[试卷合集3套]常州市某达标实验中学2019年七年级下学期期末适应性数学试题
∥3套精选试卷∥2019年常州市某名校中学七年级下学期期末学业水平测试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.以下错误的是( )A.0.5±B .0.5=C .0.5是0.25的平方根D .0的平方根是0 【答案】B【解析】根据实数的平方根和算术平方根的意义和性质逐一进行判断即可.【详解】A. =0.5,故本选项正确;B. ±,故本选项错误;C. 0.5是0.25的平方根,故本选项正确;D. 0的平方根是0,故本选项正确.故选B.【点睛】本题考查了平方根和算术平方根,注意正数的算术平方根的结果是一对相反数.2.若a b >,则下列不等式中一定成立的是( )A .0a b -<B .0ab >C .a b ->-D .11a b +>- 【答案】D【解析】根据不等式的基本性质解答即可.【详解】解:∵a >b ,∴a-b >0,故A 错误;由于不能确定a 与b 是否同号,所以ab 的符号不能确定,故B 错误;-a <-b ,故C 错误;a+1>b+1,故D 正确.故选:D .【点睛】本题考查了不等式的性质,熟练运用不等式的性质是解题的关键.3.下列方程中是二元一次方程的是( )A .2 x 2 - 4 = 0B .xy = 3C .2x +y 2= 1D .x +1y= 3 【答案】C【解析】分析: 根据二元一次方程的定义求解即可.详解: A 、是一元二次方程,故A 不符合题意;B 、是二元二次方程,故B 不符合题意;C 、是二元一次方程,,故C 符合题意;D 、是分式方程,故D 不符合题意;故选:C.点睛: 本题考查了二元一次方程,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.4.已知a>b ,下列各式中正确的是( )A .a-2 < b-2B .ac > bcC .-2a < -2bD .a-b < 0【答案】C【解析】根据不等式的性质,解答即可;【详解】解:∵a>b∴a-2 >b-2,A.错误;当c >0,ac > bc 才成立,B 错误.;-2a < -2b ,C 正确;a-b >0, D 错误;故答案为C;【点睛】本题考查了不等式的性质,即:基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变,基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变5.计算(a ﹣b )2的结果是( )A .a 2﹣b 2B .a 2﹣2ab+b 2C .a 2+2ab ﹣b 2D .a 2+2ab+b 2 【答案】B【解析】分析:根据完全平方公式进行计算即可.详解:原式222.a ab b =-+故选B.点睛:考查完全平方公式,熟记公式是解题的关键.6.不等式3(x+1)>2x+1的解集在数轴上表示为( )A .B .C .D . 【答案】A【解析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:去括号得,3x+3>2x+1,移项得,3x ﹣2x >1﹣3,合并同类项得,x >﹣2,在数轴上表示为:.故选:A .【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.7.点A 在直线m 外,点B 在直线m 上,A B 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A .a b >B .a b ≤C .a b ≥D .a b <【答案】C【解析】分两种情况:①a 和b 构成一个直角三角形,且a 是斜边,b 是直角边,所以a >b ;②若B 是垂足时,a=b .【详解】如图,a 是斜边,b 是直角边,∴a >b ,若点A 、点B 所在直线垂直直线m ,则a=b ,故选C .【点睛】本题考查了点到直线的距离,明确点到直线的距离是这点到直线的垂线段的长度,属于基础题. 8.下列四个命题中:①在同一平面内,互相垂直的两条直线一定相交②有且只有一条直线垂直于已知直线③两条直线被第三条直线所截,同位角相等④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.其中真命题的个数为( )A .1个B .2 个C .3个D .4个【答案】A【解析】分析:利用平行公理及其推论和垂线的定义、点到直线的距离的定义分别分析求出即可. 详解:①在同一平面内,互相垂直的两条直线一定相交,正确;②在同一个平面内,有且只有一条直线垂直于已知直线,此选项错误;③两条平行直线被第三条直线所截,同位角相等,错误;④从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,错误;真命题有1个.故选A.点睛:本题考查了命题与定理.其中真命题是由题设得出结论,如果不能由题设得出结论则称为假命题.题干中②、③、④,均不能由题设得出结论故不为真命题.9.已知()()()210333a b c --=-=-=-,,,那么a ,b ,c 之间的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .c a b >> 【答案】D【解析】分析:利用0指数幂和负整数指数幂的运算性质分别求出a 、b 、c 的值,再比较即可. 详解:()2a 3-=-=()213-=19, ()1b 3-=-=13-=-13, ()0c 3=-=1,故c a b >>故选D.点睛:此题考查了0次幂和负整数指数幂的运算及数的大小比较,熟练在掌握运算性质是解此题的关键. 10.9的平方根是( )A .3B .±3C .D .【答案】B【解析】根据平方根的定义直接求解即可.【详解】解:∵(±1)2=9,∴9的平方根为±1.故选:B .【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、填空题题11.对部分学生最喜爱的电视节目情况调查后,绘制成如图所示的扇形统计图,其中最喜爱体育的有50人,则最喜爱教育类节目的人数有________人.【答案】1【解析】先求出被调查的总人数,再乘以对应百分比可得答案.【详解】由题意知,被调查的总人数为50÷25%=200(人),所以最喜爱教育类节目的人数有200×40%=1(人),故答案为:1.【点睛】本题考查的是扇形统计图,根据扇形统计图求出被调查的总人数是解答此题的关键.12.若关于x 的不等式组0721x m x -<⎧⎨-≤-⎩只有4个正整数解,则m 的取值范围为__________. 【答案】78m <≤【解析】首先解两个不等式,根据不等式有4个正整数解即可得到一个关于m 的不等式组,从而求得m 的范围.【详解】0721x m x -<⎧⎨-≤-⎩①② 解不等式①得:x<m解不等式②得:x≥4∵原不等式组只有4个正整数解,故4个正整数解为;4、5、6、7∴78m <≤故答案为:78m <≤【点睛】本题主要考查了不等式组的正整数解,正确求解不等式组,并得到关于m 的不等式组是解题的关键. 13.如果,那么的值等于______. 【答案】 【解析】根据非负数的性质列出关于x 、y 的二元一次方程组求解得到x 、y 的值,再代入代数式进行计算即可得解. 【详解】根据题意得,,由②得,y=3x ③,把③代入①得,x+3x−4=0,解得x=1,把x=1代入③得,y=3, 所以方程组的解是,所以2x−y=2×1−3=−1.【点睛】本题考查解二元一次方程组和非负数的性质,解题的关键是掌握解二元一次方程组和非负数的性质. 14.已知点(),P x y 在y 轴右侧,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标为__________.【答案】()2,3或()2,3-【解析】根据点到坐标轴的距离公式(点(),P x y 到x 轴的距离为y ,到y 轴的距离为x )计算出,x y 的值,再由题意取合适的坐标即可.【详解】解: 点P 到x 轴的距离为3,到y 轴的距离为23,2y x ∴==解得3,2y x =±=±点(),P x y 在y 轴右侧0x ∴>2x ∴=所以点P 的坐标为()2,3或()2,3-故答案为:()2,3或()2,3-【点睛】本题主要考查了点到坐标轴的距离,熟练掌握点到坐标轴的距离公式是解题的关键.15.如图,AB ∥CD,直线EF 分别交AB 、CD 于点E. F,HF 平分∠EFD,若∠1=110°,则∠2的度数为_____【答案】35°【解析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE ,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.【详解】∵∠1=110°,∴∠3=∠1=110°,∵AB∥CD,∴∠DFE=180°−∠3=180°−110°=70°∵HF平分∠EFD,∴∠DFH=12∠DFE=12×70°=35°∵AB∥CD,∴∠2=∠DFH=35°.故答案为35°【点睛】此题考查平行线的性质,解题关键在于求出∠DFE16.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是_____.【答案】甲【解析】∵1,2,3,4,5,6这六个数字中大于3的数字有3个:4,5,6,∴P(甲获胜)=31 62 =,∵1,2,3,4,5,6这六个数字中小于3的数字有2个:1,2,∴P(乙获胜)=2163=,∵1123>,∴获胜的可能性比较大的是甲,故答案为:甲.17.若三角形的三个内角的比为2:3:4,则这个三角形最大内角为______________【答案】80°【解析】可设这三个角分别是2x,3x,4x,然后使用三角形内角和列出方程,求出x;4x的值即为答案。
★试卷3套精选★常州市某名校中学2019届七年级下学期期末考试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.小丽在用“加减消元法”解二元一次方程组524239x y x y -=⎧⎨+=⎩①②时,利用a b ⨯+⨯①②消去x ,则a 、b 的值可能是( )A .2a =,5b =B .3a =,2b =C .3a =-,2b =D .2a =,5b =-【答案】D【解析】利用加减消元法判断即可.【详解】利用①×a+②×b 消去x ,则5a+2b=0故a 、b 的值可能是a=2,b=-5,故选:D .【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.下列事件中,最适合使用普查方式收集数据的是( )A .了解扬州人民对建设高铁的意见B .了解本班同学的课外阅读情况C .了解同批次LED 灯泡的使用寿命D .了解扬州市八年级学生的视力情况【答案】B【解析】试题分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A 、了解扬州人民对建设高铁的意见,人数众多,应采用抽样调查;B 、了解本班同学的课外阅读情况,人数较少,应采用全面调查;C 、了解同批次LED 灯泡的使用寿命,具有破坏性,应采用抽样调查;D 、了解扬州市八年级学生的视力情况,人数众多,应采用抽样调查;故选B .考点:全面调查与抽样调查.3.如图,同位角是( )A .∠1和∠2B .∠3和∠4C .∠2和∠4D .∠1和∠4【答案】D 【解析】试题解析:根据同位角的定义可知:图中∠1和∠4是同位角,故选D .点睛:同位角定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.4.已知方程组42x y x y m -=⎧⎨+=⎩中的 x ,y 互为相反数,则m 的值为( ) A .2B .﹣2C .0D .4 【答案】A【解析】∵x 与y 互为相反数,∴x+y=0,y=-x ,又∵42x y x y m-=⎧⎨+=⎩, ∴x=m ,x-(-x)=4,∴m=x=2.故选A.5.以下列各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .4cm ,6cm ,8cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm【答案】B【解析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【详解】A. 1+2<4,故不能组成三角形,错误;B. 4+6>8,故能组成三角形,正确;C. 5+6<12,故不能组成三角形,错误;D. 2+3=5,故不能组成三角形,错误.故选B.【点睛】本题考查三角形三边关系,解题的关键是掌握三角形三边关系.6.如图所示,三架飞机,,P Q R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1),30秒后,飞机P 飞到'3(4)P ,位置,则飞机,Q R 的位置''Q R 、分别为( )A .()(2)'3'41Q R ,,, B .(),'23'2)1(Q R ,, C .(),'22'4)1(Q R ,, D .(),'33'3)1(Q R ,, 【答案】A【解析】由点(1,1)P -到(4,3)P '知,编队需向右平移5个单位、向上平移2个单位,据此可得.【详解】解:由点(1,1)P -到(4,3)P '知,编队需向右平移5个单位、向上平移2个单位,∴点(3,1)Q -的对应点Q '坐标为(2,3),点(1,1)R --的对应点(4,1)R ',故选:A .【点睛】本题考查了坐标与图形变化—平移,熟练掌握在平面直角坐标系确定点的坐标是解题的关键. 7.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )A .B .C .D .【答案】C【解析】根据对顶角相等可知∠2=∠1=70°,再根据两直线平行,同旁内角互补求解即可.【详解】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD ∥BE ,∴∠B=180°-∠1=180°-70°=110°.故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键. 平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8.如图直线a∥b,若∠1=70°,则∠2为()A.120°B.110°C.70°或110°D.70°【答案】D【解析】根据平行线的性质得出∠1=∠2=70°.【详解】∵a∥b,∴∠1=∠2,∵∠1=70°,∴∠2=70°,故选D.【点睛】本题考查了平行线的性质,能根据平行线的性质得出∠1+∠2=180°是解此题的关键.9.如图,把一张长方形纸片ABCD沿EF折叠后,ED与BC交点为G,D、C分别在M、N的位置上,若∠2-∠1=40°,则∠EFC的度数为()A.115°B.125°C.135°D.145°【答案】B【解析】根据平行线的性质可得∠1与∠2之和,又因为∠2-∠1=40°,解二元一次方程组可得∠1与∠2的度数,根据平角求得∠DEM的度数,利用折叠的性质可得∠DEF的度数,最后根据两直线平行,同旁内角互补求得∠EFC即可.【详解】∵四边形ABCD是长方形∴AD∥BC∴∠1+∠2=180°又∵∠2-∠1=40°解得;∠1=70°,∠2=110°∴∠DEM=110°由折叠可知:∠DEF=12∠DEM=55°∵∠DEF+∠EFC=180°∴∠EFC=125°故选;B【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质定理是关键.另需注意,折叠问题中,折叠过去的对应角、对应线段都相等.10.如图,直线AB,CD被直线EF所截,与AB,CD分别交于点E,F,下列描述:①∠1和∠2互为同位角②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是()A.①③B.②④C.②③D.③④【答案】C【解析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.二、填空题题11.如图,∠1=∠2,∠3=100°,则∠4= ______ .【答案】80°【解析】由∠1=∠2,根据“内错角相等,两直线平行”得到AD ∥BC ,再根据平行线的性质得到∠3+∠4=180°,即∠4=180°-∠3,把∠3=100°代入计算即可.【详解】解:如图,∵∠1=∠2,∴AD ∥BC ,∴∠3+∠4=180°,而∠3=100°,∴∠4=180°-100°=80°.故答案为80°.【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同旁内角互补.12.已知()()2321x x ax bx c -+=++,那么a b c +-=__________. 【答案】6【解析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a ,b ,c 的值,代入原式计算即可求出值.【详解】已知等式整理得:2232x x ax bx c +-=++,可得3a =,1b =,2c =-则3126a b c +-=++=,故答案为:6【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a 1+1ab+b 1=(a+b )1【解析】试题分析:两个正方形的面积分别为a 1,b 1,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b)1,所以a 1+1ab +b 1=(a +b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系. 14.不等式5(2)62x x -≤+的正整数解共有_____个.【答案】1【解析】先解不等式,再找不等式的正整数解即可.【详解】去括号得,1x-10≤6+2x ,移项得,1x-2x≤6+10,合并同类项得,3x≤16,系数化为1得,x≤163, ∴正整数解有:1,4,3,2,1,共1个数.故答案为1.【点睛】本题考查了正确求不等式的正整数解,求出解集是解答本题的关键.解不等式应根据不等式的基本性质. 15.关于x 、y 的二元一次方程组3234x y a x y a+=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________. 【答案】a <-1. 【解析】试题解析:32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >1,得2136788a a ++-+>1, 解得,a <-1.考点:1解一元一次不等式;1.解二元一次方程组.16.二元一次方程2x+3y =25的正整数解有_____组.【答案】4.【解析】先用x 的代数式表示y ,得y =253x -+,再根据x 、y 均为正整数且-2x+25是3的倍数展开讨论即可求解.【详解】解:方程变形得:y =253x -+,当x=2时,y=7;x=5时,y=5;x=8时,y=3;x=11时,y=1,则方程的正整数解有4组,故答案为:4.【点睛】二元一次方程有无数组解,但它的正整数解是有限的,此类题目一般是用其中一个未知数表示另一个未知数,然后根据x、y为正整数展开讨论,即可求解.17.若二元一次方程组3355x yx y+=⎧⎨-=⎩的解为x ay b=⎧⎨=⎩,则a b-=__________.【答案】1【解析】把x、y的值代入方程组,再将两式相加即可求出a−b的值.【详解】解:将x ay b=⎧⎨=⎩代入方程组3355x yx y+=⎧⎨-=⎩,得:3355a ba b+=⎧⎨-=⎩①②,①+②得:4a−4b=8,则a−b=1,故答案为:1.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a−b的值,本题属于基础题型.三、解答题18.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.【解析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥1.答:则至少每年平均增加1万平方米.19.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.【答案】(1)∠ECD =36°;(2)BC=1.【解析】试题分析:(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°,又∠BEC=∠A+∠ECA=72°,所以BC=EC=1.试题解析:解:(1)∵DE垂直平分AC,∠A=36°∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B =∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=1.(2)∵AB=AC,∠A=36°,∴∠B=(180°-36°)÷2=72°.∵∠BEC=∠A+∠ECA=72°,∴CE=CB,∴BC=EC=1.20.春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【答案】(1)每个A型放大镜和每个B型放大镜分别为20元,12元;(2)最多可以购买35个A型放大镜.【解析】分析:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.详解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:852*******x y x y +⎧⎨+⎩==, 解得:2012x y ⎧⎨⎩==, 答:每个A 型放大镜和每个B 型放大镜分别为20元,12元;(2)设购买A 型放大镜m 个,根据题意可得:20a+12×(75-a )≤1180,解得:x≤35,答:最多可以购买35个A 型放大镜.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.21.解不等式组3(2)821152x x x x --≤⎧⎪--⎨>⎪⎩,并将它的解集在数轴上表示出来. 【答案】13x -≤<,数轴见解析【解析】分别求出两个不等式的解集,然后得到不等式组的解集,再表示在数轴上即可.【详解】解:解不等式3(2)8x x --≤,得1x ≥-,解不等式21152x x -->,得3x <. ∴不等式组的解集是:13x -≤<,不等式的解集在数轴上表示为:【点睛】本题考查了解一元一次不等式组,以及用数轴表示不等式的解集,解题的关键是掌握解一元一次不等式的方法.22.已知方程713x y a x y a+=--⎧⎨-=+⎩的解x 为非正数,y 为负数,求a 的取值范围. 【答案】﹣2<a ≤1.【解析】本题可对一元二次方程运用加减消元法解出x 、y 关于a 的式子,然后根据x ≤0和y >0可分别解出a 的值,即可求得a 的取值范围.【详解】解方程组:713x y a x y a +=--⎧⎨-=+⎩,得,324x a y a =-⎧⎨=--⎩. ∵00x y ≤⎧⎨<⎩, ∴30240a a -≤⎧⎨--<⎩, 解得:﹣2<a ≤1.【点睛】本题考查了二元一次方程的解法和一元一次不等式的性质.根据运算可将x 、y 化为关于a 的式子,然后计算出a 的取值范围.23.如图示,点B 在AE 上,∠CBE=∠DBE,要使ΔABC ≌ΔABD, 还需添加一个条件是__________.(填上你认为适当的一个条件即可)【答案】根据ASA 可以添加∠CAE=∠DAE .【解析】根据ASA 可以添加∠CAE=∠DAE .【详解】添加一个条件是∠CAE=∠DAE.(答案不唯一)理由:∵∠ABC+∠CBE=180°,∠ABD+∠DBE=180°,∠CBE=∠DBE ,∴∠ABC=∠ABD ,在△ABC 和△ABD 中,CAE DAE AB ABABC ABD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△ABD(ASA),24.已知:∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .试说明DE 平分∠BDC .【答案】详见解析【解析】先证△BED≌△AEC,可得到DE=CE,∠BDE=∠C,即可得∠EDC=∠C,所以∠EDC=∠BDE,,即得证【详解】证明:∵∠1=∠2,∴∠1+∠AED=∠AED+∠2,即∠BED=∠AEC,在△BED和△AEC中,∠B=∠A,∠BED=∠AEC,BE=AE∴△BED≌△AEC,∴DE=CE,∠BDE=∠C,∵DE=CE,∴∠EDC=∠C,∴∠EDC=∠BDE,∴DE平分∠BDC.【点睛】本题主要考查全等三角形的证明与性质以及等角代换,关键在于充分掌握全等三角形的证明与性质25.将4个数a、b、c、d 排成两行两列,两边各加一条竖直线记成a bc d,定义a bc d=ad﹣bc.(1)若231x->0,则x的取值范围是;(2)若x、y 同时满足231x-=7,121yx=1,求x、y的值;(3)若关于x的不等式组2232xmxx⎧⎪+⎨⎪⎩<<的解集为x<2,求m的取值范围.【答案】(1)x>6;(1)13xy;(3)m≥﹣1.【解析】(1)>0,x﹣6>0,解得:x>6,故答案为x>6;(1分)(1)∵=7, =1,∴,解得:;(5分)(3)由题意知:3x﹣1(x+1)<m,即x<4+m,则不等式组化为,∵该不等式组的解集为x<1,∴4+m≥1,解得:m≥﹣1.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .﹣a <﹣bD .2a >3b【答案】D【解析】试题分析:由不等式的性质得a >b ,a+2>b+2,﹣a <﹣b .故选D .考点:不等式的性质.点睛:根据不等式的性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,来判断各选项.2.下列条件中不能判定AB ∥CD 的是( )A .∠1=∠4B .∠2=∠3C .∠5=∠BD .∠BAD+∠D =180°【答案】B 【解析】解:A .∵∠1=∠4,∴AB ∥CD (内错角相等,两直线平行),故本选项错误;B .∵∠2=∠3,∴AD ∥BC (内错角相等,两直线平行),判定的不是AB ∥CD ,故本选项正确; C .∵∠5=∠B ,∴AB ∥CD (同位角相等,两直线平行),故本选项错误;D .∵∠BAD +∠D=180°,∴AB ∥CD (同旁内角互补,两直线平行),故本选项错误.故选B .3.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成( ) A .10组B .9组C .8组D .7组 【答案】A【解析】在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.故选A .【点睛】此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.4.当式子2||323x x x ---的值为零时,x 等于( ) A .4B .﹣3C .﹣1或3D .3或﹣3【答案】B【解析】根据分式为零,分子等于0,分母不等于0列式进行计算即可得解. 【详解】解:根据题意得,30x -=,解得3x =或3-.又2230x x --≠解得121,3x x ≠-≠,所以,3x =-.故选:B.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 5.关于x 的不等式组0321x a x -≤⎧⎨+>-⎩的整数解共有4个,则a 的取值范围( ) A .3a =B .23a <<C .23a ≤<D .23a <≤【答案】C【解析】分别求出每一个不等式的解集,根据不等式组的整数解的个数可得答案.【详解】解不等式x-a≤0得x≤a ,解不等式3+2x >-1得x >-2,∵不等式组的整数解共有4个,∴这4个整数解为-1、0、1、2,则2≤a <3,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( ) A .10m -≤<B .10m -<≤C .10m -≤≤D .10m -<< 【答案】A【解析】∵不等式组11x x m <⎧⎨>-⎩有解, ∴不等式组的解集为m-1<x<1,∵不等式组11x x m <⎧⎨>-⎩恰有两个整数解, ∴-2≤m -1<-1,解得10m -≤<,故选A.7.以下描述中,能确定具体位置的是( )A .万达电影院2排B .距薛城高铁站2千米C .北偏东30℃D .东经106℃,北纬31℃【答案】D【解析】平面内表示物体的位置常用的方式:一是用一个有序数对,二是用方向角和距离,根据这两种方式逐项分析即可.【详解】A. 万达电影院2排由多个座位,故不能确定具体位置;B. 在以薛城高铁站为圆心,以2千米为半径的圆上的点,都满足距薛城高铁站2千米,故不能确定具体位置;C. 北偏东30℃的方向有无数个点,故不能确定具体位置;D. 东经106℃,北纬31℃,能确定具体位置;故选D.【点睛】本题考查了确定物体的位置,是数学在生活中应用,熟练掌握平面内物体的表示方法是解答本题的关键,解答本题可以做到在生活中理解数学的意义.8.如图,将含有30°的直角三角板的直角顶点放在两条相互平行线的一条上,若138∠=,则2∠的度数是( )A .22°B .28°C .32°D .38°【答案】A 【解析】延长AB 交CF 于点E ,先利用直角三角形两锐角互余求出ABC ∠的度数,然后根据三角形外角的性质求出BEC ∠ 的度数,再利用两直线平行,内错角相等即可得出答案.【详解】如图,延长AB 交CF 于点E90,30ACB BAC ∠=︒∠=︒ ,9060ABC BAC ∴∠=︒-∠=︒ .138∠=︒ ,122BEC ABC ∴∠=∠-∠=︒.//GH EF ,222BEC ∴∠=∠=︒.故选:A .【点睛】本题主要考查直角三角形两锐角互余,三角形外角的性质和平行线的性质,掌握直角三角形两锐角互余,三角形外角的性质和平行线的性质是解题的关键.9.若多边形的内角和大于 900°,则该多边形的边数最小为( )A .9B .8C .7D .6【答案】B【解析】根据多边形的内角和公式(n ﹣2)×120°列出不等式,然后求解即可.【详解】解:设这个多边形的边数是n ,根据题意得(n ﹣2)×120°>900°,解得n >1.该多边形的边数最小为2.故选:B .【点睛】本题考查了多边形的内角和公式,熟记公式并列出不等式是解题的关键.10.若40.40=6.356,则0.404=( )A .0.006356B .0.6356C .63.56D .635.6 【答案】B【解析】解:∵40.40=6.356,∴0.404=0.1.故选B .点睛:本题考查了算术平方根,用到的知识点是被开方数向左移动两位,则它的算术平方根向左移动一位.二、填空题题11.如图,梯子的各条横档互相平行,若1220∠=∠+︒,则3∠=__________.【答案】100︒【解析】根据平行线的性质进行计算即可得到答案.【详解】由题意可知AB CD ∥,所以根据平行线的性质可知13∠=∠,因为1220∠=∠+︒,所以3220∠=∠+︒,而3+2=180∠∠︒,则可得3180-320∠=︒∠+︒,故3100∠=︒.【点睛】本题考查平行线的性质,解题的关键是掌握平行线的性质.12.若2m a =,3n a =,则m n a +=____.【答案】6【解析】∵m nm n a a a +⋅=,2m a =,3n a =,∴m n a +=2×3=6.故填6.13.如图,AB ∥CD ,试再添一个条件,使∠1=∠2成立,_____、_____、_____(要求给出三个以上答案)【答案】CF//BE ∠E=∠F ∠FCB=∠EBC【解析】此题是条件探索题,结合已知条件和要满足的结论进行分析. 【详解】//AB CD ,∴BCD CBA ∠=∠,要使12∠=∠成立,则根据等式的性质,可以直接添加的条件是FCB EBC ∠=∠,再根据平行线的性质和判定,亦可添加//CF BE 或E F ∠=∠.故答案为:(1)//CF BE ;(2)E F ∠=∠;(3)FCB EBC ∠=∠.【点睛】考查了平行线的性质,此类题要首先根据已知条件进行推理,再结合结论和所学过的性质进行推导.14.下列各式①3027b a ;②22y x x y -+;③22y x x y ++;④2m m;⑤233x x +-中分子与分母没有公因式的分式是__.(填序号)【答案】③⑤【解析】①∵30b 27a =310b 39a⨯⨯, ∴分子与分母有公因式3; ②∵()()22x y x y y x x y x y+--=-++∴分子与分母有公因式x+y ; ③22y x x y++的分子与分母没有公因式;④∵2m m m m m⨯=∴分子与分母有公因式m ; ⑤233x x +-的分子与分母没有公因式. ∴③和⑤的分子与分母没有公因式,故答案为③和⑤.15.若2x =3,4y =5,则2x+2y =_______.【答案】15【解析】解:45y =,225y ∴=222223515x y x y +∴=⋅=⨯=故答案为:15164,34-,-3,最小的数是__________ 【答案】-3【解析】正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,据此解答即可.【详解】根据正负数比较大小方法,可得> 34->-3, 所以各数中最小的数是−3.故答案为:-3【点睛】此题考查正、负数大小的比较,难度不大17.已知不等式组1x x a >⎧⎨<⎩无解,则a 的取值范围是_____. 【答案】a≤1【解析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【详解】解:∵不等式组{x 1x a ><无解,∴a 的取值范围是a≤1.故答案为a≤1.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题18.作图题:(不要求写作法)如图,在 10×10 的方格纸中,有一个格点四边形 ABCD (即四边形的顶点都在格点上)。
《试卷3份集锦》常州市某达标实验中学2019-2020年七年级下学期数学期末质量跟踪监视试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【答案】B【解析】根据平行线的判定定理判定即可.【详解】解:A选项∠1=∠3,内错角相等,两直线平行,故A正确;B选项∠2=∠3,∠2和∠3不是同位角,也不是内错角,不能判断直线l1∥l2,故B错误;C选项∠4=∠5,同位角相等,两直线平行,故C正确;D选项∠2+∠4=180°,同旁内角互补,两直线平行,故D正确.故选:B.【点睛】本题考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,灵活利用平行线的判定定理是解题的关键.2.下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()A.①B.②C.③D.④【答案】B【解析】试题分析:①适合普查,故①不适合抽样调查;②调查具有破坏性,故适合抽样调查,故②符合题意;③调查要求准确性,故③不适合抽样调查;④安检适合普查,故④不适合抽样调查.故选B.考点:全面调查与抽样调查.3.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.13B.14C.12D.34【答案】B【解析】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【详解】从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,其中构成直角三角形的有6,8,10共1种,则P (构成直角三角形)=14 故选B .【点睛】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率. 4.某种服装的进价为200元,出售时标价为300元,由于换季,商店准备打折销售,但要保持利润不低于20%,那么至多打( )A .6折B .7折C .8折D .9折 【答案】C【解析】根据题意列出不等式,求解即可.【详解】设该服装打x 折销售,依题意,得:300×10x ﹣200≥200×20%, 解得:x ≥1.故选:C .【点睛】本题考查了不等式的实际应用,掌握解不等式的方法是解题的关键.5.下面两个统计图反映的是甲、乙两所学校三个年级的学生在各校学生总人数中的占比情况,下列说法错误的是( )A .甲校中七年级学生和八年级学生人数一样多B .乙校中七年级学生人数最多C .乙校中八年级学生比九年级学生人数少D .甲、乙两校的九年级学生人数一样多【答案】D【解析】扇形统计图反映的部分与整体的关系,即各个部分占的比例大小关系,在一个扇形统计图中,可以直观的得出各个部分所占的比例,得出各部分的大小关系,但在不同的几个扇形统计图中就不能直观看出各部分的大小关系,虽然比例较大,代表的数量不一定就多,还与总体有关.【详解】解:甲校中七年级学生占全校的35%,和八年级学生人数也占全校的35%,由于甲校的人数是一定的,因此甲校中七年级学生和八年级学生人数一样多是正确的;乙校中七年级占45%,而其他两个年级分别占25%,30%,因此B 是正确的;乙校中八年级学生占25%,比九年级学生人数占30%由于整体乙校的总人数是一定的,所以C是正确的;两个学校九年级所占的比都是30%,若两个学校的总人数不同.他们也不相等,故D是错误的,故选:D.【点睛】考查对扇形统计图所反映的各个部分所占整体的百分比的理解,扇形统计图只反映部分占总体的百分比,百分比相同,代表的数量不一定相等.6.下列语句,其中正确的有()①点(3,2)与(2,3)是同一个点;②点(0,-2)在x轴上;③点(0,0)是坐标原点;④点(-2,-6)在第三象限内A.0个B.1个C.2个D.3个【答案】C【解析】分析:横坐标相同,纵坐标也相同的点才表示同一个点;在x轴上的点的纵坐标为0;(0,0)表示坐标原点.第三象限的点的符号为负,负,据以上知识点进行判断即可.详解:①点(3,2)与(2,3)不是同一个点,错误;②点(0,−2)在y轴上,错误;③点(0,0)是坐标原点,正确;④点(−2,−6)在第三象限内,正确;正确的有2个,故选C.点睛:本题考查了点的坐标.7.三角形的两边长分别为3和6,则它的第三边长可以为( )A.3 B.4 C.9 D.10【答案】B【解析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,就可以得出第三边的长度.【详解】设第三边的长为x,根据三角形的三边关系,得6-3<x<6+3,即3<x<9,∴x=1.故选B.【点睛】本题主要考查了求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式组,然后解不等式组即可,难度适中.8.如图,和是同位角的是( )A.B.C.D.【答案】A【解析】同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位,据此解答.【详解】A、∠1和∠2是同位角,故此选项符合题意;B、∠1和∠2不是同位角,故此选项不合题意;C、∠1和∠2不是同位角,故此选项不合题意;D、∠1和∠2 不是同位角,故此选项不合题意;故选:A.【点睛】本题考查了同位角的定义,正确把握同位角定义是解题关键.9.下列调查适合用抽样调查的是()A.了解中央电视台《朗读者》节目的收视率B.了解某校七年级班主任的身体健康情况C.了解某班学生对“叙利亚”局势关注情况D.对“解放军航母001A”下海前零部件的检查【答案】A【解析】分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解: A、调查中央电视台《朗读者》节目的收视率调查范围广适合抽样调查,故A符合题意;B、了解某校七年级班主任的身体健康情况适合普查,故B不符合题意;C、了解某班学生对“叙利亚”局势关注情况适合普查,故C不符合题意;D、对“解放军航母001A”下海前零部件的检查适合普查,故D不符合题意.故选:A.点睛: 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.下列说法中不正确的是( )A .三角形的三条高线交于一点B .角平分线上的点到这个角的两边的距离相等C .三角形的三条中线交于一点D .线段垂直平分线上的点到这条线段两个端点的距离相等【答案】A【解析】根据三角形高线、中线、角平分线、线段垂直平分线的性质判断即可.【详解】解:钝角三角形的高线不会交于一点,高线所在的直线才会交于一点,A 选项错误,由中线、角平分线、线段垂直平分线的性质可知B 、C 、D 正确.故答案为A【点睛】本题考查了高线、中线、角平分线、线段垂直平分线的性质,熟练掌握各种线的性质特点是解题的关键.二、填空题题11.分解因式:a 3﹣4a =_____.【答案】(2)(2)a a a +-【解析】先提取公因式x ,然后利用平方差公式进行因式分解.【详解】解:a 3﹣4a=a (a 2﹣4)=(2)(2)a a a +-故答案为:(2)(2)a a a +-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握平方差公式的结构是本题的解题关键.12.如图,已知ADC 的面积为4,AD 平分BAC ∠,且AD BD ⊥于点D ,那么ABC 的面积为__________.【答案】8【解析】延长BD 交AC 于点E ,则可知△ABE 为等腰三角形,则S △ABD =S △ADE ,S △BDC =S △CDE ,可得出S △ADC =12S △ABC .即可求出答案. 【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分∠BAE ,AD ⊥BD ,∴∠BAD=∠EAD ,∠ADB=∠ADE ,在△ABD 和△AED 中,BAD EAD AD AD BDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD ≌△AED (ASA ),∴BD=DE ,∴S △ABD =S △ADE ,S △BDC =S △CDE ,∴S △ABD +S △BDC =S △ADE +S △CDE =S △ADC ,∴S △ADC =12S △ABC , ∴248ABC S ∆=⨯=;故答案为:8.【点睛】本题考查了等腰三角形的性质和判定的应用,全等三角形的判定和性质,由BD=DE 得到S △ABD =S △ADE ,S △BDC =S △CDE 是解题的关键.13.已知:如图,平行四边形ABCD 中,BE 平分∠ABC 交AD 于E ,CF 平分∠BCD 交AD 于F ,若AB=4,BC=6,则EF=_____.【答案】2【解析】因为AD ∥BC ,所以∠AEB=∠CBE ,因为BE 平分∠ABC ,所以∠ABE=∠CBE ,所以∠AEB=∠CBE,所以AE=AB=4,同理DC=DF ,因为CD=AB ,所以DF=4,因为BC=6,所以AD=6,所以EF=AE+DF-AD=4+4-6=2,故答案为2.14.计算:3a (a+2)=______.【答案】3a 2+6a【解析】直接利用单项式乘以多项式运算法则计算得出答案.【详解】解:3a (a+2)=3a 2+6a .故答案为:3a 2+6a .【点睛】此题主要考查了整式的乘法运算,正确掌握相关运算法则是解题关键..15.高斯函数[x],也称为取整函数,即[x]表示不超过x 的最大整数.例如:[1.3]=1,[-1.5]=-1.若[x-1]=3,则x 的取值范围是__________ .【答案】45x ≤<【解析】由[x-1]=3得314x ,解之即可.【详解】若 [x-1]=3,则314x , 解得:45x ≤<.【点睛】本题主要考查解一元一次不等式组,根据取整函数的定义得出关于x 的不等式组是解题的关键. 16.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.【答案】()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标特征.17.定义一种新运算“a b ☆”的含义为:当a b 时,a b a b =+☆,当a b <时,a b a b =-☆.例如:3(4)3(4)1-=+-=-☆,111(6)(6)6222-=--=-☆ (1)(4)3-=☆_____;(2)(37)(32)2x x --=☆,则x =______.【答案】-7 1【解析】(1)根据新定义计算即可;(2)分3732x x -≥-和3732x x -<-两种情况,根据新定义列方程求解即可.【详解】(1)(4)3437-=--=-☆故答案为:-7;(2)当3732x x -≥-,即2x ≥时,由题意得:(37)+(32)2x x --=解得:6x =;当3732x x -<-,即2x <时,由题意得:(37)(32)2x x ---= 解得:125x =(舍). 故答案为:1.【点睛】本题考查新定义,解题关键是根据新定义列出一元一次不等式和一元一次方程并准确求解.三、解答题18.(1)请在横线上填写适当的内容,完成下面的解答过程:如图①,如果∠ABE+∠BED+∠CDE=360°,试说明AB∥CD.理由:过点E作EF∥AB所以∠ABE+∠BEF=°()又因为∠ABE+∠BED+∠CDE=360°所以∠FED+∠CDE=°所以EF∥.又因为EF∥AB,所以AB∥CD.(2)如图②,如果AB∥CD,试说明∠BED=∠B+∠D.(3)如图③,如果AB∥CD,∠BEC=α,BF平分∠ABE,CF平分∠DCE,则∠BFC的度数是(用含α的代数式表示).【答案】(1)180,两直线平行,同旁内角互补,180,CD;(2)见解析;(3)180°﹣12α.【解析】(1)先判断出∠FED+∠CDE=180°得出EF∥CD,即可得出结论;(2)先判断出∠BEH=∠B,再判断出EH∥CD,得出∠DEH=∠D,即可的得出结论;(3)先判断出∠ABE+∠DCE=360°-α,进而判断出∠ABF+∠DCF=180°-12α,借助(2)的结论即可得出结论.【详解】解:(1)过点E作EF∥AB∴∠ABE+∠BEF=180°(两直线平行,同旁内角互补)∵∠ABE+∠BED+∠CDE=360°∴∠FED+∠CDE=180°∴EF∥CD∵EF∥AB∴AB∥CD;故答案为:180,两直线平行,同旁内角互补,180,CD;(2)如图2,过点E作EH∥AB,∴∠BEH=∠B,∵EH∥AB,AB∥CD,∴EH∥CD,∴∠DEH=∠D,∴∠BED=∠BEH+∠DEH=∠B+∠D;(3)如图3,过点E作EG∥AB,∴∠ABE+∠BEG=180°,∵EG∥AB,CD∥AB,∴EG∥CD,∴∠DCE+∠CEG=180°∴∠ABE+∠BEG+∠CEG+∠DCE=360°,∴∠ABE+∠BEC+∠DCE=360°,∴∠ABE+∠DCE=360°﹣∠BEC,∵∠BEC=α,∴∠ABE+∠CCE=360°﹣α,∵BF,CF分别平分∠ABE,∠DCE,∴∠ABE=2∠ABF,∠DCF=2∠ECF,∴∠ABF+∠DCF=180°﹣12α,过点F作作FH∥AB,同(2)的方法得,∠BFC=∠ABF+∠DCF=180°﹣12α,故答案为:180°﹣12α.【点睛】此题主要考查了平行线的性质和判定,角平分线的意义,正确作出辅助线是解本题的关键.19.“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【答案】(1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.20.对于平面直角坐标系xOy中的点A,给出如下定义:若存在点B(不与点A重合,且直线AB不与坐标轴平行或重合),过点A作直线m∥x轴,过点B作直线n∥y轴,直线m,n相交于点C.当线段AC,BC的长度相等时,称点B为点A 的等距点,称三角形ABC的面积为点A的等距面积. 例如:如图,点A(2,1),点B(5,4),因为AC= BC=3,所以B为点A 的等距点,此时点A的等距面积为9 2 .(1)点A的坐标是(0,1),在点B1(-1,0),B2(2,3),B3(-1,-1)中,点A 的等距点为________________. (2)点A的坐标是(-3,1),点A的等距点B在第三象限,①若点B的坐标是9122⎛⎫⎪⎝⎭-,-,求此时点A的等距面积;②若点A的等距面积不小于98,求此时点B的横坐标t的取值范围.【答案】B1, B2【解析】分析:(1)根据题目示例即可判断出点A的等距点为B1, B2;(2)①分别求出AC,BC的长,利用三角形的面积计算公式即可求出点A的等距面积;②分点B在点A左右两侧时进行计算求解即可.详解:(1)B1, B2 .(2)①如图,根据题意,可知AC⊥BC.∵A(-3,1),B(92-,12-),∴AC=BC=3 2 .∴三角形ABC的面积为19 AC BC28⋅=.∴点A的等距面积为9 8 .②当点B左侧时,如图,则有AC=BC=-3-t,∵点A的等距面积不小于98,∴1AC BC2⋅≥98,即()()13t3t2--⋅--≥98,∴9t2≤-;当点B在点A的右侧时,如图,∵点B在第三象限,同理可得,3t0 2-≤<.故点B的横坐标t的取值范围是9t2≤-或3t02-≤<.点睛:本题主要考查阅读理解型问题,此类问题一般都是先提供一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求自主探索,理解其内容、思想方法,把握本质,解答试题中提出的问题.对于这类题求解步骤是“阅读——分析——理解——创新应用”,其中最关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材.因此这种试题是考查大家随机应变能力和知识的迁移能力.21.将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,(1)求证:CF ∥AB ,(2)求∠DFC 的度数.【答案】(1)证明见解析;(2)105°【解析】(1)首先根据角平分线的性质可得∠1=45°,再有∠1=45°,再根据内错角相等两直线平行可判定出AB ∥CF ;(2)利用三角形内角和定理进行计算即可.【详解】解:(1)证明:∵CF 平分∠DCE ,∴∠1=∠2=12∠DCE . ∵∠DCE=90°,∴∠1=45°.∵∠1=45°, ∴∠1=∠1.∴AB ∥CF .(2)∵∠D=10°,∠1=45°,∴∠DFC=180°﹣10°﹣45°=105°.【点睛】本题考查平行线的判定,角平分线的定义及三角形内角和定理,熟练掌握相关性质定理是本题的解题关键. 22.如图,某工程队从点A 出发,沿北偏西67方向铺设管道AD ,由于某些原因,BD 段不适宜铺设,需改变方向,由B 点沿北偏东23的方向继续铺设BC 段,到达C 点又改变方向,从C 点继续铺设CE 段,ECB ∠应为多少度,可使所铺管道CE AB ∥?试说明理由.此时CE 与BC 有怎样的位置关系?【答案】见解析【解析】根据题意可知,本题考查的是通过平面内方位角判断直线与直线的位置关系,通过平行和方位角的联系,找准各角度之间的关系,从而确认直线与直线的位置关系.【详解】解:∵分别过A ,B 两点的指北方向是平行的,∴167A ∠=∠=(两直线平行,同位角相等)∴236790CBD ∠=+=,当180ECB CBD ∠+∠=时,可得CE AB ∥.(同旁内角互补,两直线平行)∴90ECB ∠=,∴CE BC ⊥.(垂直定义)【点睛】本题解题关键:熟练掌握方位角位置和大小的判断以及平行线的性质.23.为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:.A 只愿意就读普通高中;.B 只愿意就读中等职业技术学校;.C 就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:()1本次活动一共调查的学生数为______名;()2补全图一,并求出图二中A 区域的圆心角的度数;()3若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.【答案】 (1)800;(2)216°;(3) 840人.【解析】(1)根据C 的人数除以其所占的百分比,求出调查的学生总数即可;(2)用总数减去A 、C 区域的人数得到B 区域的学生数,从而补全图一;再根据百分比=频数总数计算可得A 所占百分比,再乘以,从而求出A 区域的圆心角的度数;(3)求出B 占的百分比,乘以2800即可得到结果.【详解】(1)根据题意得:80÷36360=800(名), 则调查的学生总数为800名.故答案为800;(2)B 的人数为:800-(480+80)=240(名),A 区域的圆心角的度数为480800×360°=216°, 补全统计图,如图所示:(3)根据题意得:240800240800×2800=840人.所以估计该校八、九年级学生只愿意就读中等职业技术学校的有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.24.计算:(1)(2)(3)先化简,再求值:,其中.【答案】(1);(2);(3).【解析】(1)先根据负整数指数幂,零指数幂,积的乘方进行计算,再求出即可;(2)先算乘方,再算乘法即可;(3)先算乘法,再合并同类,最后代入求出即可.【详解】解:(1)原式=(2)原式==(3)==当a=-1,b=2时,原式=-5×(-1)2+4×(-1)×2=-13.【点睛】本题考查了负差数指数幂,零指数,积的乘方,式的混合运算和求值,实数的运算等知识点,能灵活运用法则进行计算和化简是解此题的关键.25.我国明代数学家程大位的名著《直指算法统宗》中有一道题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完,问大、小和尚各有多少人?试用列方程(组)解应用题的方法求出问题的解.【答案】大和尚25人,小和尚75人【解析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】解:设大和尚x(人),则小和尚100x-(人).由题意得:13(100)100 3x x+-=解之,得:25x=∴大和尚25人,小和尚75人.【点睛】本题考查二元一次方程组,根据题意列出方程组并熟练掌握计算法则是解题关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,把Rt△ABD沿直线AD翻折,点B落在点C的位置,若∠B=65°,则∠CAD的度数为( )A.55°B.45°C.35°D.25°【答案】D【解析】利用翻折不变性和三角形的内角和即可解决问题.【详解】解:∵△ADC是由△ADB翻折得到,∴∠C=∠B=65°,∠DAB=∠DAC,∴∠BAC=180°-65°-65°=50°,∴∠DAC=25°,故选:D.【点睛】本题考查翻折变换,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.将图1中五边形纸片ABCDE的A点以BE为折线向下翻折,点A恰好落在CD上,如图2所示;再分别以图2中的AB,AE为折线,将C,D两点向上翻折,使得A、B、C、D、E五点均在同一平面上,如图3所示.若图1中∠A=122°,则图3中∠CAD的度数为()A.58°B.61°C.62°D.64°【答案】D【解析】分析:根据三角形内角和定理和折叠的性质来解答即可.详解:由图(2)知,∠BAC+∠EAD=180°−122°=58°,所以图(3)中∠CAD=180°−58°×2=64°.故选D.点睛:此题考查了多边形的外角与内角,结合图形解答,需要学生具备一定的读图能力和空间想象能力. 3.几何体的平面展开图如图所示,则从左到右其对应几何体的名称分别为()A.圆锥,四棱柱,三棱锥,圆柱B.圆锥,四棱柱,四棱锥,圆柱C.四棱柱,圆锥,四棱锥,圆柱D.四棱柱,圆锥,圆柱,三棱柱【答案】D【解析】根据四棱柱、圆锥、圆柱、三棱柱的平面展开图的特点进一步分析,然后再加以判断即可.【详解】第一个图是四棱柱,第二个图是圆锥,第三个图是圆柱,第四个图是三棱柱,故选:D.【点睛】本题主要考查了简单几何体的展开图的认识,熟练掌握相关概念是解题关键.4.如图,AC⊥BC,AD⊥CD, AB=a,CD=b,AC的取值范围是( )A.AC>b B.AC<a C.b<AC<a D.无法确定【答案】C【解析】根据垂线段最短即可得到AC的取值范围.【详解】∵AC⊥BC,AD⊥CD,AB=a,CD=b,∴CD<AC<AB,即b<AC<a.故选C.【点睛】本题考查了垂线段最短的性质,准确识图是解题的关键.,,N的坐标为(2)0,,5.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为(20)则在第二象限内的点是( )A.A点B.B点C.C点D.D【答案】D【解析】根据点的坐标特征,可得答案.【详解】MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.将3x(a﹣b)﹣9y(b﹣a)因式分解,应提的公因式是( )A.3x﹣9y B.3x+9y C.a﹣b D.3(a﹣b)【答案】D【解析】原式变形后,找出公因式即可.【详解】将3x(a−b)−9y(b−a)=3x(a−b)+9y(a−b)因式分解,应提的公因式是3(a−b).故答案选D.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.7.下列实数中的无理数是()A B C D.22 7【答案】C【解析】分析: 分别根据无理数、有理数的定义即可判定选择项.详解:=1.1,,227是有理数,2是无理数,故选:C.点睛:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,0.8080080008…(每两个8之间依次多1个0)等形式.8.如果不等式组212x mx m>+⎧⎨>+⎩的解集是1x>-,那么m的值是()A.3 B.1 C.1-D.3-【答案】D【解析】根据同大取大,同小取小,由于等式组212x mx m>+⎧⎨>+⎩的解集是x>-1,则要判断2m+1与m+2的大小,则可分别令2m+1=-1或m+2=-1,然后根据题意进行取舍.【详解】解:∵不等式组212x mx m>+⎧⎨>+⎩的解集x>-1,∴2m+1=-1,或m+2=-1当2m+1=-1时,m=-1,此时m+2=1,则不等式组的解集为x>1,不满足要求;当m+2=-1时,m=-3,此时2m+1=-5,则不等式组的解集为x>-1,满足要求;故满足条件的m=-3故选:D.【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大小小大取中间,大大小小是无解”确定不等式组的解集.9.对于不等式组1561 33 3(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为716x-<≤C.此不等式组有5个整数解D.此不等式组无解【答案】A【解析】解:1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩①②,解①得x≤72,解②得x>﹣1,所以不等式组的解集为﹣1<x≤72,所以不等式组的整数解为1,2,1.故选A.点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.10.如图,点()11,1A,点1A向上平移1个单位,再向右平移2个单位,得到点2A;点2A向上平移2个单位,再向右平移4个单位,得到点3A;点3A向上平移4个单位,再向右平移8个单位,得到点4A,……,按这个规律平移得到点n A,则点n A的横坐标为()A.2n B.12n-C.21n-D.21n+【解析】根据题意可知,本题考查规律探究,根据题中所给的4个关键点的横坐标进行依次分析判断,通过观察计算找出规律,进行求解.【详解】1A 的横坐标是1;2A 的横坐标是1+2=3;3A 的横坐标是1+2+4=7;4A 的横坐标是1+2+4+8=15,通过观察可知横坐标取值依次是1,3,7,15,正好是2,4,8,16的每一项减1所得.即可用公式21n -表示.故应选C.【点睛】本题解题技巧:可以通过选项反过来判断题干给的四点的横坐标,从而排除不符合的选项.二、填空题题11.点P(2,m )在x 轴上,则B (m -1,m+1)在第________________象限.【答案】二【解析】根据x 轴上的点的坐标特征可得m=0,然后把m 代入点B 的坐标中,即可确定出点B 的具体坐标,根据点B 的坐标即判断所在的象限.【详解】∵点P (2,m )在x 轴上,∴m=0,∵点B (m-1,m+1),∴B (-1,1),∴点B 在第二象限,故答案为:二.【点睛】本题考查了点的坐标特征,熟练掌握点的坐标特征是解题的关键.坐标轴上的点的特征:x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0;坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,各象限点的坐标的符号特征:一象限(+,+),二象限(-,+),三象限(-,-),四象限(+,-).12.如果21(2)0x y -+-=,则2009()x y -=___________.【答案】-1【解析】负数的奇次方还是负数。
┃精选3套试卷┃2019届常州市某达标实验中学七年级下学期数学期末适应性试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.乐乐所在的四人小组做了下列运算,其中正确的是( )A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .236236a a a 【答案】B 【解析】根据负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则依次判断.【详解】A 、2913-⎛⎫- ⎪⎭=⎝,故错误; B 、()23624a a -=正确;C 、624a a a ÷=,故错误;D 、235236a a a =⋅,故选:B.【点睛】此题考查整式的计算,正确掌握负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则是解题的关键.2.如图,平移△ABC 得到△DEF ,其中点A 的对应点是点D ,则下列结论中不成立的是( )A .AD ∥BEB .AD =BEC .∠ABC =∠DEFD .AD ∥EF【答案】D 【解析】利用平移的性质得到AD ∥BE ,AD =BE ,BC ∥EF ,∠ABC =∠DEF .【详解】解:∵平移△ABC 得到△DEF ,∴AD ∥BE ,AD =BE ,BC ∥EF ,∠ABC =∠DEF .故选:D .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.3.在图中,属于同位角的是()A.∠1和∠3 B.∠1和∠4 C.∠1和∠2 D.∠2和∠4【答案】C【解析】根据同位角、内错角、同旁内角、对顶角的定义进行判断即可,【详解】A. ∠1和∠3是同旁内角,故该选项不符合题意,B. ∠1和∠4是内错角,故该选项不符合题意,C.∠1和∠2是同位角,故该选项符合题意,D.∠2和∠4是对顶角,故该选项不符合题意.故选C.【点睛】本题考查同位角、内错角、同旁内角、对顶角的定义,同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.4.在227,2π,2- 3.14,0.121221…(每两个1之间依次递增2)中无理数有()A.2个B.3个C.4个D.5个【答案】B【解析】根据无理数的定义判断无理数.【详解】227,3.14是有理数,2π,2-0.121221…(每两个1之间依次递增2)是无理数故选:B【点睛】本题考查了无理数的定义.关键是掌握无理数的几种表现形式,注意带根号的数不一定是无理数,只有开不尽方的数才是无理数.5.若三角形两条边的长分别是3,5,第三条边的长是整数,则第三条边的长的最大值是()A.2 B.3 C.7 D.8【答案】C【解析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【详解】解:5﹣3<第三边<3+5,即:2<第三边<8;所以最大整数是7,故选:C.【点睛】考查了三角形的三边关系,解答此题的关键是根据三角形的特性进行分析、解答.6.△ABC的两边分别为方程组102x yx y+=⎧⎨-=⎩的解,第三边能被4整除.这样的三角形有()个A.1 B.2 C.3 D.4【答案】B【解析】首先求出x,y的值,再根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围,即可得出答案.【详解】∵△ABC的两边分别为方程组102x yx y+=⎧⎨-=⎩的解,∴64 xy=⎧⎨=⎩,∴设第三边长为x,则2<x<10,∵第三边能被4整除,∴x=4或8,故这样的三角形有2个.故选:B.【点睛】此题主要考查了二元一次方程组的求解及三角形三边关系,熟练掌握三角形的三边关系定理是解决问题的关键.7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【答案】A【解析】作DE⊥AB于E,∵AB=10,S△ABD =15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.8.在平面直角坐标系中,点在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据各象限内点的坐标特征解答即可.【详解】点横坐标为负,纵坐标为正,故在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.9.若不等式组的解集是,则的值为()A.-1 B.2 C.3 D.4【答案】B【解析】解关于x的不等式组求得x的范围,由-1<x<2得出关于a、b的方程组,从而求得a、b的值,继而得出a-b的值.【详解】解:解不等式3x-a<2,得:x<,解不等式x+2b>3,得:x>3-2b,∵不等式组的解集为-1<x<2,∴,解得:a=4,b=2,则a-b=2,故选:B.【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.10.已知ab=﹣2,a﹣3b=5,则a3b﹣6a2b2+9ab3的值为()A.﹣10 B.20 C.﹣50 D.40【答案】C【解析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【详解】a3b﹣6a2b2+9ab3=ab(a2﹣6ab+9b2)=ab(a﹣3b)2,将ab=﹣2,a﹣3b=5代入得ab(a﹣3b)2=﹣2×52=﹣1.故a3b﹣6a2b2+9ab3的值为﹣1.故选:C.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.二、填空题题11“>”或“<”号)【答案】<=3,再把3化为算术平方根的形式,比较被开方数的大小即可作出判断.故答案为:<.【点睛】此题主要考查了实数大小的比较,算术平方根、立方根的含义和求法,要熟练掌握.12.已知如图,直线AB∥CD,直线EF分别交AB、CD于M、N两点,∠BMF和∠DME的角平分线交点P,则MP与NP的位置关系是_____.【答案】MP⊥NP【解析】根据平行线的性质以及角平分线的性质,即可得到∠P=90°,即可得到PM⊥PN.【详解】∵AB∥CD,∴∠BMN+∠DNM=180°,又∵∠BMF和∠DME的角平分线交点P,∴∠PMN=12∠BMN,∠PNM=12∠DNM,∴∠PMN+∠PNM=90°,∴∠P=90°,即PM⊥PN,故答案为:MP⊥NP.【点睛】本题利用了平行线的性质以及角平分线的定义,解题时注意:两直线平行,同旁内角互补.13.如图:在△ABC中,5AB AC==,4BC=,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB 交AE的延长线于点F,则DF的长为____.【答案】1【解析】分析:由已知条件易得BD=12BC=2,∠ADB=90°,结合5AD=1,由DF∥AB,AF平分∠BAD可得∠BAF=∠DAF=∠F,从而可得DF=AD=1.详解:∵在△ABC中,5AD是△ABC的中线,∴BD=12BC=2,∠ADB=90°,∴AD=2222(5)21AB BD -=-=,∵DF ∥AB ,AE 平分∠BAD ,∴∠BAF=∠F ,∠BAF=∠DAF ,∴∠F=∠DAF , ∴DF=AD=1.故答案为:1.点睛:熟知“等腰三角形的性质:等腰三角形底边上的中线、高线和顶角的平分线互相重合,并由此得到BD=2,∠ADB=90°,进而利用勾股定理求得AD=1”是解答本题的关键.14.如图6,点D 是△ABC 的边BC 上任意一点,点E 、F 分别是线段AD 、CE 的中点,且△ABC 的面积为20,则△BEF 的面积=_______.【答案】2【解析】试题分析:根据三角形的中线把三角形分成两个面积相等的三角形解答即可.解:∵点E 是AD 的中点,∴S △ABE =S △ABD ,S △ACE =S △ADC ,∴S △ABE +S △ACE =S △ABC =×10=10cm 1,∴S △BCE =S △ABC =×10=10cm 1,∵点F 是CE 的中点,∴S △BEF =S △BCE =×10=2cm 1.故答案为2.考点:三角形的面积.15.在平面直角坐标系中,如果对任意一点(a ,b ),规定两种变换:(,)(,)f a b a b =--,(,)(,)g a b b a =-,那么[](1,2)g f -= _________.【答案】(2,1).【解析】∵()(),,f a b a b =--,()(),,g a b b a =-,∴()1,2g f ⎡⎤-⎣⎦=()1,2g -= (2,1). 故答案为(2,1).16.如图,已知直线AB 、CD 相交于点O ,OE 平分BOC ∠,如果50BOE ∠=︒,那么AOC ∠=__________度.【答案】1【解析】先根据角平分线的定义,求出∠BOC 的度数,再根据邻补角的和等于11°求解即可.【详解】解:∵OE 平分BOC ∠,50BOE ∠=︒,∴2250100∠=∠=⨯︒=︒BOC BOE ,∴180********∠=︒-∠=︒-︒=︒AOC BOC ,故答案为:1.【点睛】本题考查了角平分线的定义以及邻补角的性质,属于基础题.17.已知11a b +=(,a b 均为大于1的整数)a b a b =______.【答案】3或2.【解析】根据题意分别求出a 和b 的值即可得解.【详解】∵a+b=11 (a ,b 均为大于1的整数),∴29a b =⎧⎨=⎩或92a b =⎧⎨=⎩;38a b =⎧⎨=⎩或83a b =⎧⎨=⎩;47a b =⎧⎨=⎩或74a b =⎧⎨=⎩;56a b =⎧⎨=⎩或65a b =⎧⎨=⎩, a b 为有理数,∴29a b =⎧⎨=⎩或38a b =⎧⎨=⎩∴当a=2,b=99a b =,当a=3,b=838=a b = 2.故答案为:3或2.【点睛】本题主要考查了二次一次方程的解,根据条件列出二元一次方程的所有解是解决本题的关键.三、解答题18.将ABC ∆纸片沿DE 折叠,其中B C ∠=∠.(1)如图1,点C 落在BC 边上的点F 处,AB 与DF 是否平行?请说明理由;(2)如图2,点C 落在四边形ABED 内部的点G 处,探索B 与12∠+∠之间的数量关系,并说明理由.【答案】(1)//AB DF ,理由见解析;(2)1(12)2∠=∠+∠B ,理由见解析 【解析】(1)AB 与DF 平行.根据翻折可得出∠DFC=∠C ,结合∠B=∠C 即可得出∠B=∠DFC ,从而证出AB ∥DF ;(2)连接GC ,由翻折可得出∠DGE=∠ACB ,再根据三角形外角的性质得出∠1=∠DGC+∠DCG ,∠2=∠EGC+∠ECG ,通过角的运算即可得出∠1+∠2=2∠B .【详解】解:(1)//AB DF∵将ABC ∆纸片沿DE 折叠∴C DFC ∠=∠又∵B C ∠=∠∴DFC B ∠=∠则//AB DF (同位角相等,两直线平行)(2)连接GC ,如图.由翻折得:∠DGE=∠ACB .∵∠1=∠DGC+∠DCG ,∠2=∠EGC+∠ECG ,∴∠1+∠2=∠DGC+∠DCG+∠EGC+∠ECG=(∠DGC+∠EGC )+(∠DCG+∠ECG )=∠DGE+∠DCE=2∠ACB . ∵∠B=∠ACB ,∴∠1+∠2=2∠B .∴1(12)2∠=∠+∠B 【点睛】本题考查了平行线的判定以及翻折得性质,解题的关键是:(1)找出∠B=∠DFC ;(2)根据三角形外角的性质利用角的计算求出∠1+∠2=2∠B .本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角是关键.19.解不等式组3(2)8 21152x xx x--≤⎧⎪--⎨>⎪⎩,并将它的解集在数轴上表示出来.【答案】13x-≤<,数轴见解析【解析】分别求出两个不等式的解集,然后得到不等式组的解集,再表示在数轴上即可.【详解】解:解不等式3(2)8x x--≤,得1x≥-,解不等式21152x x-->,得3x<.∴不等式组的解集是:13x-≤<,不等式的解集在数轴上表示为:【点睛】本题考查了解一元一次不等式组,以及用数轴表示不等式的解集,解题的关键是掌握解一元一次不等式的方法.20.化简求值:已知:()32x a x⎛⎫+-⎪⎝⎭的结果中不含关于字母x的一次项,求()()2(2)11a a a+----的值.【答案】11.【解析】首先利用多项式乘以多项式的法则计算:()32x a x⎛⎫+-⎪⎝⎭,结果中不含关于字母x的一次项,即一次项系数等于0,即可求得a的值,再把所求的式子化简,然后代入求值即可.【详解】解:()2333222x a x x ax x a⎛⎫+-=+--⎪⎝⎭23322x a x a⎛⎫=+--⎪⎝⎭由题意得32a-=则32a=()()222(2)1144145a a a a a a a+----=+++-=+当32a=时,原式345112=⨯+=.故答案为11.【点睛】本题考查多项式乘多项式,熟练掌握运算法则是解题的关键.21.方程组31354x y m x y m +=+⎧⎨+=-⎩的解满足x ﹣y≤3 (1)求m 的取值范围;(2)化简:|m ﹣【答案】 (1)m≤1;(1)1.【解析】(1)由①﹣②整理后可得x ﹣y =542m -,结合已知条件可得542m -≤3,由此即可求得m 的取值范围;(1)根据绝对值的性质、立方根的定义结合m 的取值范围化简即可求解.【详解】(1) 31354x y m x y m +=+⎧⎨+=-⎩①②①﹣②得,1x ﹣1y =5m ﹣4,解得,x ﹣y =542m -, ∴542m -≤3, 解得m≤1;(1)∵m≤1,∴m ﹣1≤0,∴|m ﹣=1﹣m+m=1.【点睛】本题考查了二元一次方程组与一元一次不等式的综合应用,根据方程组的特征,解方程组得到x ﹣y =542m -是解决问题的关键. 22.一个不透明的袋中装有红、黄、白三种颜色的球共10个,它们除了颜色外完全相同,其中黄球个数比白球个数的3倍少2个,从袋中摸出一个球是黄球的概率为0.4.(1)求袋中红、黄、白三种颜色的球的个数;(2)向袋中放入若干个红球,使摸出一个球是红球的概率为0.7,求放入红球的个数;(3)在(2)的条件下,求摸出一个球是白球的概率.【答案】(1)袋中红、黄、白三种颜色的球的个数分别是4个、4个、2个;(2)向袋中放入10个红球;(3)摸出一个球是白球的概率是0.1.【解析】(1)根据概率的性质可求出黄球的个数,再求出白球的个数,即可求解(2)设放入红球x 个,根据概率公式可列出方程进行求解;(3)根据概率公式即可求出摸出一个球是白球的概率【详解】(1)黄球个数:100.44⨯=(个),白球个数:()4232+÷=(个),红球个数:10424--=(个),即袋中红、黄、白三种颜色的球的个数分别是4个、4个、2个;(2)设放入红球x 个,则()4100.7x x +=+⨯,10x =,即向袋中放入10个红球;(3)()20.11010P ==+摸出一个球是白球,即摸出一个球是白球的概率是0.1. 【点睛】此题主要考查概率的应用,解题的关键是熟知简单事件的概率求解.23.解方程4(x ﹣1)2=9【答案】x 1=,x 2=﹣【解析】试题分析:直接开平方法必须具备两个条件:(1)方程的左边是一个完全平方式;(2)右边是非负数.将右边看做一个非负已知数,利用数的开方解答.解:把系数化为1,得(x ﹣1)2=开方得x ﹣1= 解得x 1=,x 2=﹣.考点:解一元二次方程-直接开平方法.24.已知:如图,M 、N 分别为两平行线AB 、CD 上两点,点E 位于两平行线之间,试探究:∠MEN 与∠AME 和∠CNE 之间有何关系?并说明理由.【答案】(1)当点E 在MN 上时,∠MEN =∠CNE +∠AME =180°. 证明见解析;(2)当点E 在MN 左侧时,∠MEN =∠AME +∠CNE .证明见解析;(3)当点E 在MN 右侧时,∠MEN =360°-(∠AME +∠CNE ).证明见解析;【解析】连结MN ,根据平行线的性质,分三种情况讨论:(1)当点E 在MN 上时,∠MEN =∠CNE +∠AME =180°.(2)当点E 在MN 左侧时,∠MEN =∠AME +∠CNE .(3)当点E 在MN 右侧时,∠MEN =360°-(∠AME +∠CNE ).【详解】连结MN ,分三种情况:点E 在MN 上;⑵点E 在MN 左侧;⑶点E 在MN 右侧.如图所示:(1)当点E 在MN 上时,∠MEN =∠CNE +∠AME =180°.证明:∵AB ∥CD,∴∠CNE +∠AME =180°.又∵∠MEN 是平角,∴∠∠MEN =180°,∴∠MEN =∠AME+∠CNE =180°.(2)当点E 在MN 左侧时,∠MEN =∠AME +∠CNE .证明:过点E 作EF ∥AB∴FEM AME ∠=∠,FEN CNE ∠=∠∵MEN FEM FEN ∠=∠+∠∴∠MEN =∠AME +∠CNE .(3)当点E 在MN 右侧时,∠MEN =360°-(∠AME +∠CNE ).证明:过点E 作EG ∥AB∴0360AME MEG CNE NEG ∠+∠+∠+∠=,0180CNE NEG ∠+∠=∵MEG NEG MEN ∠+=∠∴∠MEN =360°-(∠AME +∠CNE )【点睛】本题考查平行线的性质,解题的关键是分三种情况讨论问题.25.若点P (x ,y )的坐标满足方程组3242182512x y m n x y m n -=+-⎧⎨+=--⎩(1)求点P 的坐标(用含m ,n 的式子表示);(2)若点P 在第四象限,且符合要求的整数m 只有两个,求n 的取值范围;(3)若点P 到x 轴的距离为5,到y 轴的距离为4,求m ,n 的值(直接写出结果即可).【答案】(1)P (2m ﹣6,m ﹣n );(2)5<n≤6;(3)50m n =⎧⎨=⎩或510m n =⎧⎨=⎩或14m n =⎧⎨=-⎩或16m n =⎧⎨=⎩. 【解析】(1)把m 、n 当作已知条件,求出x 、y 的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n 的不等式组,求出即可.(3)根据点到x轴的距离等于该点纵坐标的绝对值,点到y轴的距离等于该点横坐标的绝对值作答.【详解】解:(1)∵解方程组3242182512x y m nx y m n-=+-⎧⎨+=--⎩得:26x my m n=-⎧⎨=-⎩,∴P(2m﹣6,m﹣n);(2)∵点P在第四象限,且符合要求的整数只有两个,由260mm n->⎧⎨-<⎩,得3<m<n∴5<n≤6(3)∵点P到x轴的距离为5,到y轴的距离为4 ∴|m﹣n|=5,|2m﹣6|=4解得:5mn=⎧⎨=⎩或510mn=⎧⎨=⎩或14mn=⎧⎨=-⎩或16mn=⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据x轴上的坐标特点求出n,再判断点B所在象限.【详解】∵点A(-2,n)在x轴上,∴n=0,∴B(-1,1),在第二象限,故选B.【点睛】此题主要考查直角坐标系中点的坐标特点,解题的关键是熟知坐标轴上的点的坐标特点.2.下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形的概念结合所给图形即可得出答案.【详解】第一个图形是轴对称图形;第二是中心对称图形;第三、四个不是轴对称图形小也不是中心对称图形.故选A.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.a b的最小值是()3.若a,b均为正整数,且7a>32b<+A.3 B.4 C.5 D.6【答案】B732的范围,然后确定a、b的最小值,即可计算a+b的最小值.<<.<<273479>a为正整数,∴a的最小值为1.∵a7333<<132128<<2.∵b32<b为正整数,∴b的最小值为1,∴a+b的最小值为1+1=3.故选B .【点睛】本题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.4.如图,已知AB CD ∥,150∠=,245∠=,则CAD ∠等于( )A .75°B .80°C .90°D .85°【答案】D 【解析】先根据平行线的性质得出245BAD ∠=∠=︒,然后利用平角的定义得出180(1)CAD BAD ∠=︒-∠+∠,即可求解.【详解】//AB CD ,245BAD ∴∠=∠=︒.1180BAD CAD ∠+∠+∠=︒ ,180(1)180(5045)85CAD BAD ∴∠=︒-∠+∠=︒-︒+︒=︒.故选:D .【点睛】本题主要考查平行线的性质及平角的定义,掌握平行线的性质是解题的关键.5.在下列各数:0.51525354…491000.2•、1π7、13111327中,无理数的个数是( ) A .2B .3C .4D .5 【答案】B【解析】根据无理数的概念结合有理数的概念逐一进行判断即可.【详解】0.51525354…,49710010=,有理数;0.2•,有理数;1π,无理数;7,无理数;13111,327=3,有理数,所以无理数有3个,故选B.【点睛】本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π2,350.1010010001…,等.6.一元一次不等式组1 221xxx⎧-≥-⎪⎨⎪+>⎩的解集在数轴上表示正确的是( )A.B.C.D.【答案】C【解析】分析: 求出不等式组的解集,表示在数轴上即可.详解:1221xxx⎧-≥-⎪⎨⎪+>⎩①②,由①得:x≤2,由②得:x>-1,则不等式组的解集为-1<x≤2,表示在数轴上,如图所示:故选C.点睛: 此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.7.P点的坐标为(-5,3),则P点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】依据P点的坐标为(-5,3),即可得到P点在第二象限.【详解】解:∵P点的坐标为(-5,3),∴P点在第二象限,故选:B.【点睛】本题主要考查了点的坐标,解题时注意:第二象限的点的符号特点为(-,+).8.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2 B.3 C.4 D.5【答案】A【解析】根据题意可知点A在与x轴平行的直线y=1上运动,因为点B是x轴上一动点,所以点A、B 之间的距离转化为点到直线的最小距离,最小距离为1.【详解】∵点A (a ,1),∴点A 在与x 轴平行的直线y =1上运动,∵点B 是x 轴上一动点,∴点B 到直线y =1的最小距离为1,故点A 、B 之间的距离不可能小于1,故选:A .【点睛】此题主要考查坐标与图形,解题的关键是理解两点之间的距离的定义.9.已知方格纸中的每个小方格是边长为1的正方形,A B ,两点在小方格的格点上,位置如图所示,在小方格的格点上确定一点C ,连接AB AC BC ,,,使ABC △的面积为3个平方单位,则这样的点C 共有( )个A .2B .4C .5D .6【答案】D 【解析】首先在AB 的两侧各找一个点,使得三角形的面积是1.再根据两条平行线间的距离相等,过两侧的点作AB 的平行线,交了几个格点就有几个点.【详解】如图,符合条件的点有6个.【点睛】本题考查三角形的面积和坐标与图形的性质,解题的关键是掌握坐标与图形的性质.10.在1x ,12,212x +,3x y +,1a m +中,分式的个数有( ) A .2个B .3个C .4个D .5个【答案】B【解析】判断分式的依据是看分母中是否含有字母,如果分母中含有字母则是分式,如果分母中不含字母则不是分式,根据概念解答即可. 【详解】1x ,3x y +,1a m +这三个式子分母中含有字母,因此是分式;而式子12,212x +分母中均不含有字母,是整式,而不是分式.故选B.【点睛】此题考查分式的定义,解题关键在于掌握运用分式的概念.二、填空题题11.不等式5x﹣1>2x+5的解集为_____.【答案】x>1【解析】移项,合并同类项,系数化为1即可得到答案.【详解】5x﹣1>1x+5,移项得:5x﹣1x>5+1,合并同类项得:3x>6,系数化为1得:x>1,故不等式的解集为:x>1,故答案为:x>1.【点睛】本题考查了解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.12.等腰三角形的两条边长分别为6和9,那么它的周长为______.【答案】21,24【解析】分腰长为6和9两种情况进行讨论,分别求出其周长即可.【详解】解:当等腰三角形的腰长为6时,其周长为6+6+9=21;当等腰三角形的腰长为9时,其周长为6+9+9=24.故答案为:21;24.【点睛】本题主要考查等腰三角形的周长,解此题的关键在于分情况讨论,需注意三边是否满足三角形的三边关系. 13.如图,有一条直的宽纸带,按图方式折叠,则∠α的度数等于_____.【答案】75°【解析】试题解析:如图,∵AD∥BC,∴∠CBF=∠DEF=30°,∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+30°=180°,解得∠α=75°.【点睛】本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键.14.点P(2,﹣3)关于x轴的对称点坐标为_____.【答案】 (2,3)【解析】根据平面直角坐标系的对称性,可知关于x轴对称的点的坐标:横坐标不变,纵坐标变为相反数,可得P点关于x轴对称的坐标为:(2,3).故答案为(2,3).点睛:此题主要考查了平面直角坐标系中点的对称,利用平面直角坐标系的对称:关于x轴对称的点,横坐标不变,纵坐标变相反数;关于y轴对称的点,横坐标变为相反数,纵坐标不变;关于原点对称的点,横纵坐标均变为相反数.15.如图,∠1的度数为______.【答案】120【解析】根据三角形内角和定理和邻补角,即可解答【详解】如图,∵∠3=140°,∴∠4=180°-∠3=40°,又∠1=∠2+∠4,且∠2=80°,∴∠1=120°,故答案为:120°【点睛】此题考查三角形内角和定理,邻补角,解题关键在于掌握其定义.16.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.【答案】60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.17.33627=___________________【答案】-3-+=-.【解析】原式=633三、解答题18.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.例如:8=32-12,16=52-32,24=72-52,则8、16、24这三个数都是奇特数.(1)32和2 020这两个数是奇特数吗?若是,表示成两个连续奇数的平方差形式.(2)设两个连续奇数是2n-1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?【答案】(1)32这个数是奇特数,2 020这个数不是奇特数;(2)这两个连续奇数构造的奇特数是8的倍数,理由见解析【解析】(1)根据32=92-72,以及8、16、24这三个数都是奇特数,他们都是8的倍数,进行判断;(2)利用平方差公式计算(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=4n•2=8n,得到两个连续奇数构造的奇特数是8的倍数.【详解】(1)32这个数是奇特数,因为32=92-72.∵8、16、24这三个数都是奇特数,他们都是8的倍数,2020不是8的倍数,∴2020这个数不是奇特数;(2)由这两个连续奇数构造的奇特数是8的倍数.理由如下:(2n +1)2-(2n -1)2=(2n +1+2n -1)(2n +1-2n +1)=4n×2=8n.因为8n 是8的倍数,所以由这两个连续奇数构造的奇特数是8的倍数.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.19.已知1639273x x ⨯⨯=,求2332(2)()xx x -÷⋅的值.【答案】原式=−8x =−1.【解析】已知等式利用幂的乘方及积的乘方运算法则变形,求出x 的值,原式化简后代入计算即可求出值.【详解】已知等式整理得:3×32x ×33x =35x +1=316,可得5x +1=16,解得:x =3,则原式=−8x 6÷x 5=−8x =−1.【点睛】此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.20.已知长方形和直角梯形相应边长(单位:cm )如图所示,且它们的面积相差3cm 2,试求x 的值.【答案】6或1.【解析】表示出长方形的面积,表示出梯形的面积,根据之差为3列出方程,求出方程的解即可得到x 的值.【详解】解:S 长方形=(x ﹣2)(x +3)=x 2+x ﹣6;S 梯形=12x (2x +1)=x 2+12x , 当(x 2+x ﹣6)﹣(x 2+12x )=3时,x =1; 当(x 2+12x )﹣(x 2+x ﹣6)=3时,x =6, 则满足要求的x 的值为6或1.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.21.如图,在 Rt △ABC 中,AB =AC ,∠BAC =90°,直线 AE 是经过点A 的任一直线,且与直线 BC 交于点 P(异于点 B 、C),BD ⊥AE ,垂足为 D ,CE ⊥AE ,垂足为 E .试问:(1)AD 与 CE 的大小关系如何?请说明理由.(2)写出线段 DE 、BD 、CE 的数量关系.(直接写出结果,不需要写过程.)【答案】(1)AD=CE,理由见解析;(2)若点P 在线段BC 上, DE=BD-CE ;若点P 在线段BC 的延长线上,DE=BD+CE.【解析】(1)利用等腰直角三角形的性质得出,∠CAE=∠ABD ,AB=AC 进而得出△ABD ≌△CAE 得出答案即可;(2)根据点P 在线段BC 上,以及点P 在线段BC 的延长线上,分别求出即可.【详解】解;(1)AD=CE ,理由:∵∠BAC=90°,∴∠BAD+∠CAE=90°,又∵BD ⊥AE ,∴∠BAD+∠ABD=90°,∴∠CAE=∠ABD ,在△ABD 和△CAE 中,CEA ADB CAE ABD AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE∴AD=CE ;(2)如图1所示:若点P 在线段BC 上,∵△ABD≌△CAE,∴BD=AE,AD=CE,∴AE-AD=DE=BD-CE,如图2所示:若点P在线段BC的延长线上,∵△ABD≌△CAE,∴BD=AE,AD=CE,则DE=AE+AD=BD+CE.【点睛】本题考查了三角形全等的判定和性质,判定两个三角形全等的一般方法有:SSS、SAS、AAS,ASA,HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b,他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ(1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系,并说明理由;(2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=140°时,求出∠PFQ的度数;(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F,当∠PEQ =70°时,请求出∠PFQ的度数.【答案】(1)∠PEQ=∠APE+∠CQE,理由见解析;(2)∠PFQ=110°;(3)∠PFQ=145°.【解析】(1)过E点作EH∥AB,再利用平行线性质,两直线平行内错角相等,可得到∠PEQ=∠APE+∠CQE.(2)过点E作EM∥AB,利用平行线性质,角平分线定义可以得到角的关系,可得到∠PEQ=∠APE+∠CQE =140°,再作NF∥AB,利用平行线性质,角平分线定义可以得到角的关系,得到,∠PFQ=∠BPF+∠DQF的度数.(3)过点E作EM∥CD,如图,设∠CQM=α,∴∠DQE=180°-α,再利用角平分线性质得到∠DQH=90°-12α,∠FQD=90°+12α,再利用平行线性质、角平分线定义∠BPF=12∠BPE=55°-12α,作NF∥AB,∠PFQ=∠BPF+∠DQF即可求出答案.【详解】(1)过E点作EH∥AB,∠PEQ=∠APE+∠CQE,理由如下:过点E作EH∥AB ∴∠APE=∠PEH ∵EH∥AB,AB∥CD ∴EH∥CD∴∠CQE=∠QEH,∵∠PEQ=∠PEH+∠QEH ∴∠PEQ=∠APE+∠CQE(2)过点E作EM∥AB,如图,同理可得,∠PEQ=∠APE+∠CQE=140°∵∠BPE=180°-∠APE,∠EQD=180°-∠CQE,∴∠BPE+∠EQD=360°-(∠APE+∠CQE)=220°,∵PF平分∠BPE,QF平分∠EQD ∴∠BPF=12∠BPE,∠DQF=12∠EQD∴∠BPF+∠DQF=12(∠BPE+∠EQD)=110°,作NF∥AB,同理可得,∠PFQ=∠BPF+∠DQF=110°(3)过点E作EM∥CD,如图,设∠CQM=α,∴∠DQE=180°-α,∵QH平分∠DQE,∴∠DQH=12∠DQE=90°-12α,∴∠FQD=180°-∠DQH=90°+12α,∵EM∥CD,AB∥CD ∴AB∥EM,∴∠BPE=180°-∠PEM=180°-(70°+α)=110°-α∵PF 平分∠BPE ∴∠BPF =12∠BPE =55°-12α, 作NF ∥AB ,同理可得,∠PFQ =∠BPF +∠DQF =145°【点睛】本题主要考查了平行线的性质定理,根据性质定理得到角的关系.23.阅读下列材料:小明在一本课外读物上看到一道有意思的数学题:例1、解不等式:1x <,根据绝对值的几何意义,到原点距离小于1的点在数轴上集中在-1和+1之间,如图:所以,该不等式的解集为-1<x<1.因此,不等式1x >的解集为x<-1或x>1.根据以上方法小明继续探究:例2:求不等式:25x <<的解集,即求到原点的距离大于2小于2的点的集合就集中在这样的区域内,如图:所以,不等式25x <<的解集为-2<x<-2或2<x<2.仿照小明的做法解决下面问题:(1)不等式5x <的解集为____________.(2)不等式13x <<的解集是____________.(3)求不等式22x -<的解集.【答案】(1)-2<x <2 ;(2)-3<x <-1或1<x <3;(3)0<x <4.【解析】(1)参照范例1解答即可;(2)参照范例2解答即可;(3)先把(2)x -看作一个整体,再参照范例2解答即可.【详解】(1)由范例1可知:不等式5x <的解集就是数轴上到原点的距离小于2的点所对应的数组成的,如下图所示:∴不等式5x <的解集为:55x -<<;。
∥3套精选试卷∥2019年常州市某达标实验中学七年级下学期期末学业质量检查模拟数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若a 、c 为常数,且,对方程进行同解变形,下列变形错误的是( ) A .B .C .D . 【答案】C【解析】根据等式的性质,判断即可得到答案.【详解】A 、,符合等式性质,正确; B 、,符合等式性质,正确; C 、,不符合等式性质,错误; D 、,符合等式性质,正确;故选择:C.【点睛】此题主要考查了等式的基本性质,正确把握等式的基本性质是解题关键.2.若522325m n x y ++与632125m n x y ---的和是单项式,则( ). A .120m n ⎧=⎪⎨⎪=⎩B .112m n =⎧⎪⎨=-⎪⎩C .23m n =⎧⎨=⎩D .32m n =⎧⎨=⎩【答案】B 【解析】分析: 根据同类项的定义得到52263213m n m n ++⎧⎨--⎩=①=②,再利用①+②可求出m ,然后把m 的值代入②可求出n ,从而得到方程组的解. 详解: 根据题意得52263213m n m n ++⎧⎨--⎩=①=②, ①+②得8m+1=9,解得m=1,把m=1代入②得3-2n-1=3,解得n=-12,所以方程组的解为112m n =⎧⎪⎨=-⎪⎩. 故选:B.点睛: 本题考查了解二元一次方程组:利用代入消元或加减消元法,把解二元一次方程组的问题转化为解一元一次方程.也考查了同类项.3.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .下列说法不正确的是( )A .与∠1互余的角只有∠2B .∠A 与∠B 互余C .∠1=∠BD .若∠A =2∠1,则∠B =30°【答案】A 【解析】根据直角三角形两锐角互余和等角或同角的余角相等对各选项分析判断后利用排除法求解.【详解】解:A 、∵∠ACB =90°,∴∠1+∠2=90°,∵CD ⊥AB ,∴∠1+∠A =90°,∴与∠1互余的角有∠2与∠A 两个角,故本选项错误;B 、∵∠ACB =90°,∴∠A+∠B =90°,∴∠A 与∠B 互余,故本选项正确;C 、∠1+∠2=90°,∠2+∠B =90°,∴∠1=∠B ,故本选项正确;D 、∵∠A =2∠1=2∠B ,∴∠A+∠B =3∠B =90°, 解得∠B =30°,故本选项正确.故选A .【点睛】此题考查三角形内角和定理,余角和补角,解题关键在于掌握各性质定理.4.如果x y >,下列各式中正确的是( )A .20192019x y ->-B .20192019x y >C .2019220192x y ->-D .20192019x y ->-【答案】D【解析】根据不等式的基本性质和绝对值的概念,可得答案.【详解】解:由x >y ,可得:A 、-2019x <-2019y ,故A 错误;B 、因为x ,y 的正负未知,所以20192019x y >或20192019x y <,故B 错误;C 、2019-2x <2019-2y ,故C 错误;D 、x-2019>y-2019,故D 正确故选:D .【点睛】本题考查了不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.5.若关于x 的不等式2x -a≤-1的解集是x≤-1,则a 的值是( )A .0B .-3C .-2D .-1 【答案】D【解析】试题解析:移项得:21x a ≤-,系数化为1,得:12a x -≤, ∵不等式21x a -≤-的解集1x ≤-,112a -∴=-, 解得:a=−1,故选D.6.下列分式中,最简分式是( )A .2211x x -+ B .211x x +- C .2222x xy y x xy -+- D .236212x x -+ 【答案】A 【解析】试题分析:选项A 为最简分式;选项B 化简可得原式==;选项C 化简可得原式==;选项D 化简可得原式==,故答案选A.考点:最简分式. 7.下列运算结果为x 6的是( )A .x 3+x 3B .(x 3)3C .x ·x 5D .x 12÷x 2【答案】C【解析】根据同底数幂的法则进行计算即可.【详解】A 项,根据单项式的加法法则可得:x 3+x 3 =2x 3.故A 项错误.B 项,根据“幂的乘方,底数不变,指数相乘”可得:()33339x =x x ⨯=.故B 项错误.C 项,根据“同底数幂相乘,底数不变,指数相加”可得:55+16·x =x x x =.故C 项正确.D 项,根据“同底数幂相除,底数不变,指数相减”可得:12212-210x =x x x ÷=.故D 项错误.故本题正确答案为C.【点睛】本题主要考查同底数幂的法则,熟悉掌握是关键.8.为了测算一块60亩樱桃园的樱桃的产量,随机对其中的2亩樱桃的产量进行了检测,在这个问题中2是( )A .个体B .总体C .总体的样本D .样本容量 【答案】D【解析】根据总体:所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量,结合题目即可得答案.【详解】为了测算一块60亩樱桃园的樱桃的产量,随机对其中的2亩樱桃的产量进行了检测,在这个问题中2是样本容量,故选:D .【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握样本容量的定义.9.若代数式2x -有意义,则x 的取值范围是 ) A .1x ≥B .2x ≠C .1x ≥且2x ≠D .2x >【答案】C【解析】根据二次根式有意义的条件可得x -1≥0,根据分式有意义的条件可得x ﹣1≠0,再解即可.【详解】由题意得:x -1≥0且x ﹣1≠0,解得:x ≥1且x ≠1.故选C .【点睛】本题考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零. 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形 【答案】A【解析】多边形的内角和外角性质.【分析】设此多边形是n 边形,∵多边形的外角和为360°,内角和为(n -2)180°,∴(n -2)180=360,解得:n=1.∴这个多边形是四边形.故选A .二、填空题题11.解方程:()()415311x x +--=【答案】8x =【解析】方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】解: ()()415311x x +--=4451511x x +-+=4511415x x -=--8x -=-8x =【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.要使(x 2+ax+1)•(﹣6x 3)的展开式中不含x 4项,则a= _________ .【答案】1【解析】试题分析:根据单项式与多项式相乘的法则展开,然后让x 4项的系数等于1,列式求解即可. 解:(x 2+ax+1)•(﹣6x 3)=﹣6x 5﹣6ax 4﹣6x 3,∵展开式中不含x 4项,∴﹣6a=1,解得a=1.考点:单项式乘多项式.点评:本题考查了单项式与多项式相乘,不含某一项就是让这一项的系数等于1.13.如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1),A 5(2,1),…,则点A 20的坐标是______.【答案】(-5,-5)【解析】点A 2018在平面直角坐标系中的位置,经观察分析所有点,除A 1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2018在第一象限;第一象限的点A2(1,1),A6(2,2),A10(3,3)…观察易得到点的坐标═循环次数+1,得到规律求出A20的坐标即可;【详解】解:由题可知,第一象限的点:A5,A9,A13…角标除以4余数为1;第二象限的点:A4,A8,A12…角标除以4余数为0;第三象限的点:A3,A7,A11…角标除以4余数为3;第四象限的点:A2,A6,A10…角标除以4余数为2;由上规律可知:20÷4=5,∴点A20在第二象限.又∵点A4(-1,-1),A8(-2,-2),A12(-3,-3)…在第一象限,A4(-4÷4,-4÷4),A8(-8÷4,-8÷4),A12(-12÷4,-12÷4)…∴A20(-20÷4,-20÷4)═A20(-5,-5);故答案为(-5,-5).【点睛】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第二象限点的横纵坐标数字隐含规律:横纵坐标相等,为坐标的一半的相反数.14.如图,在△ABC中,AD⊥BC垂足为D,AD=4,将ΔABC沿射线BC的方向向右平移后,得到△A′B′C′,连接A′C,若BC′=10,B′C=3,则△A′CC′的面积为__________.【答案】1.【解析】根据平移的性质可得BC=B′C′,则BB′=CC′,依此根据线段的和差关系可得CC'的长,再根据三角形面积公式即可求解.【详解】解:由平移的性质可得BC=B′C′,则BB′=CC′,∵BC'=10,B'C=3,∴CC'=(10-3)÷2=3.5,∴△A'CC'的面积为3.5×4÷2=1.故答案为:1.【点睛】本题考查三角形的面积、平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.如图,在ABC ∆和DEF ∆中,点,,,B E C F 在同一直线上,,AB DE B DEF =∠=∠,若运用 “SAS”判定ABC DEF ∆≅∆,则还需添加一个条件是__________________.【答案】BE=CF (或者BC=EF )【解析】可添加条件BE=CF ,进而得到BC=EF ,然后再加条件,AB DE B DEF =∠=∠可利用SAS 定理证明△ABC ≌△DEF .【详解】可添加条件BE=CF ,理由:∵BE=CF ,∴BE+EC=CF+EC ,即BC=EF ,在△ABC 和△DEF 中,AB DE B DEF BC EF ⎧⎩=⎪==⎪⎨∠∠ , ∴△ABC ≌△DEF(SAS),【点睛】此题考查全等三角形的判定,掌握判定法则是解题关键16.已知25x =,23y =,则22x y +=________.【答案】75【解析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】∵25x =,23y =,∴22x y +=22x ×2y =(2x )2×2y =52×3=75,故答案为:75.【点睛】本题考查了同底数幂乘法、幂的乘方,熟练掌握相关运算法则并能逆用进行变形是解题的关键. 17.如图是一汽车探照灯纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出,如果∠ABO =α,∠DCO =β,则∠BOC 的度数是_____.【答案】α+β【解析】如图,作OE∥AB,则OE∥CD,∴∠ABO=∠BOE=∠α,∠COE=∠DCO=∠β,∴∠BOC=∠BOE+∠COE=∠ABO+∠DCO=∠α+∠β.故答案为∠α+∠β.点睛:本题关键在于构造辅助线,再根据平行线的性质解题.三、解答题18.已知CA=CB,CD是经过∠BCA顶点C的一条直线.E,F是直线CD上的两点,且∠BEC=∠CFA=α.(1)若直线CD在∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA数量关系的条件,使①中的两个结论仍然成立,补全图形并证明.(2)如图3,若直线CD在∠BCA的外部,∠BCA=α,请用等式直接写出EF,BE,AF三条线段的数量关系.(不要求证明)【答案】(1)①=,=;②α+∠BCA=180°,补全图形和证明见解析;(2)EF=BE+AF【解析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE =AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.【详解】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA,∴△BCE≌△CAF(ASA),∴BE=CF,EF=|CF﹣CE|=||BE﹣AF;故答案为:=、=;②α+∠BCA=180°,补全图形如下:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣α,∵∠BCA=180°﹣α,∴∠BCA=∠CBE+∠BCE,又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,又∵EF=CE﹣CF,∴EF=|BE﹣AF|;故答案为:α+∠BCA=180°.(2)EF=BE+AF,如图3,∵∠BEC=∠CFA=α,α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CFA+∠CAF+∠ACF=180°,∴∠BCE=∠CAF.又∵BC=CA,∴△BCE≌△CAF(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.故答案为:EF=BE+AF.【点睛】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.19.数学课上老师要求学生解方程组:213 3113a bb a=-+⎧⎨=-⎩同学甲的做法是:213 3113a bb a=-+⎧⎨=-⎩①②由①,得a=-12+32b.③把③代入②,得3b=11-3(-12+32b),解得b=53.把b=53代入③,解得a=2.所以原方程组的解是253 ab=⎧⎪⎨=⎪⎩老师看了同学甲的做法说:“做法正确,但是方法复杂,要是能根据题目特点,采用更加灵活简便的方法解此题就更好了.”请你根据老师提供的思路解此方程组.【答案】252 ab=⎧⎪⎨=⎪⎩【解析】将方程②整体代入方程①中,达到消元的目的,解出a的值,再代入求b的值即可.【详解】213 3113a bb a-+⎧⎨-⎩=①=②把②代入①,得2a=-1+(11-3a),解得a=2.把a=2代入①,解得b=53.所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.【点睛】此题考查了解二元一次方程组,学会运用“整体代入”方法是解本题的关键..20.先化简,再求值:4422222x y x y x xy y x y --•-++,其中42,58x y ==. 【答案】化简为原式=x y +,代值为原式=100.【解析】先利用平方差公式、完全平方公式对原式的分子、分母进行因式分解,然后再约分,代入x 、y 的值即可.【详解】解:原式=22222()()()()x y x y x y x y x y x y ++--•-+ =x y +.将42,58x y ==代入原式=42+58=100.【点睛】本题考查分式的化简求值、平方差公式和完全平方公式,分式化简时先要对分式的分母、分子进行因式分解,然后再约分化为最简分式,最后代值即可.21.小明解方程组2?21x y x y +=⎧⎨-=⎩,得到解为5*x y =⎧⎨=⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和*,则数●的值.【答案】19【解析】先把x=5代入第二个方程求出y ,再把方程的解x,y 代入第一个方程即可得到数●的值.【详解】∵2?21x y x y +=⎧⎨-=⎩①② 把x=5代入②得y=9,把x=5,y=9代入①得数●=2×5+9=19.【点睛】此题主要考查二元一次方程组的解,解题的关键是根据题意代入原方程进行求解.22.如图所示,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 间的距离,但绳子不够长,请你利用三角形全等的相关知识帮他设计一种方案测量出A 、B 间的距离,写出具体的方案,并解释其中的道理,【答案】见解析.【解析】根据全等三角形判定和性质可得:构造出△ABC ≌△DEC (SAS ).【详解】例如,如图.(1)先在地上取一个可以直接到达A 点和B 点的点C ;(2)连接AC 并延长到点D ,使得CD=AC ;(3)连接BC 并延长到点E ,使得CE=BC ;(4)连接DE ,并测量出它的长度.DE 的长度就是A 、B 间的距离.理由如下:在△ABC 和△DEC 中,因为AC=DC ,∠ACB=∠DCE ,BC=EC.所以△ABC ≌△DEC (SAS ).所以AB=DE.【点睛】考核知识点:全等三角形的判定和性质的运用.23.[(38)(2)(4)(4)](2)x x x x x -+--+÷-.【答案】-x+1【解析】运用多项式乘多项式、多项式除单项式的法则和按运算顺序依次计算即可.【详解】()()()()()382442x x x x x ⎡⎤-+--+÷-⎣⎦()()()2236816162x x x x x ⎡⎤=+----÷-⎣⎦ ()()223216162x x x x =---+÷-()()2222x x x=-÷-1x=-+.【点睛】考查了多项式乘多项式、多项式除单项式的法则,解题关键是熟记并运用其运算法则(①多项式乘以多项式的法则:用一个多项式里的每一项分别乘以另一个多项式中的每一项,再把所得的积相加;②多项式除以单项式:先把这个多项式分别除以这个单项式,再把所得的商相加).24.进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:甲品种乙品种进价(元/千克) 1.6 1.4售价(元/千克) 2.4 2(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?【答案】(1)300千克,200千克;(2)1.1元/千克.【解析】(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,根据总价=单价×数量结合总利润=每千克的利润×数量,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设乙品种西瓜的售价为m元/千克,根据总利润=每千克的利润×数量结合售完获利不少于560元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,依题意,得:1.6 1.4760(2.4 1.6)(2 1.4)360x yx y+=⎧⎨-+-=⎩,解得:300200 xy=⎧⎨=⎩.答:佳佳水果超市购进甲品种西瓜300千克,购进乙品种西瓜200千克.(2)设乙品种西瓜的售价为m元/千克,依题意,得:300×2×(2.4﹣1.6)+200×(m﹣1.4)≥560,解得:m≥1.1.答:乙品种西瓜最低售价为1.1元/千克.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.解不等式组3(2)862x x x x --≤⎧⎨-⎩>,并把它们的解集表示在数轴上,写出满足该不等式组的所有整数解. 【答案】整数解为101,,- 【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;【详解】解:()32862x x x x ⎧--≤⎨->⎩①②,由①得:1x ≥-由②得:2x <∴不等式组的解集为:12x -≤<∴整数解为:101-,,. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.要调查某校八年级学生周日的睡眠时间,选取调查对象最合适的是( )A.选取一个班级的学生B.选取50名男生C.选取50名女生D.随机选取50名八年级学生【答案】D【解析】根据选取调查对象具有代表性、随机性,即可判断.【详解】要调查某校八年级学生周日的睡眠时间,选取调查对象最合适的是随机选取50名八年级学生,故选D.【点睛】此题主要考察样本的选择.2.如图,a∥b,含有45°角的直角三角尺ABC的直角顶点C在直线b上,若直角边BC与直线b的夹角为∠α,斜边AB与直线a的夹角为∠β,则∠α和∠β的关系是()A.∠α+∠β=30°B.∠α+∠β=45°C.∠α+∠β=60°D.∠α+∠β=75°【答案】B【解析】过点B作BD∥a,根据平行线的性质即可求解.【详解】解:过点B作BD∥a,∵直线a∥b,∴BD∥a∥b∴∠1=∠α,∵∠ABC=45°,∴∠2=∠ABC﹣∠1,∴∠β=∠2=45°﹣∠1=45°﹣∠α.∴∠α+∠β=45°故选:B.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.3.下列能用平方差公式计算的是( )A .()()x y x y -+-B .()()11x x ---C .()()22x y y x +-D .()()21x x -+ 【答案】B【解析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.【详解】A. (−x+y)(x−y)=−(x−y)(x−y)=−(x−y)2,故本选项错误;B. (x−1)(−1−x)=−(x−1)(x+1)=−(x 2−1),正确;C. (2x+y)(2y−x)=−(2x+y)(x−2y),故本选项错误;D. (x−2)(x+1)=x 2−x−2,故本选项错误.故选B.【点睛】此题考查平方差公式,解题关键在于掌握运算法则.4.下列代数式,能用完全平方公式进行因式分解的是( )A .x 2﹣1B .x 2+xy +y 2C .x 2﹣x +14D .x 2+2x ﹣1 【答案】C【解析】直接利用完全平方公式分解因式即可得出答案.【详解】解:A 、x 2﹣1=(x+1)(x ﹣1),不能用完全平方公式分解因式,故此选项错误;B 、x 2+xy+y 2,不能用完全平方公式分解因式,故此选项错误;C 、x 2﹣x+14=(x ﹣12)2能用完全平方公式分解因式,故此选项正确; D 、x 2+2x ﹣1,不能用完全平方公式分解因式,故此选项错误;故选:C .【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.5.如图,在一次活动中,位于A 处的七年一班准备前往相距3km 的B 处与七年二班会合,若用方向和距离描述七年二班相对于七年一班的位置,可以描述为( )A .南偏西40°,3kmB .南偏西50°,3kmC .北偏东40°,3kmD .北偏东50°,3km【答案】B 【解析】根据方向角的表示方法,观察图发现相对的位置关系,可得答案.【详解】解;方向和距离描述七年二班相对于七年一班是南偏西50°,AB=3km ,故选B.【点睛】本题考查了方向角,方向角是用南偏西或南偏东的方法表示.6.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.7.如图,已知AD∥BC,在①∠BAC=∠BDC,②∠DAC=∠BCA,③∠ABD=∠CDB,④∠ADB=∠CBD 中,可以得到的结论有()A.①②B.③④C.①③D.②④【答案】D【解析】依据平行线的性质进行判断,即可得到正确结论.【详解】∵AD∥BC,∴∠DAC=∠BCA,(两直线平行,内错角相等)∠ADB=∠CBD,(两直线平行,内错角相等)故选D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.8.不等式的解集在数轴上表示正确的是( )A.B.C.D.【答案】A【解析】先根据不等式的性质求出此不等式的解集,再根据不等式的解集在数轴上的表示方法即可求解.【详解】解:4x-4<3x-2x<2不等式的解集在数轴上表示如图A所示。
【精选5份合集】2018-2019年常州市某达标实验中学七年级下学期期末数学复习能力测试试题

A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米
2.第二象限内一点 到 轴的距离等于 ,到轴的距离等于 ,则点 的坐标为()
A. B. C. D.
【答案】C
【解析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答即可.
【详解】解:∵第二象限内一点P到x轴的距离等于2,到y轴的距离等于3,
A.5051B.5050C.4951D.4950
【答案】A
【解析】首先根据一条直线、两条直线、三条直线的情况可总结出规律,设直线条数有n条,分成的平面最多有m个,有以下规律: ;
然后再将n=100代入得到的关系式中,即可得到100条直线最多可将平面分成的部分数.
【详解】设直线条数有n条,分成的平面最多有m个,即 ,
=9-3-5
=1,
故选:A.
【点睛】
本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式解答.
10.下列图中∠1和∠2是同位角的是( )
A.(1)、(2)、(3)B.(2)、(3)、(4)
C.(3)、(4)、(5)D.(1)、(2)、(5)
【答案】D
【解析】根据同位角的定义,对每个图进行判断即可.
故选D.
考点:科学记数法—表示较大的数.
9.已知: 则 的值为()
〖汇总3套试卷〗常州市某达标实验中学2019年七年级下学期期末复习能力测试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是( )A .三角形可以分为等边三角形、直角三角形、钝角三角形B .如果一个三角形的一个外角大于与它相邻的内角,则这个三角形为锐角三角形C .各边都相等的多边形是正多边形D .五边形有五条对角线【答案】D【解析】根据三角形的分类、三角形内外角的关系以及正多边形的定义即可作出判断.【详解】A 、三角形可以分为锐角三角形、直角三角形、钝角三角形,故选项错误;B 、任何一个三角形的一定至少有两个外角大于与它相邻的内角,故选项错误;C 、各边都相等、各角相等的多边形是正多边形,故选项错误;D 、五边形有五条对角线,正确.故选D .【点睛】本题考查了正多边形的定义,三角形的性质以及分类,理解三角形的内角和外角的关系是关键. 2.要使式子22x y + 成为一个完全平方式,则需加上( )A .xyB .xy ±C .2xyD .2xy ± 【答案】D【解析】根据完全平方式的定义结合已知条件进行分析解答即可.【详解】将式子22xy +加上2xy 或2xy -所得的式子222x xy y ++和222x xy y -+都是完全平方式.故选D.【点睛】熟知“完全平方式的定义:形如222a ab b ±+的式子叫做完全平方式”是解答本题的关键. 3.若不等式(a ﹣1)x >a ﹣1的解是x <1,则a 的取值范围是( )A .a >1B .a <1C .a ≥1D .a ≤1 【答案】B【解析】根据不等号方向改变可得a-1<0,即可求解.【详解】解:将不等式(a ﹣1)x >a ﹣1两边都乘以a ﹣1得x <1,所以a ﹣1<0,解得:a <1,故选:B .【点睛】本题考查的是不等式,熟练掌握不等式的性质是解题的关键.4.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,1P ,2P ,3P ,⋯均在格点上,其顺序按图中“→”方向排列,如:1(0,0)P ,2(0,1)P,3(1,1)P ,4(1,1)P -,5(1,1)P --,6(1,2)P -⋯根据这个规律,点2017P 的坐标为( )A .(504,504)--B .(505,504)--C .(504,504)-D .(504,505)-【答案】A 【解析】试题分析:根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P 2017的在第三象限的角平分线上,且横纵坐标的绝对值=(2017-1)÷4, ∵点P 5(-1,-1),∴点P 2017(-504,-504).故选A .5.如图,要测量河两岸相对两点A 、B 间的距高,先在过点B 的AB 的垂线上取两点C 、D ,使得CD =BC ,再在过点D 的垂线上取点E ,使A 、C 、E 三点在一条直线上,可以证明△EDC ≌△ABC ,所以测得ED 的长就是A 、B 两点间的距离,这里判定△EDC ≌△ABC 的理由是( )A .SASB .SSSC .ASAD .AAS【答案】C 【解析】∵AB ⊥BD ,ED ⊥BD ,∴∠ABD=∠EDC=90°,在△EDC 和△ABC 中,ABC EDC BC DCACB ECD ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△EDC ≌△ABC (ASA )故选C .6.已知a>b ,下列各式中正确的是( )A .a-2 < b-2B .ac > bcC .-2a < -2bD .a-b < 0【答案】C【解析】根据不等式的性质,解答即可;【详解】解:∵a>b∴a-2 >b-2,A.错误;当c >0,ac > bc 才成立,B 错误.;-2a < -2b ,C 正确;a-b >0, D 错误;故答案为C;【点睛】本题考查了不等式的性质,即:基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变,基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变7.直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,OF 平分∠AOE ,∠l=15.5° 则下列结论不正确的是( )A .∠2=45°B .∠1=∠3C .∠AOD 与∠1互为补角D .∠l 的余角等于75.5° 【答案】D8.有一游泳池中注满水,现按一定的速度将水排尽,然后进行清扫,再按相同的速度注满水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量(立方米)随时间(小时)变化的大致图像是()A.B.C.D.【答案】C【解析】依题意,注满水的游泳池以相同的速度把水放尽与加满,然后过一段时间之间又以相同的速度放尽,由此可得出答案.【详解】根据题意分析可得:存水量V的变化有几个阶段:①减小为0,并持续一段时间,故A和B不符合题意;②增加至最大,并持续一段时间;③减小为0,故D不符合题意.故选C.【点睛】本题考查正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.9.已知a+b=2,ab=1,则a2+b2的值是( )A.2 B.4 C.6 D.8【答案】A【解析】根据a2+b2=(a+b)2-2ab,将已知代数式代入可得.【详解】当a+b=2,ab=1时,a2+b2=(a+b) 2−2ab=22−2×1=2;故选A【点睛】此题考查完全平方公式,掌握运算法则是解题关键10.如图,数轴上表示1,的点分别为A和B,若A为BC的中点,则点C表示的数是()A.-1 B.1-C.-2 D.2-【答案】D【解析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】设点C表示的数是x,∵数轴上表示1、的对应点分别为点A. 点B,点A是BC的中点,∴ 解得故选:D.【点睛】考查实数与数轴,设出点C 的坐标,根据中点公式列出方程是解题的关键.二、填空题题11.如图,直线12l l ,143=∠,272=∠,则3∠的度数是__________度.【答案】65【解析】先用对角线和平行线的性质将已知和所求角转换到一个三角形中,最后用三角形内角和即可解答 【详解】解:如题:∵12l l∴∠1=∠5由∵∠2=∠4∴∠3=180-∠4-∠5=180-∠1-∠2=65°故答案为65.【点睛】本题主要考查了平行线的性质和三角形内角和定理的知识,其关键是将已知和所求联系在一个三角形上. 12.在频数分布直方图中,各个小组的频数比为2:5:6:3,则对应的小长方形的高的比为_____.【答案】2:5:6:3【解析】根据在一个调查过程中,将所有数据分成四组,各个小组的频数比为2:5:6:3,可以求得画频数分布直方图时对应的小长方形的高的比,本题得以解决.【详解】解:∵在一个调查过程中,将所有数据分成四组,各个小组的频数比为2:5:6:3, ∴画频数分布直方图时对应的小长方形的高的比为2:5:6:3,故答案为:2:5:6:3,【点睛】本题考查频数分布直方图,解题的关键是明确频数分布直方图的画法.13.在实数范围内分解因式:324x y x -=__________.【答案】(2)(2)x xy xy -+【解析】首先提取公因式x ,再利用平方差公式分解因式即可.【详解】解:x 3y 2-4x=x (x 2y 2-4)=x (xy-2)(xy+2),故答案为:x (xy-2)(xy+2).【点睛】本题考查了分解因式(提公因式法和用平方差公式分解因式法),主要考查学生能否正确分解因式,题目比较好,难度不大.14.如图,已知△ABC 中,点D 在AC 边上(点D 与点A ,C 不重合),且BC =CD ,连接BD ,沿BD 折叠△ABC 使A 落在点E 处,得到△EBD .请从下面A 、B 两题中任选一题作答:我选择_____题.A .若AB =AC ,∠A =40°,则∠EBC 的度数为______°.B .若∠A =α°,则∠EBC 的度数为_______°(用含α的式子表示)【答案】A 或B 40 α【解析】根据AB =AC ,∠A =40°得出70ABC ACB ∠=∠=︒,因为 BC =CD ,所以55CBD CDB ∠=∠=︒,再根据轴对称性质得知ABD EBD ∠=∠即可求解. 【详解】AB =AC ,∠A =40°,70ABC ACB ∴∠=∠=︒,BC =CD55CBD CDB ∴∠=∠=︒,△EBD 沿BD 折叠△ABC 而来,705515ABD EBD ∴∠=∠=︒-︒=︒,551540EBC A ∴∠=∠=︒-︒=︒【点睛】本题主要考查等腰三角形性质,轴对称性质等知识,熟悉掌握是关键.15.平面上有一点P (a ,b ),点P 到x 轴、y 轴的距离分別为3、4,且0ab <,则点P 的坐标是________.【答案】 (-4,3)或(4,-3)【解析】点P 到x 轴、y 轴的距离即为点P 的横纵坐标的绝对值,题中“点P 到x 轴、y 轴的距离分別为3、4”,则点P 的横坐标可以是±3,纵坐标可以是±4,则点P 的坐标就有四种组合,再通过题中“0ab <”,选择合适的坐标值即可.【详解】∵点P 到x 轴、y 轴的距离分別为3、4∴点P 的横坐标a=±3,纵坐标b=±4即点P 的坐标为(-3,4)(-3,-4)(3,4)(3,-4)又∵0ab <∴点P 的横纵坐标要为异号,(-4,3)(4,-3)符合.故答案为(-4,3)或(4,-3)【点睛】本题考查了根据点到坐标轴的距离,需要注意的是距离是指绝对值,要考虑正负情况.16.如图直线12//l l ,AB CD ⊥,134∠=︒,那么2∠的度数是________.【答案】56︒.【解析】如图,设垂足为O ,由平行得知∠DAO =∠1=34°,AB ⊥CD 可得∠DOA =90°,由三角形的内角和为180°及已知的两个角可求得∠ADO 的度数,进而根据对顶角相等得出∠2的度数.【详解】设垂足为O ,如图,由平行得知∠DAO =∠1=34°,AB ⊥CD 可得∠DOA =90°,所以∠ADO =180°−90°−34°=56°,因为∠ADO 与∠2是对顶角相等,所以∠2=∠ADO =56°.故答案为:56°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了垂直的定义.17.如图,AB ∥CD ,如果∠1=∠2,那么EF 与AB 平行吗?说说你的理由.解:因为∠l =∠2,根据,所以∥.又因为AB∥CD,根据:,所以EF∥AB.【答案】内错角相等,两直线平行、CD、EF、平行于同一直线的两条直线平行.【解析】根据平行线的性质,即可解答【详解】解:因为∠l=∠2,根据内错角相等,两直线平行,所以CD∥EF.又因为AB∥CD,根据:平行于同一直线的两条直线平行,所以EF∥AB.故答案为内错角相等,两直线平行、CD、EF、平行于同一直线的两条直线平行.【点睛】此题考查平行线的性质,难度不大三、解答题18.解不等式组()31(3)8211132x xx x⎧-+--⎪⎨+--≤⎪⎩<并把解集在数轴上表示出来.【答案】-2<x≤1,在数轴上表示见解析.【解析】先求出每一个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】()()3138211132x xx x⎧-+--⎪⎨+--≤⎪⎩<①②,解不等式①得:x>-2,解不等式②得:x≤1,∴不等式组的解集为-2<x≤1,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.19.先化简,再求值:231111x x x x -⎛⎫+÷ ⎪+-⎝⎭,其中x 是不等式组11210x x x --⎧->⎪⎨⎪-+<⎩的整数解. 【答案】原式=44x -;原式=4【解析】先化简式子为44x -,再求解不等式的整数解为2x =,最后将2x =代入化简的式子中即可求解. 【详解】解:231111x x x x -⎛⎫+÷ ⎪+-⎝⎭ 131(+1)(1)=1x x x x x x ++--⎛⎫⨯ ⎪+⎝⎭ 4(+1)(1)=+1x x x xx -⨯ =44x - 解不等式组11210x x x --⎧->⎪⎨⎪-+<⎩解得31x x ⎧⎨⎩<> ∴1<x <3,∴不等式组的整数解是2x =,∴当2x =时,原式=42-4=4⨯.【点睛】本题考查分式的化简,一元一次不等式组的解法;熟练掌握分式的化简技巧,准确解一元一次不等式组是解题的关键.20.解不等式(组)(1)解不等式,并在数轴上表示解集:125164x x +-≥+ (2)解不等式组251331148x x x x ⎧+>-⎪⎪⎨⎪-≤-⎪⎩【答案】(1)x54≤,用数轴表示见解析;(2)125-<x72≤.【解析】(1)先去分母、去括号、移项合并,然后把系数化为1得到不等式的解集,然后用数轴表示其解集;(2)分别解出两不等式的解集,再求其公共解.【详解】(1)去分母得:2(x+1)≥3(2x﹣5)+12,去括号得:2x+2≥6x﹣15+12,移项得:2x﹣6x≥﹣15+12﹣2,合并同类项得:﹣4x≥﹣5,把x的系数化为1得:x54≤;用数轴表示为:;(2)251331148x xx x⎧+-⎪⎪⎨⎪-≤-⎪⎩>①②由①得x125->,由②得x72≤,∴不等式组的解集为125-<x72≤.【点睛】本题考查了解一元一次方程(组),根据不等式的性质解一元一次不等式,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.蕲春新长途客运站准备在七一前建成营运,后期工程若请甲乙两个工程队同时施工,8 天可以完工,需付两工程队施工费用 7040 元;若先请甲工程队单独施工 6 天,再请乙工程队单独施工 12 天可以完工,需付两工程队施工费用 6960 元。
(汇总3份试卷)2019年常州市某达标实验中学七年级下学期数学期末学业质量监测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知a b <,下列不等式变形中正确的是( )A . 22a b ->-B . 22a b ->-C . 22a b >D . 3131a b +>+【答案】B【解析】不等式性质有三:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.据此,逐个分析即可.【详解】由a b <可得 22a b -<-.故选项A 不正确;22a b ->-,故选项B 正确;22a b <,故选项C 错误; 3131a b +<+,故选项D 错误.故选:B【点睛】本题考核知识点:不等式性质. 解题关键点:理解不等式基本性质.2.下面的计算正确的是( )A .3x 2•4x 2=12x 2B .x 3•x 5=x 15C .x 4÷x=x 3D .(x 5)2=x 7 【答案】C【解析】试题分析:根据单项式的乘法、同底数幂的乘法和除法、幂的乘方等知识点进行判断. 试题解析:A 、3x 2•4x 2=12x 4,故本选项错误;B 、x 3•x 5=x 8,故本选项错误;C 、正确;D 、(x 5)2=x 10,故本选项错误.故选C .考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.单项式乘单项式. 3.关于x 的方程32211x m x x --=++有增根,则m 的值为( ) A .2B .7-C .5D .5-【答案】D【解析】根据分式的方程增根定义,得出增根,再代入化简后的整式方程进行计算即可.【详解】由题意得:3x-2-m=2(x+1),方程的增根为x=-1,把x=-1代入得,-3-2-m=0解得m=-5,故选:D【点睛】本题考查了分式方程的增根,掌握分式方程增根的定义是解题的关键.4.点P(-1,3)在A.第一象限.B.第二象限.C.第三象限.D.第四象限【答案】B【解析】试题分析:平面直角坐标系内各个象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).点P(-1,3)在第二象限,故选B.考点:点的坐标点评:本题属于基础应用题,只需学生熟练掌握各个象限内的点的坐标的符号特征,即可完成.5.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.y2+y+14D.m2-4n2【答案】B【解析】根据分解因式的方法:提公因式法,公式法包括平方差公式与完全平方公式,结合多项式特征进行判断即可.解:A、x3+2x能提公因式分解因式,不符合题意;B、a2+b2不能利用公式法能分解因式,符合题意;D、y2+y+14利用公式法能分解因式,不符合题意;C、m2–4n2利用公式法能分解因式,不符合题意.故选B.“点睛”本题主要考查了对于学习过的几种分解因式的方法的记忆与理解,熟练掌握公式结构特征是解题的关键.6.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.【答案】D【解析】试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.考点:函数的图象.7.下列数据中,无理数是()A.2-B.0 C.227D.π【答案】D【解析】根据无理数的定义即可求出答案.【详解】解:无限不循环的小数为无理数,故选:D.【点睛】本题考查无理数,解题的关键是正确理解无理数的定义,本题属于基础题型.8.计算﹣(﹣2x3y4)4的结果是()A.16x12y16B.﹣16x12y16C.16x7y8D.﹣16x7y8【答案】B【解析】根据积的乘方法则计算:等于把积中的每一个因式乘方,再把所得的幂相乘.【详解】解:﹣(﹣2x3y4)4=-(-1)4*x3*4y4*4=﹣16x12y16故选:B.【点睛】本题考查了积的乘方运算法则,掌握对应积乘方运算法则是解题关键.9.若关于x,y 的二元一次方程组的解也是二元一次方程x-2y=10 的解,则k 的值为( ).A.2 B.-2 C.0.5 D.-0.5【答案】A【解析】将k看做已知数,表示出x与y,根据题意代入方程x-2y=10中计算,即可求出k的值.【详解】,①+②得:x=3k,将x=3k代入①得:y=−k,将x=3k,y=−k代入x−2y=10中得:3k+2k=10,解得:k=2.故选A.【点睛】此题考查二元一次方程组的解,解题关键在于掌握运算法则.10.小明有两根长度分别为4cm和9cm的木棒,他想再取一根木棒,并充分利用这三根木棒钉一个三角形木框,则小明选取的第三根木棒长度可以是()A.5cm B.9cm C.13cm D.17cm【答案】B【解析】利用三角形的三边关系进行判断即可,两边之差小于第三边,两边之和大于第三边【详解】三角形三边关系为,两边之差小于第三边,两边之和大于第三边,设第三条边为x,所以5<x<13,故选B【点睛】本题考查三角形三边关系,属于简单题二、填空题题11.若分式12xx-的值为0,则x的值是________.【答案】1【解析】直接利用分式值为零的条件,则分子为零进而得出答案.【详解】∵分式12xx-的值为0,∴x−1=0,2x≠0解得:x=1.故答案为:1.【点睛】此题主要考查了分式值为零的条件,正确把握分式的相关性质是解题关键.12.对x、y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,侧如:T(1,0)==a.已知T(1,﹣1)=1,T(5,﹣2)=4,若关于m的不等式组恰好有3个整数解,则实数P的取值范围是_____.【答案】5<p≤1.【解析】已知两对值代入T中计算求出a与b的值,然后根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p的范围即可.【详解】解:∵T(1,﹣1)=﹣1,T(5,﹣2)=4,∴=1,=4,解得:a=2,b=3,∵,∴,∴,∵有3个整数解,∴1<≤2,∴5<p≤1,故答案为5<p≤1.【点睛】本题考查了解一元一次不等式组,解二元一次方程组的应用,能求出a、b的值是解此题的关键.13.将命题“邻补角的平分线相互垂直”改写成“如果...那么...”形式是_____________【答案】如果两个角是邻补角,那么它们的角平分线互相垂直【解析】命题都有题设和结论两部分组成,如果部分是题设,那么部分是结论,由此即可解决问题.【详解】命题“邻补角的平分线相互垂直”改写成,如果两个角是邻补角,那么它们的角平分线互相垂直.故答案为:如果两个角是邻补角,那么它们的角平分线互相垂直【点睛】此题考查命题与定理,解题关键在于掌握其定义14.如图,在△ABC中,AB=AC ,DE∥BC,∠A=40°,DC平分∠ACB.则∠EDC的度数为________°.【答案】35°【解析】分析:根据等腰三角形的性质可求得∠ACB的度数,又由CD是∠ACB的平分线,求得∠BCD的度数,然后由DE∥BC,求得答案.详解:∵AB=AC,∴∠ACB=(180°-40°)÷2=70°,∵CD是∠ACB的平分线,∴∠BCD=12∠ACB=35°,∵DE∥BC,∴∠EDC=∠BCD=35°.故答案为:35.点睛:本题考查了平行线的性质,角平分线的计算,等腰三角形的计算. 平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.15.如图,将周长为16的三角形ABC沿BC方向平移3个单位得到三角形DEF,则四边形ABFD的周长等于______.【答案】1【解析】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF.∵△ABC的周长等于16,∴AB+BC+AC=16,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=16+3+3=1.故答案为1.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.16.如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠1多9°,则∠AEF为_____.【答案】123°.【解析】∠EFC =x ,∠1=y ,则∠BFC ′=x ﹣y ,根据“∠BFC ′比∠1多9°、∠1与∠EFC 互补”得出关于x 、y 的方程组,解之求得x 的值,再根据AD ∥BC 可得∠AEF =∠EFC .【详解】设∠EFC =x ,∠1=y ,则∠BFC ′=x ﹣y ,∵∠BFC ′比∠1多9°,∴x ﹣2y =9,∵x+y =180°,可得x =123°,即∠EFC =123°,∵AD ∥BC ,∴∠AEF =∠EFC =123°,故答案为123°.【点睛】本题考查了平行线的性质及折叠问题,解题的关键是学会利用参数,构建方程组解决问题.17.一个角的余角比这个角的补角15的大10°,则这个角的大小为_____. 【答案】55°.【解析】设这个角大小为x ,然后表示出补角和余角,根据题意列出方程解方程即可【详解】设这个角大小为x ,则补角为180°-x ,余角为90°-x ,根据题意列出方程 ()190x 180105x ︒-=︒-+°, 解得x=55°,故填55°【点睛】本题主要考查余角和补角,能够设出角度列出方程式本题解题关键三、解答题18.在数学课本中,有这样一道题:已知:如(图1),∠B+∠C =∠BEC 求证:AB ∥CD(1)请补充下面证明过程证明:过点E,做EF∥AB,如(图2)∴∠B=∠∵∠B+∠C=∠BEC∠BEF+∠FEC=∠BEC(已知)∴∠B+∠C=∠BEF+∠FEC(等量代换)∴∠=∠(等式性质)∴EF∥∵EF∥AB∴AB∥CD(平行于同一条直线的两条直线互相平行)(2)请再选用一种方法,加以证明【答案】(1)BEF,C,FEC,CD;(1)见解析【解析】(1)利用平行线的判定和性质一一判断即可.(1)如图1中,延长BE交CD于F,根据三角形的外角定理证明∠B=∠EFC即可.【详解】(1)证明:过点E,做EF∥AB,如图1.∴∠B=∠BEF,∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知),∴∠B+∠C=∠BEF+∠FEC(等量代换),∴∠C=∠FEC(等式性质),∴EF∥CD,∵EF∥AB,∴AB∥CD(平行于同一条直线的两条直线互相平行)故答案为:BEF,C,FEC,CD.(1)如图1中,延长BE交CD于F.∵BEC=∠EFC+∠C,∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD.【点睛】本题考查平行线的判定和性质,解题的关键是熟练平行线与外角定理的性质,属于中考常考题型.19.如图,在直角坐标平面内,已知点A的坐标(-5,0).(1)写出图中B 点的坐标 ;(2)若点B 关于原点对称的点是C ,则ABC ∆的面积是 ;(3)在平面直角坐标系中找一点D ,使OBD ∆为等腰直角三角形,且以OB 为直角边,则点D 的坐标是 .【答案】(1)(-3,4);(2)20;(3)1234(4,3)(1,7)(4,3)(7,1)D D D D ---、、、.【解析】(1)根据点B 在坐标系的位置,即可得到答案;(2)先画出点C ,再根据割补法和三角形的面积公式,即可求解;(3)先在坐标系中画出点D 的位置,再写出坐标即可.【详解】(1)由点B 在坐标系的位置,可知:B 点的坐标(-3,4),故答案是:(-3,4);(2)如图1所示:15(44)202ABC S ∆=⨯⨯+=, 故答案是:20;(3)如图2所示:符合要求点D 的坐标为: 1234(4,3)(1,7)(4,3)(7,1)D D D D ---、、、.【点睛】本题主要考查平面直角坐标系中,点的坐标以及图形的面积,掌握点的坐标的定义和割补法求面积,是解题的关键.20.因式分解:(1)x 2y ﹣2xy 2+y 3(2)4ax2﹣48ax+128a;(3)(x2+16y2)2﹣64x2y2【答案】(1)y(x﹣y)1;(1)4a(x﹣4)(x﹣8);(3)(x+4y)1(x﹣4y)1.【解析】(1)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.(1)此多项式有公因式,应先提取公因式,再对余下的多项式根据十字相乘法分解因式;(3)先根据平方差公式分解因式,再采用完全平方公式继续分解.【详解】(1)x1y﹣1xy1+y3=y(x1﹣1xy+y1)=y(x﹣y)1;(1)4ax1﹣48ax+118a=4a(x1﹣11x+31)=4a(x﹣4)(x﹣8);(3)(x1+16y1)1﹣64x1y1=(x1+16y1+8xy)(x1+16y1﹣8xy)=(x+4y)1(x﹣4y)1.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21.如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|2a+6|+(2a﹣3b+12)2=0,现同时将点A,B分别向左平移2个单位,再向上平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)请直接写出A、B、C、D四点的坐标;(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段AC上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠POB的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在,直接写出点M 的坐标;若不存在,试说明理由.【答案】(1)A(﹣3,0),B(2,0),C(-5,2),D(0,2);(2)∠PQD+∠OPQ+∠POB=360°,理由见解析;(3)(2,0)或(﹣8,0)或(0,﹣43)或(0,163)【解析】(1)根据绝对值的非负性、偶次方的非负性分别求出a、b,得到点A,B的坐标,即可解决问题;(2)求出五边形QPOBD的内角和,根据平行线的性质得到∠QDB+∠OBD=180°,计算即可;(3)根据题意求出△ACD的面积,分点M在x轴上、点M在y轴上两种情况,根据三角形的面积公式计算即可.【详解】解:(1)∵|2a+6|+(2a﹣3b+12)2=0,∴|2a+6|=0,(2a﹣3b+12)2=0,解得,a=﹣3,b=2,则点A,B的坐标分别为A(﹣3,0),B(2,0);将点A,B分别向左平移2个单位,再向上平移2个单位,分别得到点A,B的对应点C,D,则C(-5,2)D(0,2);(2)∠PQD+∠OPQ+∠POB=360°,理由如下:五边形QPOBD的内角和=(5﹣2)×180°=540°,∵CD∥AB,∴∠QDB+∠OBD=180°,∴∠PQD+∠OPQ+∠POB=540°﹣(∠QDB+∠OBD)=360°;(3)由题意得,点C的坐标为(﹣5,2),点D的坐标为(0,2),则△ACD的面积=12×5×2=5,当点M在x轴上时,设点M的坐标为(x,0),则AM=|﹣3﹣x|,由题意得,12×|﹣3﹣x|×2=5,解得,x=2或﹣8,当点M在y轴上时,设点M的坐标为(0,y),则AM=|2﹣y|,由题意得,12×|2﹣y|×3=5,解得,y=﹣43或163,综上所述,三角形MAD的面积与三角形ACD的面积相等时,点M的坐标为(2,0)或(﹣8,0)或(0,﹣4 3 )或(0,163).【点睛】本题考查的是非负数的性质、平移变换、三角形的面积计算,掌握坐标与图形的关系、灵活运用分情况讨论思想是解题的关键22.如图1,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)观察猜想:将图1中的三角尺OCD 沿AB 的方向平移至图2的位置,使得O 与点N 重合,CD 与MN 相交于点E ,则CEN ∠=________;(2)操作探究:将图1中的三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在MON ∠的内部,如图3,且OD 恰好平分MON ∠,CD 与MN 相交于点E ,求CEN ∠的度数;(3)深化拓展:将图1的三角尺OCD 绕点O 按沿顺时针方向旋转一周,在旋转的过程中,当边OC 旋转________度时,边CD 恰好与边MN 平行.(直接写出结果)【答案】(1)105°;(2)150°;(3)75°或255°【解析】分析: (1)根据三角形的内角和定理可得∠CEN=180°-∠DCN-∠MNO ,代入数据计算即可得解; (2)根据角平分线的定义求出∠DON=45°,利用内错角相等两直线平行求出CD ∥AB ,再根据两直线平行,同旁内角互补求解即可;(3)①分CD 在AB 上方时,CD ∥MN ,设OM 与CD 相交于F ,根据两直线平行,同位角相等可得∠OFD=∠M=60°,然后根据三角形的内角和定理列式求出∠MOD ,即可得解;CD 在AB 的下方时,CD ∥MN ,设直线OM 与CD 相交于F ,根据两直线平行,内错角相等可得∠DFO=∠M=60°,然后利用三角形的内角和定理求出∠DOF ,再求出旋转角即可;②分CD 在OM 的右边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出∠CGN ,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CON ,再求出旋转角即可,CD 在OM 的左边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出∠NGD ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠AOC ,然后求出旋转角,计算即可得解. 详解:(1)105°;(2)∵OD 平分∠MON ,∴∠DON=12∠MPN=12×90°=45°, ∴∠DON=∠D=45°,∴CD ∥AB ,∴∠CEN=180°﹣∠MNO=180°﹣30°=150°;(3)75°或255°时,边CD 恰好与边MN 平行.点睛: 本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.23.如图,在ABC 和DEF 中,点B 、E 、C 、F 在同一直线上,请你从以下4个等式中选出3个作为已知条件,余下的1个作为结论,并说明结论正确的理由(写出各种可能的情况,并选择其中一种说理).①AB DE =;②AC DF =;③ABC DEF ∠=∠;④BE CF =.【答案】已知条件是①,②,④.结论是③.或:已知条件是①,③,④.结论是②.说理过程见解析.【解析】此题答案不唯一,可选择已知条件是①,②,④,结论是③.由④可得BC=EF ,根据SSS 可得出△ABC ≌△DEF ,从而证出结论③.【详解】解:已知条件是①,②,④.结论是③.说理过程:因为BE CF =(已知),所以BE EC CF EC +=+(等式性质).即BC EF =.在ABC 和DEF 中,()()(),,,AB DE BC EF AC DF ⎧=⎪=⎨⎪=⎩已证已证已证 所以()..ABC DEF S S S △≌△所以ABC DEF ∠=∠(全等三角形的对应角相等).【点睛】本题是一道开放性的题目,考查了全等三角形的判定和性质,此题还可以已知①③④,再证明②,利用SAS 即可.24.a 为何值时,-3是关于x 的一元一次方程:a -2x =6x +5-a 的解. 【答案】192- 【解析】将x=-3代入a -2x =6x +5-a 中,得到关于a 的方程,解方程即可求出a 的值.【详解】∵-3是关于x 的一元一次方程:a -2x =6x +5-a 的解∴a-2×(-3)=6×(-3)+5-a解得a=192-∴a=192-时,-3是关于x 的一元一次方程:a -2x =6x +5-a 的解.【点睛】本题考查了一元一次方程的解的定义:能使一元一次方程左右两边成立的未知数的值是方程的解. 25.如图,在□AB CD中,AC,BD相交于点O,点E在AB上,点F在CD上,EF经过点O.求证:四边形BEDF是平行四边形.【答案】见解析【解析】根据平行四边形性质,先证△ODF≌△OBE,得OF=OE,又OD=OB,可证四边形BEDF是平行四边形.【详解】∵在□ABCD中,AC,BD相交于点O,∴DC∥AB ,OD=OB.∴∠FDO=∠EBO,∠DFO=∠BEO.∴△ODF≌△OBE.∴OF=OE.∴四边形BEDF是平行四边形.【点睛】本题考核知识点:平行四边形的性质和判定. 解题关键点:熟记平行四边形的性质和判定.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知AB CD ∥,150∠=,245∠=,则CAD ∠等于( )A .75°B .80°C .90°D .85°【答案】D 【解析】先根据平行线的性质得出245BAD ∠=∠=︒,然后利用平角的定义得出180(1)CAD BAD ∠=︒-∠+∠,即可求解.【详解】//AB CD ,245BAD ∴∠=∠=︒.1180BAD CAD ∠+∠+∠=︒ ,180(1)180(5045)85CAD BAD ∴∠=︒-∠+∠=︒-︒+︒=︒.故选:D .【点睛】本题主要考查平行线的性质及平角的定义,掌握平行线的性质是解题的关键.2.为了解某地区初一年级7000名学生的体重情况,现从中抽测了500名学生的体重,就这个问题来说,下面的说法中正确的是( )A .7000名学生是总体B .每个学生是个体C .500名学生是所抽取的一个样本D .样本容量是500【答案】D【解析】A. 7000名学生的体重是总体,故A 选项错误;B. 每个学生的体重是个体,故B 选项错误;C. 500名学生中,每个学生的体重是所抽取的一个样本,故C 选项错误;D.样本容量是500,正确,故选D.3.下列四个算式中,可以直接用平方差公式进行计算的是( )A .(﹣a+b )(﹣a ﹣b )B .(2a+b )(a ﹣2b )C .(a ﹣b )(b ﹣a )D .(a+b )(﹣a ﹣b ) 【答案】A【解析】根据平方差公式的结构特点“两数之和与两数之差的乘积等于这两数的平方差”,对各项分析判断即可.【详解】解:A、(﹣a+b)(﹣a﹣b)=(﹣a)2﹣b2=a2﹣b2,符合平方差公式的结构特点,正确;B、(2a+b)(a﹣2b),不是相同的两个数的和与差的积,不符合平方差公式的结构特点,错误;C、(a﹣b)(b﹣a),两项互为相反数,不符合平方差公式的结构特点,错误;D、(a+b)(﹣a﹣b),两项互为相反数,不符合平方差公式的结构特点,错误;故选:A.【点睛】本题考查的是平方差公式的结构特点,熟记公式的结构是解题的关键.4.下列命题:①内错角相等,两直线平行;②若,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4 个B.3 个C.2 个D.1 个【答案】B【解析】先写出命题的逆命题,再对逆命题的真假进行判断即可.【详解】①内错角相等,两直线平行的逆命题是两直线平行,内错角相等,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对顶角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选B.【点睛】本题考查了逆命题的判定.理解相关性质是关键.54313、0.3、π、2.1234567891011121314…(自然数依次排列)38有()A.2个B.3个C.4个D.5个【答案】B3π,2.1234567891011121314…(自然数依次排列),共3个,故选B.6.下列实数是负数的是()A2B.3 C.0 D.﹣1【答案】D【解析】根据小于零的数是负数,可得答案.【详解】解:由于-1<0,所以-1为负数.故选:D.【点睛】本题考查了实数,小于零的数是负数.7.如图,把一张长方形纸片ABCD沿EF折叠后,ED与BC交点为G,D、C分别在M、N的位置上,若∠2-∠1=40°,则∠EFC的度数为()A.115°B.125°C.135°D.145°【答案】B【解析】根据平行线的性质可得∠1与∠2之和,又因为∠2-∠1=40°,解二元一次方程组可得∠1与∠2的度数,根据平角求得∠DEM的度数,利用折叠的性质可得∠DEF的度数,最后根据两直线平行,同旁内角互补求得∠EFC即可.【详解】∵四边形ABCD是长方形∴AD∥BC∴∠1+∠2=180°又∵∠2-∠1=40°解得;∠1=70°,∠2=110°∴∠DEM=110°由折叠可知:∠DEF=12∠DEM=55°∵∠DEF+∠EFC=180°∴∠EFC=125°故选;B【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质定理是关键.另需注意,折叠问题中,折叠过去的对应角、对应线段都相等.8.如图,直线AB,AF被BC所截,则∠2的同位角是()A .∠1B .∠2C .∠3D .∠4【答案】D 【解析】根据同位角的定义逐个判断即可.【详解】如果直线AB ,AF 被BC 所截,那么∠2的同位角是∠4,故选D .【点睛】本题考查了同位角、内错角、同旁内角等定义,熟练掌握同位角的定义是解题的关键.9.若m n >,则下列不等式不成立的是( )A .22m n ->-B .33m n ->-C .33m a n a +>+D .55m n -<- 【答案】B【解析】不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变.【详解】解:A 、不等式两边同时减去2,不等号的方向不变,故本选项成立;B 、不等式两边都乘以-1,不等号的方向改变,故本选项不成立;C 、不等式两边都加上3a ,不等号的方向不变,故本选项成立;D 、不等式两边都除以-5,不等号的方向改变,故本选项成立;故选:B .【点睛】本题考查了不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 10.如图,AE ∥BF ,∠1=110°,∠2=130°,那么∠3的度数是( )A .40°B .50°C .60°D .70°【答案】C 【解析】延长AC 交FB 的延长线于点D ,根据平行线性质定理即可解答.【详解】解:如图,延长AC 交FB 的延长线于点D ,∵AE ∥BF ,∴∠4=180°﹣∠1=70°,∴∠3=∠2﹣∠4=60°.故选:C .【点睛】本题考查平行线性质定理,两直线平行,同旁内角互补.二、填空题题11.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有▲人.【答案】216【解析】由题意得,50个人里面坐公交车的人数所占的比例为:15/50 =30%,故全校坐公交车到校的学生有:720×30%=216人.即全校坐公交车到校的学生有216人.12.已知数据:123,π9-4,这些数中,无理数所占的百分比为______.【答案】40%【解析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,求出无理数的个数即可解答.【详解】解:数据:123,π9-42,π共2个,所以无理数所占的百分比为2÷5=40%.故答案为:40%【点睛】此题考查无理数的定义,解题的关键是熟练掌握无理数的三种形式.13.点M(2,﹣3)到x轴的距离是_____.【答案】3【解析】根据点到x轴的距离等于纵坐标的绝对值解答.【详解】33-=,∴点()2,3M -到x 轴的距离是3.故答案为:3.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值是解题的关键.14.若点()21,3M m n -+在x 轴的负半轴上,则m ______,n ______. 【答案】12< 3=- 【解析】根据x 轴的负半轴上点的纵坐标等于零,横坐标小于零,可得到答案.【详解】∵点M (2m-1,n+1)在x 轴的负半轴上,∴2m-1<0,n+1=0,∴m <12,n=-1. 故答案为:<12,-1. 【点睛】本题考查了点的坐标,利用x 轴上点的坐标特点分析是解题关键.15.已知直线y =x ﹣3与y =2x+2的交点为(﹣5,﹣8),则方程组30220x y x y --=⎧⎨-+=⎩的解是_____. 【答案】5,{8x y =-=-【解析】由一次函数的交点与二元一次方程组解的关系可知方程组的解是58x y =-⎧⎨=-⎩. 故答案为58x y =-⎧⎨=-⎩16.某道路安装的护栏平面示意图如图所示,每根立柱宽为0.2米,立柱间距为3米,设有x 根立柱,护栏总长度为y 米,则y 与x 之间的关系式为_______.【答案】y =1.2x ﹣1.【解析】根据题意得到等式:护栏总长度等于(每根立柱宽+立柱间距)乘以立柱数-1.【详解】由题意得y 与x 之间的关系式为y =(0.2+1)x ﹣1=1.2x ﹣1.故答案为:y =1.2x ﹣1.【点睛】本题考查列二元一次方程,解题的关键是读懂题意,得到等式关系.17.如图,将一副三角板如图摆放(一块三角板的直角边与另一块三角板的斜边在同一直线上),那么α∠=__________.【答案】75︒【解析】根据三角形的内角和为180°,即可得出α∠的度数.【详解】解:如图:∵∠B=60°,∠CFB=45°,∴由三角形的内角和,得180604575α∠=︒-︒-︒=︒;故答案为:75°.【点睛】本题主要考查了三角形的内角和为180°,熟练掌握三角形的内角和性质是解题的关键,难度适中.三、解答题18. “综合与实践”学习活动准备制作一组三角形,记这些三角形分别为a b c ,,,用记号()()a b c a b c ,,≤≤表示一个满足条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形.(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;(2)如图,AD 是ABC ∆的中线,线段AB AC ,的长度分别为2个,6个单位长度,且线段AD 的长度为整数个单位长度,过点C 作CE AB ∥交AD 的延长线于点E .①求AD 的长度;②请直接用记号表示ACE ∆.【答案】(1)(1,1,1),(1,2,2),(2,2,2);(2)①3AD =;②(2,6,6)【解析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)①根据题意,由AAS 可证明ABD ECD ∆∆≌,所以2AD DE CE AB ===,2AE AD =,再根据三角形三边关系可得AC CE AE AC CE -<<+,即62262AD -<<+,所以24AD << ,又因为AD 的长度为整数个单位长度,所以得3AD =.②由①得ACE ∆的三边分别是2,6,6,根据题意可得答案.【详解】解:(1)因为大于0且小于3的整数的整数有1、2,所以根据三角形三边关系列举出所有满足条件的三角形有:(1,1,1),(1,2,2),(2,2,2);(2)①如图 ∵CE AB ∥∴ABD ECD BAD CED ∠=∠∠=∠在ABD ∆和ECD ∆中 ABD ECD BAD CED BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABD ECD ∆∆≌∴2AD DE CE AB ===∴2AE AD =在ACE ∆中 ∵AC CE AE AC CE -<<+∴62262AD -<<+∴24AD <<∵AD 的长度为整数个单位长度∴3AD =;②由①得,ACE ∆的三边分别是2,6,6,根据题意,用记号表示ACE ∆为(2,6,6).【点睛】本题考查三角形的三边关系,三角形中线,解题关键是利用中线倍长法做辅助线.19.(10分)每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的新机器可选,其中每台的价格、工作量如下表.经调查:购买一台甲型机器比购买一台乙型机器多2万元,购买2台甲型机器比购买3台乙型机器少6万元.(1)求a 、b 的值;(2)若该公司购买新机器的资金不能超过110万元,请问该公司有几种购买方案?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列图形中,能通过其中一个三角形平移得到的是( )A .B .C .D .【答案】C【解析】利用平移的性质,结合轴对称、旋转变换的定义判断得出即可.【详解】A 、可以通过轴对称得到,故此选项不符合题意;B 、可以通过旋转得到,故此选项不符合题意;C 、可以通过平移得到,故此选项符合题意;D 、可以通过旋转得到,故此选项不符合题意;故选C .【点睛】此题主要考查了平移的性质以及轴对称、旋转变换图形,正确把握定义是解题关键.平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.2.点A(-3,4)所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】先判断出所求的点的横纵坐标的符号,进而判断点A 所在的象限.【详解】解:因为点A (-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A 在第二象限.故选:B .【点睛】本题主要考查点的坐标的性质,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.不等式112x x ->的解集是( ) A .1x >B .2x >-C .12x <D .2x <-【答案】D【解析】首先移项,再合并同类项,最后把x 的系数化为1即可.【详解】移项,1x x1 2->的合并同类项,1x1 2 ->系数化为1,x<-2故选D【点睛】此题主要考查了一元一次不等式(组)的解法,关键是掌握不等式的基本性质.4.两位同学在解方程组时,甲同学由正确地解出,乙同学因把C写错了解得,那么a、b、c的正确的值应为A.B.C.D.【答案】A【解析】把代入得,由方程组中第二个式子可得:c=-1.用排除法,可以直接解答.【详解】解:把代入得:,由②得:,四个选项中行只有A符合条件.故选择:A.【点睛】此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.5.下列图中不是凸多边形的是()A.B.C.D.【答案】A【解析】根据凸多边形的概念,如果多边形的边都在任何一条边所在的直线的同旁,该多边形即是凸多边形.否则即是凹多边形,故A不是凸多边形;B是凸多边形;C是凸多边形;D是凸多边形.故选A.6.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠2 B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=45°,则有BC∥AD【答案】A【解析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAD=90°+60°=150°,∴∠D+∠CAD=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠D+∠3=∠B+∠4,∴∠4=30°,∵∠D=30°,∴∠4=∠D,故C正确,∵∠2=45°,∴∠3=45°,∴∠B=∠3,∴BC∥AD故D正确.故答案选:A.【点睛】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.7.每周一,同学们都要进行庄严的升旗仪式,你可以用哪幅图来近似的刻画国旗的高度与时间的关系A.B.C.D.【答案】B【解析】国旗升起的高度随时间的增大而增大,且高度在某个时间点之后应该保持不变.【详解】解:∵国旗升起的高度随时间的增大而增大,且高度在某个时间点之后应该保持不变,应该选B.故选:B.【点睛】本题考查函数的图象,根据题意得出国旗升起的高度与时间的函数关系是解题的关键.8.如图所示的立体图形,从上面看到的图形是()A.B.C.D.【答案】C【解析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看得到从左往右3列正方形的个数依次为:第一列是二个小正方形,第二列是一个小正方形,第三列是一个小正方形.故选:C.【点睛】本题考查简单组合体的三视图,从上边看得到的图形是俯视图.9.下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()A.①B.②C.③D.④【答案】B【解析】试题分析:①适合普查,故①不适合抽样调查;②调查具有破坏性,故适合抽样调查,故②符合题意;③调查要求准确性,故③不适合抽样调查;④安检适合普查,故④不适合抽样调查.故选B .考点:全面调查与抽样调查.10.将一副三角尺按如图的方式摆放,其中l 1∥l 2,则∠α的度数是( )A .30°B .45°C .60°D .70°【答案】C 【解析】先由两直线平行内错角相等,得到∠A=30°,再由直角三角形两锐角互余即可得到∠α的度数.【详解】解:如图所示,∵l 1∥l 2,∴∠A=∠ABC=30°,又∵∠CBD=90°,∴∠α=90°﹣30°=60°,故选C .【点睛】此题考查了平行线的性质和直角三角形的性质.注意:两直线平行,内错角相等.二、填空题题11.如图,已知20B ∠=,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,以此类推3A ∠的度数是__________.【答案】20°. 【解析】根据等腰三角形的性质即可得到结论.【详解】解:∵∠B=20°,AB=A 1B , ∴∠A=12(180°-∠B)=80°, ∵1112A B A A =,∴∠2A =1802⨯︒=40︒. ∵2223A B A A =,∴∠3A =12⨯40°=20°. 故答案为:20°.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.12.如果12x y =⎧⎨=⎩是方程2mx ﹣7y =10的解,则m =_____. 【答案】m=1【解析】根据二元一次方程解的定义,将12x y =⎧⎨=⎩代入2mx ﹣7y =10,即可求出m 的值. 【详解】解:把12x y =⎧⎨=⎩代入2mx ﹣7y =10,得 2m ﹣7×2=10,解得m =1.【点睛】解题关键是把方程的解代入原方程,使原方程转化为以系数m 为未知数的方程.13.若多项式291x mx -+(m 是常数)中,是一个关于x 的完全平方式,则m 的值为_________.【答案】6或6- 【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】因为2291=()1x mx mx -+-+23x ,所以2=231mx x -±••,解得=6m ±.故m 的值为6或6-.【点睛】本题考查完全平方式,解题的关键是掌握完全平方式.14.如图,AD 是△ABC 的中线,E 、F 是AD 的三等分点.若△CEF 的面积为1cm 1,则△ABC 的面积为_____cm 1.【答案】6【解析】根据△CEF 的面积与三等分点的等底同高求出△ACD 的面积,在利用中线平方面积即可求出△ABC 的面积.【详解】∵E 、F 是AD 的三等分点,△CEF 的面积为1cm 1,∴S △ACD =3S △CEF =3cm 1,∵AD 是△ABC 的中线,∴S △ABC =1S △ADC =6cm 1,【点睛】此题主要考查三角形的中线的性质,解题的关键是熟知中线平分面积.15.若26m n -<-,则3m ______n .(填“<、>或=”号) 【答案】> 【解析】根据不等式的性质解答即可.【详解】不等式两边乘以-6,根据不等式两边乘(或除以)同一个负数,不等号的方向改变可得: 3m >n .故答案为:>.【点睛】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.已知关于x 的不等式组0521x a x -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 【答案】-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围.详解:0521x a x ①②,-≥⎧⎨->⎩由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤< 由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.17.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.【答案】()3,2【解析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点(3,2)A -关于x 轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x 轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y 轴对称的点的坐标纵坐标不变,横 坐标变为相反数;三、解答题18.2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下降重举行.组委会(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两种纪念品发放.其中甲种纪念品每件售价120元,乙种纪念品每件售价80元.(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?(2)设购买甲种纪念品m 件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?【答案】(1)购甲、乙两种纪念品分别有40、60件;(2)共2种方案.【解析】(1)设甲种纪念品购买了x 件,乙种纪念品购买了(100-x )件,利用购买甲、乙两种纪念品一共花费了9600元列方程120x+80(100-x )=9600,然后解方程求出x ,再计算(100-x )即可;(2)设购买甲种纪念品m 件,乙种奖品购买了(100-m )件,利用购买乙种纪念品的件数不超过甲种奖品件数的2倍,总花费不超过9400元列不等式组 ()1002120801009400m m m m -≤⎧⎨+-≤⎩,然后解不等式组后确定x 的整数值即可得到组委会的购买方案.【详解】(1)设甲种纪念品购买了x 件,乙种纪念品购买了(100-x )件,根据题意得120x+80(100-x )=9600,解得x=40,则100-x=60,答:设甲种纪念品购买了40件,乙种纪念品购买了60件;(2)设购买甲种纪念品m 件,乙种奖品购买了(100-m )件,根据题意,得 ()1002120801009400m m m m -≤⎧⎨+-≤⎩, 解得 1003≤m≤35, ∵m 为整数,∴m=34或m=35,当m=34时,100-m=66;当m=35时,100-m=65;答:组委会有2种不同的购买方案:甲种纪念品34件,乙种奖品购买了66件或甲种纪念品35件,乙种奖品购买了65件.【点睛】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题.19.把下列各式进行因式分解:(1)2222184x x y xy -+-;(2)231827m m -+;(3)22()()x x y y y x -+-【答案】()()21292x x xy y --+;(2)23(3)m -;(3()2)()x y x y -+.【解析】(1)直接提取公因式-2x ,进而分解因式即可;(2)首先提取公因式3,剩下的因式再利用完全平方公式进行分解因式即可;(3)首先提取公因式(x-y),进而利用平方差公式分解因式.【详解】()()222212184292x x y xy x x xy y -+-=--+; (2)()222318273693(3)m m m m m -+=-+=-;(3()()()()()22222)()x x y y y x x y x y x y x y -+-=--=-+.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.20.如图1,已知直线//EF GH ,且EF 和GH 之间的距离为1,小明同学制作了一个直角三角形硬纸板ACB ,其中90ACB ∠=︒,60BAC ∠=︒,1AC =.小明利用这块三角板进行了如下的操作探究:(1)如图1,若点C 在直线EF 上,且20ACE ∠=︒.求1∠的度数;(2)若点A 在直线EF 上,点C 在EF 和GH 之间(不含EF 、GH 上),边BC 、AB 与直线GH 分别交于点D 和点K .①如图2,AKD ∠、CDK ∠的平分线交于点O .在ABC ∆绕着点A 旋转的过程中,O ∠的度数是否变化?若不变,求出O ∠的度数;若变化,请说明理由;②如图3,在ABC ∆绕着点A 旋转的过程中,设EAK n ∠=︒,()4310CDK m n ∠=--︒,求m 的取值范【答案】(1)170∠=︒;(2)①不变,75︒;②70115m <<.【解析】(1)根据两直线平行,内错角相等可得∠1的度数;(2)①先根据四边形的内角和得∠AKD+∠CDK=360°-90°-60°=210°,由角平分线的定义和三角形的内角和可得结论;②先根据①的结论,结合平行线的性质得:n=2m-110,确认点C 边界上两点时,n 的取值,代入n=2m-110,可得结论.【详解】(1)如图1,∵∠ACB=90°,∠ACE=20°,∴∠ECB=90°-20°=70°,∵EF ∥GH ,∴∠1=∠ECB=70°;(2)①在△ABC 绕着点A 旋转的过程中,∠O 的度数不发生变化,理由是:如图2,∵∠BAC=60°,∠ACB=90°,∴∠AKD+∠CDK=360°-90°-60°=210°,∵∠AKD、∠CDK的平分线交于点O,∴∠OKD=12∠AKD,∠ODK=12∠CDK,∴∠OKD+∠ODK=105°,∴∠O=180°-105°=75°;②∵EF∥GH,∴∠EAK=∠AKD=n°,由①知:∠AKD+∠CDK=210°,∴n+4m-3n-10=210,n=2m-110,如图3,点C在直线EF上时,∠EAK=n=180°-60°=120°,如图4,∵AC=1,且EF和GH之间的距离为1,∴点C在直线GH上时,∠EAK=n=90°-60°=30°,∵点C在EF和GH之间(不含EF、GH上),∴30°<n<120°,即30<2m-110<120,∴m的取值范围是:70°<m<115°.【点睛】本题考查了平行线的性质、三角形的内角和、四边形的内角和、平行线的距离、角平分线的定义,熟练掌握平行线的性质关键.21.直线AB∥CD,直线EF分别交直线AB、CD于点E、F,FH平分∠EFD,若∠FEH=100º,求∠EHF的度数.【答案】40º【解析】根据平行线的性质可得到∠EHF=∠HFD,由角平分线性质可得到∠EFH=∠HFD,从而可得到∠EHF=∠EFH,已知∠FEH=100°,从而不难求得∠EHF的度数.【详解】∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∵∠FEH=100°,∴∠EHF=40°.【点睛】本题考查的是角平分线定义和平行线的性质,用到的知识点为:两直线平行,内错角相等.22.为了解学生对校园网站五个栏目的喜爱情况(规定每名学生只能选一个最喜爱的).学校随机抽取了部分学生进行调查,将调查结果整理后绘制成如下两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有_____人,扇形统计图中m =_____;(2)将条形统计图补充完整;(3)若该校有1800名学生,估计全校最喜爱“校长信箱”栏目的学生有多少人?【答案】(1)本次被调查的学生有200人,扇形统计图中m=30%.;(2)补全条形统计图见解析; (3)全校最喜爱“校长栏目”的学生有540人.【解析】(1)用A 类人数除以它所占的百分比可得到调查的总人数,然后用B 类人数除以总人数可得到m 的值;(2)先计算出C 类人数,然后补全条形统计图;(3)用1800乘以样本中B 类人数所占的百分比即可;【详解】(1)从条形统计图可知,A 栏目的人数有30人从扇形统计图可知,A 栏目人数占调查总人数的15%∴调查的总人数为:30÷15%=200(人)由表可知,m 表示B 栏目的人数占总调查总人数的百分比从条形统计图可知,B 栏目的人数有60人∴m=200100%60⨯=30% ∴本次被调查的学生有200人,扇形统计图中m=30%.(2)由(1)知,被调查的学生的总人数为200人从扇形统计图可知,C 栏目人数占调查总人数的25%∴C 栏目的人数为:200×25%=50人补全条形统计图如下:(3)由题知,“校长信箱”为B 栏目,由(1)知,B 栏目人数占调查总人数的百分比为30%∴根据样本估计总体可得:1800×30%=540人∴全校最喜爱“校长栏目”的学生有540人.【点睛】本题考查用样本估计总体、扇形统计图和条形统计图,解题的关键是熟练掌握用样本估计总体,读懂扇形统计图和条形统计图所包含的信息.23.(1)计算:32564|12|-+-.(2)解不等式2223x x x +--<,并把解集在数轴上表示出来.(3)解方程组:521123xyyx+⎧⎪-⎨-⎪⎩==.【答案】(1)2;(2)x<2,(3)12xy==⎧⎨-⎩【解析】(1)根据实数的运算法则计算即可;(2)去分母、去括号、移项、合并同类项、系数化为1即可得答案;再按照不等式解集的表示方法在数轴上表示即可;(3)先把②两边同时乘以6可得6x-2y=10③,再利用加减消元法解方程即可求出x的值,代入①求出y值即可得答案.【详解】(1)原式=5-4+2-1=2;(2)去分母,得6x-3(x+2)<2(2-x),去括号,得6x-3x-6<4-2x,移项,合并得5x<10,系数化为1,得x<2,不等式的解集在数轴上表示如下:(3)521123x yyx+⎧⎪⎨--⎪⎩=①=②②×6得:6x-2y=10③,①+③得:11x=11,即x=1,将x=1代入①,得y=-2,则方程组的解为12xy==⎧⎨-⎩.【点睛】本题考查了实数的运算、解一元一次不等式及解二元一次方程组,熟练掌握实数的运算法则及一元一次不等式、二元一次方程组的解法是解题关键.24.如图,在平面直角坐标系XOY中,△ABC的三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把△ABC向上平移3个单位长度,再向左平移2个单位长度得到△A'B'C',点A、B、C 的对应点分别为A'、B'、C'(1)写出点A'、B'、C'的坐标;(2)在图中画出平移后的△A'B'C';(3)△A'B'C'的面积为______.【答案】(1)点A′的坐标为(-3,01)、点B′的坐标为(2,4),点C′的坐标为(-1,5);(2)作图见解析;(3)7.【解析】分析:(1)根据“横坐标,右移加,左移减;纵坐标,上移加,下移减”即可得;(2)顺次连接A ',B ',C '即可得三角形A B C ''';(3)利用割补法,用长方形的面积减去A B C '''外三个三角形的面积可得.详解:(1)∵点A 的坐标为(-2,-2)、点B 的坐标为(3,1),点C 的坐标为(0,2),∴向上平移3个单位长度,再向左平移1个单位长度后点A '的坐标为(-3,01)、点B '的坐标为(2,4),点C '的坐标为(-1,5);(2)平移后的图形如图所示.(3)三角形A B C '''的面积=5×4111533142222-⨯⨯-⨯⨯-⨯⨯=7. 点睛:本题主要考查坐标与图形的变化-平移,解题的关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的规律和割补法求面积.25.尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的ABC 中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空.(1)作出BAC ∠的平分线交BC 边于点D ;(2)作出AC 边上的垂直平分线l 交AD 于点G ;(3)连接GC ,若5560B BCA ∠=︒∠=︒,,则AGC ∠的度数为 .【答案】(1)见解析;(2)见解析;(3)115°【解析】(1)以点A 为圆心,取任意长度为半径画弧与边AB 、AC 边得到两个交点,分别以这两个交点为圆心,大于这两个交点之间的距离为半径画弧相交于一点,连接点A 与这点的射线即是BAC ∠的平分线.【详解】(1)AD 即为所求,(2)直线l 即为所求直线,(3)∵5560B BCA ∠=︒∠=︒,,∴∠BAC=180°-∠B-∠BCA=65°,∵AD 平分∠BAC ,∴∠CAG=12∠BAC , ∵直线l 垂直平分AC ,∴AG=CG ,∴∠ACG=∠CAG ,∴AGC ∠=180°-65°=115°,故答案为:115°.【点睛】此题考查角平分线的作图方法,线段垂直平分线的作图方法,等腰三角形的性质,线段垂直平分线的性质.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题:①三角形内角和为180°;②三角形的三条中线交于一点,且这点在三角形内部;③三角形的一个外角等于两个内角之和;④过一点,有且只有一条直线与已知直线平行;⑤对顶角相等.其中真命题的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】利用三角形的内角和,三角形中线的性质、外角的性质及对顶角的性质分别判断后即可确定正确的选项.【详解】解:①三角形内角和为180°,正确,是真命题;②三角形的三条中线交于一点,且这点在三角形内部,正确,是真命题;③三角形的一个外角等于不相邻的两个内角之和,故原命题错误,是假命题;④过直线外一点,有且只有一条直线与已知直线平行,故原命题错误,是假命题;⑤对顶角相等,正确,是真命题,真命题有3个,故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和,三角形的中线的性质、外角的性质及对顶角的性质,难度不大.2.下列说法中,正确的是( )A .2是分数B .0是正整数C .227是有理数 D【答案】C【解析】根据分数,整数,有理数,无理数的定义即可解答.【详解】解:A B 、0既不是正整数,也不是负整数.故本选项错误;C 、227是分数,属于有理数,故本选项正确;D 4故选:C .【点睛】本题考查分数,整数,有理数,无理数的定义,熟悉掌握是解题关键.3.下面列出的不等式中,正确的是()A.“m不是正数”表示为m<0B.“m不大于3”表示为m<3C.“n与4的差是负数”表示为n﹣4<0D.“n不等于6”表示为n>6【答案】C【解析】根据各个选项的表示列出不等式,与选项中所表示的不等式对比即可.m≤故错误.【详解】A. “m不是正数”表示为0,m≤故错误.B. “m不大于3”表示为3,C. “n与4的差是负数”表示为n﹣4<0,正确.n≠,故错误.D. “n不等于6”表示为6故选:C.【点睛】考查列不等式,解决本题的关键是理解负数是小于0的数,非负数是大于或等于0的数,不大于用数学符号表示是“≤”.4.如图,直线AB,CD相交于点O,,垂足为O,若,则的度数为()A.70 B.90 C.110 D.120【答案】C【解析】先根据垂直的定义求出∠BOE=90°,然后求出∠BOC的度数,再根据邻补角的定义求出∠DOB的度数.【详解】解:∵OE⊥AB,∴∠BOE=90°,∵∠EOC=20°,∴∠BOC=∠BOE-∠EOC=90°-20°=70°,∴∠DOB=180°-∠BOC=180°-70°=110°.故选:C.【点睛】本题考查了垂线的定义,对顶角相等,邻补角的和等于180°,要注意邻补角的性质:邻补角互补,即和为180°.5.如图,一扇窗户打开后用窗钩AB 可将其固定,这里所运用的几何原理( )A .两点确定一条直线B .垂线段最短C .三角形具有稳定性D .三角形的内角和等于1800【答案】C 【解析】将其固定,显然是运用了三角形的稳定性.【详解】一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性。