1.1.1 正弦定理

合集下载

1.1.1 正弦定理

1.1.1  正弦定理

已知两角和任意一边, 已知两角和任意一边, 求其他两边和一角 。 。 【例 1】 在△ABC 中,已知A = 45 , C = 30 , C c = 10,解三角形. 解: B =180° (A + C) =105° a b
定理的应用
c sin A 10×sin 45° ∴a = =10 2 = sinC sin30° b c = ∵ sin B sin C c sin B 10×sin 105° ∴ b= = = 5( 6 + 2 ) sin 30° sin C
a c = ∵ sin A sinC
A
c
B
【巩固练习】
6+ 2 sin 75 = 4
1.在△ABC中,已知 A=75°,B= 45°, c= 3 2 ,解三角形.
答案:C = 60°, a = 3 + 3 , b = 2 3
2.在△ABC中,已知 A=30°,B=120°, b=12 ,解三角形.
答案:C = 30°, a = 4 3 , c = 4 3
回应情境 △ABC中,已知 =75,C=60,AC=100,求 中 已知A= , = , = , B AB. . c 解: = 180° (A + C) = 45° B
b c a ∵ = sin B sinC 60 b sinC 100× sin60° ∴c = = C sin B sin45° = 50 6
b
A
c
D
B
C
a
c
B
D
a b c b 同理可得 = = sin A sin B sinC sin B
在一个三角形中,各边和它所对角的正弦的比相等, 在一个三角形中,各边和它所对角的正弦的比相等, 即

【数学】1.1.1《正弦定理》课件(新人教B版必修5)

【数学】1.1.1《正弦定理》课件(新人教B版必修5)

对任意三角形,这个等式都会成立吗 对任意三角形 这个等式都会成立吗? 这个等式都会成立吗 怎么证明这个结论? 怎么证明这个结论?
(一)正弦定理的证明 方法一(向量法) 方法一(向量法)
已知: ABC中,CB=a,AC=b,AB=c. 求证: 求证
a b c = = s in A s in B s in C
\ a = s in A b = s in B c s in C
90
0
即等式对任意三角 形都成立
B a c A b C
证法二:(等积法) 证法二: 等积法) 在任意斜 ABC当中 作AD⊥BC于D
c h a
A
b
∴ S ∆ABC = 1 a h 2 B ∵ h = b sin C ∴ S ∆ABC = 1 a b sin C 2
已知在Δ a,b和 例1.已知在ΔABC中,c=10,A=450,C=300,求a,b和B 已知在 中
解:∵c=10 A=450,C=300
a c 10sin 450 a sin A = =10 由 sin A = 得 a= 0 sin C sin 30 sin C b c 由 = sin B sin C
A+ B C sin = cos 2 2
cos( A + B ) = − cos C
3、边角关系: 、边角关系: 1)大边对大角,大角对大边,等边对等角 )大边对大角,大角对大边, 0,则 sin A = a , cos A = b 2)在直角三角形 )在直角三角形ABC中,C=90 则 中
c c
二、展示目标
请同学们思考两个问题: 请同学们思考两个问题: 1.为什么会出现两个解? 为什么会出现两个解? 为什么会出现两个解 2.当a=1时C有几个解;当a= 有几个解; 当 时 有几个解 几个解; 几个解;当a=3时C有几个解 时 有几个解

必修5课件 1.1.1 正弦定理

必修5课件 1.1.1 正弦定理

当A为锐角
当A为直角或钝角
我舰在敌岛A南50西相距12 nmile的B处,发现敌舰正由岛沿北 10西的方向以10nmile/h的速度航行,问:我舰需要以多大速度, 沿什么方向航行才能用2小时追上敌舰? 即追击速度为14mile/h
AC BC 又:∵△ABC中,由正弦定理: sin B sin A
AC
2.找 j 与 AB 、AC 、 的夹角 CB
3。利用等式
AC + CB = AB ,与 j 作内积
比值的意义:三角形外接圆的直径2R
注意: (1)正弦定理适合于任何三角形。
a b c (2)可以证明 = = =2R(R为△ABC外接圆半径) sin A sin B sin C
(3)每个等式可视为一个方程:知三求一
ABC中,c 10, A 45 0 , C 30 0 , 求a, b和B 例1、已知在
例2、在 ABC中,b
3, B 60 0 , c 1, 求a和A, C
例3、ABC中,c
6 , A 45 0 , a 2, 求b和B, C
ቤተ መጻሕፍቲ ባይዱ
解三角形时,注意大边对大角
小结:1。正弦定理可以用于解决已知两角和一边求另两边和一角的 问题。 2。正弦定理也可用于解决已知两边及一边的对角,求其他边 和角的问题。 3。正弦定理及应用于解决两类问题,注意多解情况。 注意: ABC中,已知a, b和A时解三角形的情况: 在
人教版 必修五
第一章
解三角形
1.1.1 正弦定理
正弦定理 证明一(传统证法)在任意斜△ABC当中:
1 1 1 ab sin C ac sin B bc sin A S△ABC= 2 2 2 1 b a c abc 两边同除以 即得: = = 2 sin C , sin A sin B

高中数学新人教A版必修5第一章 1.1 1.1.1 正弦定理

高中数学新人教A版必修5第一章  1.1  1.1.1  正弦定理

正弦定理和余弦定理1.1.1 正弦定理(1)直角三角形中的边角之间有什么关系?(2)正弦定理的内容是什么?利用它可以解哪两类三角形?(3)解三角形的含义是什么?预习课本P 2~3,思考并完成以下问题[新知初探]1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C. [点睛] 正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式. (3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)正弦定理适用于任意三角形( )(2)在△ABC 中,等式b sin A =a sin B 总能成立( ) (3)在△ABC 中,已知a ,b ,A ,则此三角形有唯一解( )解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知a sin A =bsin B,即b sin A =a sin B .(3)错误.在△ABC 中,已知a ,b ,A ,此三角形的解有可能是无解、一解、两解的情况,具体情况由a ,b ,A 的值来定.答案:(1)√ (2)√ (3)×2.在△ABC 中,下列式子与sin Aa 的值相等的是( )A.bc B.sin B sin A C.sin C cD.c sin C 解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2B .10 3C.1033D .5 6解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =30°,a =3,b =2,则这个三角形有 ( )A .一解B .两解C .无解D .无法确定解析:选A ∵b <a ,A =30°,∴B <30°,故三角形有一解.已知两角及一边解三角形[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意] 若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D .32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22.∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin B sin C =6·sin 75°sin 60°=3+1.三角形形状的判断[典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,sin 2A =sin 2B +sin 2C ,且sin A =2sin B ·cos C .试判断△ABC 的形状. 解:由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵sin 2A =sin 2B +sin 2C , ∴⎝⎛⎭⎫a 2R 2=⎝⎛⎭⎫b 2R 2+⎝⎛⎭⎫c 2R 2, 即a 2=b 2+c 2, 故A =90°.∴C =90°-B ,cos C =sin B . ∴2sin B ·cos C =2sin 2B =sin A =1. ∴sin B =22. ∴B =45°或B =135°(A +B =225°>180°,故舍去). ∴△ABC 是等腰直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( )A.53B.35C.37D.57 解析:选A 根据正弦定理得sin A sin B =a b =53. 2.在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos C c,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc ,则cos C =sin C ,即C =45°,故选B.4.在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1解析:选B 在△ABC 中,由正弦定理a sin A =bsin B ,得sin B =b sin Aa =5×133=59.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sinB =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在△ABC 中,若A =105°,C =30°,b =1,则c =________. 解析:由题意,知B =180°-105°-30°=45°.由正弦定理,得c =b sin C sin B =1×sin 30°sin 45°=22. 答案:229.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1, 所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以tan A =-1,因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin A a =2×222=12,又0<C <π4,所以C =π6.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C. 3.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A解析:选A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b .4.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( )A.31010B.1010C.510D.515解析:选B 由题意得EB =EA +AB =2,则在Rt △EBC 中,EC =EB 2+BC 2=4+1= 5.在△EDC 中,∠EDC =∠EDA +∠ADC =π4+π2=3π4,由正弦定理得sin ∠CED sin ∠EDC =DC EC =15=55, 所以sin ∠CED =55·sin ∠EDC =55·sin 3π4=1010. 5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=bsin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC=5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314.答案:33147.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由A -C =90°,得A 为钝角且sin A =cos C ,利用正弦定理,a +c =2b 可变形为sin A +sin C =2sin B ,又∵sin A =cos C ,∴sin A +sin C =cos C +sin C =2sin(C +45°)=2sin B , 又A ,B ,C 是△ABC 的内角,故C +45°=B 或(C +45°)+B =180°(舍去), 所以A +B +C =(90°+C )+(C +45°)+C =180°. 所以C =15°.8.在△ABC 中,已知c =10,cos A cos B =b a =43,求a ,b 及△ABC 的内切圆半径. 解:由正弦定理知sin B sin A =b a ,∴cos A cos B =sin Bsin A .即sin A cos A =sin B cos B ,∴sin 2A =sin 2B . 又∵a ≠b ,∴2A =π-2B ,即A +B =π2.∴△ABC 是直角三角形,且C =90°, 由⎩⎪⎨⎪⎧a 2+b 2=102,b a =43得a =6,b =8.故内切圆的半径为r =a +b -c 2=6+8-102=2.。

1.1.1正弦定理1

1.1.1正弦定理1

图2 C
D
思考
a b c = 求证: = sin A sin B sin C
= ?
2R
(2R为△ABC外接圆直径)
1.1.1正弦定理
在Rt△ABC中,各角与其对边的关系:
b a sin B sin A c c c sin C 1
c
不难得到:
b
A
c
a b c sin A sin B sin C
C
a
B
在非直角三角形ABC中有这样的关系吗?
C
b
A c
a
B
(1)若三角形是锐角三角形, 如图 1, 过点A作AD⊥BC于 D, AD , sin C 此时有 sin B AD c b
应用正弦定理化边为角:

2R
a 2R sin A, b 2R sin B, c 2R sin C
a b c 或化角为边:sin A ,sin B ,sin C 2R 2R 2R
课堂练习:
1.已知ABC的三个内角之比为A : B : C 3: 2 :1,
2:31 : 那么对应的三边之比a : b : c等于 ____________
B 30 , C 105
0

(三角形中大边对大角)
a sin C 2 6 2 c 3 1 sin A 4 2 2
课堂小结
(1)三角形常用公式: A B C
a b c 正弦定理: sin A sin B sin C

(2)正弦定理应用范围:
① ②
已知两角和任意边,求其他两边和一角 已知两边和其中一边的对角,求另一边 的对角。(注意解的情况)
(2)已知两边和其中一边的对角,求其他边和角.

1.1.1正弦定理

1.1.1正弦定理

[评析 (1)已知三角形的任意两个角和一边,由三角形 评析] 已知三角形的任意两个角和一边 评析 已知三角形的任意两个角和一边, 内角和定理,可以先求出三角形的另一角, 内角和定理,可以先求出三角形的另一角,并由正弦定理计 算出三角形的另两边. 算出三角形的另两边. (2)运算过程中, 运算过程中, 要注意三角函数公式的应用, 运算过程中 要注意三角函数公式的应用, 此题中对 105°作了“拆角”处理. 作了“ 作了 拆角”处理.
[评析 (1)已知两边及一边对角时,解三角形可用正弦 评析] 已知两边及一边对角时, 评析 已知两边及一边对角时 定理,关键是准确判断解的情况,可能出现一解、 定理,关键是准确判断解的情况,可能出现一解、两解或无 解的情况. 解的情况. (2)在三角形中, 在三角形中, 在三角形中 注意运用大边对大角或大角对大边的性 局限于一个三角形中). 质(局限于一个三角形中 . 局限于一个三角形中
4.利用正弦定理解三角形的类型及其解的情况 . (1)已知两角与一边,用正弦定理,有解时,只有一解. 已知两角与一边 用正弦定理,有解时,只有一解. 已知两角与一 (2)已知两边及其中一边的对角, 已知两边及其中一边的对角, 用正弦定理, 已知两边及其中一边的对角 用正弦定理, 可能有两 一解或无解. 解、一解或无解.在△ABC 中,已知 a,b 和 A 时,解的情 , 况如下: 况如下:
A 为锐角
A 为钝角或直角
图 形
①a= = bsinA< 关系式 bsinA a<b ②a≥b ≥ 两解 解的个数 一解
a< bsinA 无解
a>b 一解
a≤b ≤ 无解
已知两角及一边解三角形 已知三角形的两角和任一边解三角形,基本思路是: 已知三角形的两角和任一边解三角形,基本思路是: (1)若所给边是已知角的对边时, 若所给边是已知角的对边时, 若所给边是已知角的对边时 可由正弦定理求另一角 所对边,再由三角形内角和定理求出第三个角. 所对边,再由三角形内角和定理求出第三个角. (2)若所给边不是已知角的对边时, 若所给边不是已知角的对边时, 若所给边不是已知角的对边时 先由三角形内角和定 理求出第三个角,再由正弦定理求另外两边. 理求出第三个角,再由正弦定理求另外两边.

1.1.1正弦定理2012.4.26

1.1.1正弦定理2012.4.26

(正确解法 正确解法)解:根据正弦定理, 正确解法
b ⋅ sin A 25 ⋅ sin 133 sin B = = ≈ 0.8311 a 22
0
∵00<B<1800且a<b 而A=1330 ∴这样的三角形不存在! 这样的三角形不存在!
练习:P4 2
正弦定理的另一种证法
证二:如图,圆⊙O为△ABC的外接圆,
0
∴B≈640
错!
∵00<B<1800且a<b ∴B≈640或B≈1160 (1)当B≈640时,… (2)当B≈1160时,… 特别注意!
20 3 变例一:在△ABC中,已知a=20cm,b= 3
cm,A=600,解三角形(角度精确到10,边长精 确到1cm). 解:根据正弦定理,
3 20 ⋅ sin 60 0 b ⋅ sin A 1 3 sin B = = = 20 2 a
例2:在△ABC中,已知a=20cm,b=28cm, ABC中 已知a=20cm,b=28cm, a=20cm 解三角形(角度精确到1 A=400,解三角形(角度精确到10,边长精确到 1cm) 1cm).
C b A a c B
解:根据正弦定理,
b ⋅ sin A 28 ⋅ sin 40 sin B = = ≈ 0.8999 a 20
π
a C
a = sin A c
B
b = sin B c
c A
b
二、提出问题: 提出问题: 三角形中的边与角的关系能够通过哪些式子准 确量化的表示? 确量化的表示? 探究一: 探究一:在Rt△ABC中,结合三角函数,探究 △ 中 结合三角函数, 边角关系? 边角关系?
A
a b = sin A = sin B c c a b ⇒ = = c sinC=1 sin A sin B a b c ⇒ = = sin A sin B sin C

1.1.1正弦定理

1.1.1正弦定理

C/
1 1 1 另证2: S absin C = bc sin A = ac sin B ∆ABC = 2 2 2
A
c
B
b
ha
1 证明: S∆ABC = aha ∵ 2
Da 同理 ∴
S∆ABC = absin C = bc sin A = ac sin B 2 2 2
1 1 S∆ABC = acsin B = absinC 2 2 1 S∆ABC = bcsin A 2 1 1 1
D
b c = , 所以AD=csinB=bsinC, 即 sin B sin C
a c 同理可得 = , sin A sin C
a b c 即: = = sin A sin B sinC
若三角形是钝角三角形 且角 如图2, 若三角形是钝角三角形,且角 是钝角如图 钝角三角形 且角C是 过点A作AD⊥BC, 交BC延长线于D, 此时也有 sin B =
剖析定理、加深理解
a b c 正弦定理: 正弦定理: = = = 2R sin A sin B sinC
2、A+B+C=π 3、大角对大边,大边对大角 大角对大边,
剖析定理、加深理解
a b c 正弦定理: 正弦定理: = = = 2R sin A sin B sinC
4、一般地,把三角形的三个角A,B,C 一般地,把三角形的三个角A 和它们的对边a 叫做三角形的元 和它们的对边a,b,c叫做三角形的元 素。已知三角形的几个元素求其他元素 的过程叫解三角形 的过程叫解三角形
a
B
N
一解
已知A、a、b;求B
(1)A < 90°时 d = asin A
d < a < b时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版A版 高中必修五
第一章 解三角形 1.1.1 正弦定理
学习目标
• 1. 掌握正弦定理的内容; • 2. 掌握正弦定理的证明方法; • 3. 会运用正弦定理解斜三角形的两类基本问题。
学习重点:
正弦定理的内容; 正弦定理的基本应用。
学习难点:
正弦定理的证明。
在初中阶段我们学过:在同一个三角形中,大 边对大角,小边对小角。
我们利用正弦定理可以解 决一些怎样的解三角形问 题呢?
① 已知两角和任意一边,可以求出其他两边和一角; ②已知两边和其中一边的对角,可以求出三角形的其
它的边和角。
一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫做 解三角形。
【课堂练习】
10
2 14
Q 又
B 180 ( A C ) 105
bc sin B sinC
b c sin B 10 sin105 19
sinC
sin 30
例2 在ABC中,已知 a 4,b 4 2, B 45,求A,C和边c .
解:由 a b sin A sin B
(1)在 ABC 中,一定成立的等式是( C)
A. asin A bsinB
B. acos A bcos B
C. asin B bsin A
D. acos B bcos A
(2)在△ABC中,R为△ABC外接圆半径,sina
A
பைடு நூலகம்

b sin B

c sin C

k
则k为( A )
A.2R B.R C.4R D.R
【课外作业】
用向量法证明正弦定理。
A
r e
B
C
【课堂练习】
(3)在△ABC中,根据下列条件解三角形。
① A 600, B 450,c 20
② a 1,b 2, B 450
C 75
① a 30 2 10 6
b 20 3 2
A 30
C 105

c 6 2
2
【课堂练习】
③ a 4,b 2, B 450 ④ c 6,A ,a 2,求b
C 180°(A B)=105°
得 sin A a sin B 1 b2
由b c sin B sin C
∵ 在 ABC 中 a b
∴ A 为锐角
得c bsin C 4 sin B
2 sin105 sin 45

2
62
2
A 30
【探究二】正弦定理的在解三角形中的应用
证法二:
证明:做∆ABC的外接圆e O ,设其半径为R。
过点B做直径A’B,连接A’C。 则∠A’CB=90°,∠A=∠A’。
sin A sin A' a 2R
2R a sin A
2R b
同理:
2R

sin B c
sin C
所以
a b c 2R sin A sin B sin C
【探究二】正弦定理的在解三角形中的应用
我们利用正弦定理可以解 决一些怎样的解三角形问 题呢?
例1 在 ABC 中,已知 c 10, A 45,C 30 ,求a和b。
(保留两个有效数字).
解 : 根据正弦定理
ac sin A sin C
a

c sin A sin C

10sin 45 sin 30
4
③ 无解 ④ b 3 1或 3 1
【课堂小结】
1、正弦定理:
a b c 2R(R为三角形外接圆的半径) sin A sin B sin C
2、正弦定理的推导过程; 3、正弦定理在解三角形中的应用。
【作业】
• 必做题:P4,1、2 • 选做题:P10,6、7 • 预习新课:余弦定理
aC
?对于锐角和钝角三角形,以上关系是否仍然成 立呢?
对于锐角∆ABC,有
a b c sin A sin B sinC
对于钝角∆ABC,有
a b c sin A sin B sinC
正弦定理:
在一个三角形中,各边和它所对角的正弦的比相等, 即
a b c sin A sin B sinC
那么在三角形中,边和角之间有没有准确的量 化关系呢?
• 如图,∆ABC中,∠A所 对的边BC长为a,∠B所 对的边AC长为b,∠C所 对的边AB长为c。
【探究一】三角形中的角和边的关系
根据三角函数定义,找出直角三角 形中的边角关系。
A
c
b
a b c sin A sin B
sinC 1
abc B sin A sin B sinC
相关文档
最新文档