BG BF AE AF=,由(1)知,△CDE≌△CBF,∴BF=DE=12,∵正方形的边长为1,∴AF=AB+BF=32,AE=AD﹣DE=12,∴,121322BG=,∴BG=16,∴CG=BC﹣BG=56;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.考点:正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定.24.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x=+相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC 、PD ,如图1,在点P 运动过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB ,过点C 作CQ ⊥PM ,垂足为点Q ,如图2,是否存在点P ,使得△CNQ 与△PBM 相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由.【答案】(1)2318355y x x =-+;(2)①102940;②存在,(2,95)或(349,5527-). 【解答】解:(1)∵抛物线y=ax 2+bx+3经过点A (1,0)和点B (5,0), ∴30,25530a b a b ++=⎧⎨++=⎩,解得3,518.5a b ⎧=⎪⎪⎨⎪=-⎪⎩∴该抛物线对应的函数解析式为2318355y x x =-+; (2)①∵点P 是抛物线上的动点且位于x 轴下方, ∴可设P (t ,2318355t t -+)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M (t ,0),N (t ,335t +),∴PN=22331837147335555220t t t t ⎛⎫⎛⎫+--+=--+ ⎪ ⎪⎝⎭⎝⎭.联立直线CD 与抛物线解析式可得233,5318355y x y x x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得0,3x y =⎧⎨=⎩或7,36.5x y =⎧⎪⎨=⎪⎩,∴C (0,3),D (7,365), 分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE=t ,DF=7﹣t ,∴S △PCD =S △PCN +S △PDN =12PN·CE +12PNDF=72PN=7222371472171029522010240t t ⎡⎤⎛⎫⎛⎫--+=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,∴当t=72时,△PCD 的面积有最大值,最大值为102940; ②存在.∵∠CQN=∠PMB=90°,∴当△CNQ 与△PBM 相似时,有PQ PM CQ BM =或NQ BMCQ PM=两种情况,∵CQ ⊥PM ,垂足为Q ,∴Q (t ,3),且C (0,3),N (t ,335t +),∴CQ=t ,NQ=335t +﹣3=35t ,∴35CQ NQ =, ∵P (t ,2318355t t -+),M (t ,0),B (5,0),∴BM=5﹣t ,PM=0﹣(2318355t t -+)=2318355t t -+-,当PQ PM CQ BM =时,则PM=35BM ,即2318355t t -+-()355t =-,解得t=2或t=5(舍去),此时P (2,95);当NQ BM CQ PM =时,则BM=35PM ,即5﹣t=35(2318355t t -+-),解得t=349或t=5(舍去),此时P (349,5527-); 综上可知存在满足条件的点P ,其坐标为P (2,95)或(349,5527-).考点:二次函数的综合应用,待定系数法,函数图象的交点,二次函数的性质,相似三角形的判定和性质,方程思想,分类讨论思想.。

海南省2017年中考数学真题试题(含扫描答案)

海南省2017年中考数学真题试题(含扫描答案)

河南省2017年初中毕业生学业水平考试数学科试题一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的 答案的字母代号按要求用2B 铅笔涂黑.1。

2017的相反数是( ) A. -2017 B. 2017 C. 12017- D. 120172.已知2a =-,则代数式1a +的值为( )A. -3B. -2C. -1D. 13。

下列运算正确的是( )A. 325a a a +=B. 32a a a ÷=C. 326a a a =D. ()239a a =4。

下图是一个几何体的三视图,则这个几何体是( )A. 三棱柱B. 圆柱C. 圆台D. 圆锥5.如图1,直线,则与相交所形成的的度数为( )A. 45°B. 60°C. 90°D. 120°6.如图2,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是()2,3-,先把ABC ∆向右平移4个单位长度得到111A B C ∆,再作与111A B C ∆关于x 轴对称的222A B C ∆,则点A 的对应点2A 的坐标是( )A. ()3,2-B. ()2,3-C. ()1,2-D. ()1,2-7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里。

数据2000000用科学记数法表示为210n⨯,则的值为( )A. 5B. 6C. 7D. 8 8.若分式211x x --的值为0,则x 的值为( ) A. -1 B. 0 C. 1 D. 1±9. 今年3月12 日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:)A. 15,14B. 15,15C. 16,14D. 16,1510.如图3,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )A. 12B. 14C. 18D. 11611.如图4,在菱形ABCD 中,8,6AC BD ==,则ABC ∆的周长为( )A. 14B. 16C. 18D. 2012.如图5,点A B C 、、在O 上,0//,25AC OB BAO ∠=,则BOC ∠的度数为( )A. 25°B. 50°C. 60°D. 80°13.已知ABC ∆的三边长分别为4、4、6,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条A. 3B. 4C. 5D. 614.如图6,ABC ∆的三个顶点分别为()()()1,24,24,4A B C 、、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2019年全国特岗教师招聘初中数学真题卷
温馨提示:本套试卷收录2016-2019特岗教师招聘考试中最具有代表性的初中数学真题,包含了四川省、辽宁省、河北省、河南省、海南省、江西省、黑龙江省、安徽省、云南省、甘肃省等主要招考省份,内容详实,覆盖面广,有利于考生把握当前命题趋势,了解考试题型,洞悉考点变化,达到及时有效复习的目的。

2020年度,全国特岗教师招聘计划分配名额表如下:
以下为试题,参考解析附后
一、单选题
1.地铁1号线是重庆轨道交通线网东西方向的主干线,也是贯穿渝中区和沙坪坝区的重要交通通道,它的开通极大地方便了市民的出行.现某同学要从沙坪坝到两路口,他先匀速步行至沙坪坝地铁站,等了一会,然后搭乘一号线地铁直达两路口(忽略途中停靠站的时间).在此过程中,他离沙坪坝的距离
的函数关系的大致图象是( )
A .
B .
C .
D .
2.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )
A .92
B .94
C .35
D .35 3.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为( )
A .9与8
B .8与9
C .8与8.5
D .8.5与9
4.如图,△ABC 中,AB =6,BC =8,tan ∠B =43
,点D 是边BC 上的一个动点
(点D与点B不重合),过点D作DE⊥AB,垂足为E,点F是AD的中点,连接EF,设△AEF的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y与x的函数关系的图象大致是()
A.B.
C.D.
5.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
A.B.C.D.
6.下列计算正确的是()
A.a3+a2=a5B.a8÷a4=a2
C.(2a3)2﹣a•a5=3a6D.(a﹣2)(a+3)=a2﹣6
7.下列计算正确的是()
A.2a+3a=6a B.a2+a3=a5C.a8÷a2=a6D.(a3)4=a7 8.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高( )
A.平均数变小,中位数变小
B.平均数变小,中位数变大
C.平均数变大,中位数变小
D.平均数变大,中位数变大。

相关文档
最新文档