采用劳斯判据看系统相对稳定性
自动控制原理习题及解答

对于本例,系统的稳态误差为
本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以
系统的稳态误差为
解毕。
例3-21控制系统的结构图如图3-37所示。假设输入信号为r(t)=at( 为任意常数)。
解劳斯表为
1 18
8 16
由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。解毕。
例3-17已知系统特征方程为
试判断系统稳定性。
解本例是应用劳斯判据判断系统稳定性的一种特殊情况。如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。
(3)写中间变量关系式
式中,α为空气阻力系数 为运动线速度。
(4)消中间变量得运动方程式
(2-1)
此方程为二阶非线性齐次方程。
(5)线性化
由前可知,在=0的附近,非线性函数sin≈,故代入式(2-1)可得线性化方程为
例2-3已知机械旋转系统如图2-3所示,试列出系统运动方程。
图2-3机械旋转系统
解:(1)设输入量作用力矩Mf,输出为旋转角速度。
运动方程可直接用复阻抗写出:
整理成因果关系:
图2-15电气系统结构图
画结构图如图2-15所示:
求传递函数为:
对上述两个系统传递函数,结构图进行比较后可以看出。两个系统是相似的。机一电系统之间相似量的对应关系见表2-1。
表2-1相似量
机械系统
xi
x0
系统稳定性意义以及稳定性地几种定义

系统稳定性意义以及稳定性的几种定义一、引言:研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。
在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。
由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。
从抽象的意义来说,系统和信号都可以看作是序列。
但是,系统是加工信号的机构,这点与信号是不同的。
人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。
描述系统的方法还有符号、单位脉冲响应、差分方程和图形。
电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。
对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。
对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。
二、稳定性定义:1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。
若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。
稳定性又分为绝对稳定性和相对稳定性。
绝对稳定性。
如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。
(1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。
(2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。
(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。
因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。
劳斯-霍尔维茨稳定性判据

s3
1
3
s2
ε
2
s1 (3ε-2)/ε<0
s0
2
(2) 若劳斯阵列表中某一行(设为第k行)的所有系数均为零, 则说明在根平面内存在一些大小相等,并且关于原点对称 的根。在这种情况下可做如下处理:
a. 利用第k-1行的系数构成辅助多项式,它的次数总 是偶数的;
b. 求辅助多项式对s的导数,将其系数代替第k行; c. 继续计算劳斯阵列表; d. 令辅助多项式等于零可求得关于原点对称的根。
1 b1
an 1 b1
an 3 b2 an 5 b3
an 7 b4
按此规律一直计算到n -1行为止。在计算过程中,为了 简化数值运算,可将某一行中的各系数均乘一个正数,不 会影响稳定性结论。
3. 考察阵列表第一列元素的符号。假若劳斯阵列表中 第一列所有元素均为正数,则该系统是稳定的,即特征方 程所有的根均位于S平面的左半平面。假若第一列元数有 负数,则第一列元素的符号的变化次数等于系统在S平面 右半平面上的根的个数。
例3.7 系统特征方程式为 s5 2s4 3s3 6s2 4s 8 0
对复根- s i ±jwi (i=1,2,…,r),n = k+2r。则特征方程
式可写为
D(s) ansn an1sn1 a1s a0
an (s p1)(s p2 ) (s pk )[(s s1)2 12 ]
0
[(s
s
r
)2
2 r
]
假如所有的根均在左半平面,即 pj <0,si<0 ,则pj >0 ,si >0 。所以将各因子项相乘展开后,式(3.63)的
根(-σj±jwj) (j=1,2,…,r),k+2r = n,则齐次方程式
劳 斯 判 据

图4-1 系统的结构图
1
K
系统的闭环传递函数为
(s)
C(s) R(s)
1
s
(s 1
1)(s K
2)
s3
K 3s2
2s
K
s (s 1)(s 2)
系统的闭环特征方程为
s3 3s2 2s K 0
劳斯判据
1.4 劳斯判据在系统分析中的应用
列出劳斯表为
s3
1
2
s2
3
K
s1 6 K 3
s0
D(s)
n
(s pj )
n1
n2
(s pl ) (s2 2k s k2 )
j 1
l 1
k 1
n1
将式(4-2)展成部分分式形式 C(s)
Al
n2
Bk
l1 s pl k 1 s2 2k s k2
(4-2) (4-3)
式中 Al —— C(s) 在闭环实极点 pl 处的留数;
Bk —— C(s) 在闭环复数极点 s k jk 1 2 处的留数。
方法一:用一个接近于零的很小的正数来代替这个零,并据其计算出劳斯表中的其 余各项。
方法二:用代入原方程,重新列出劳斯表,再用劳斯判据判断系统的稳定性。
劳斯判据
1.3 劳斯判据的特殊情况
【例 4-3】 已知系统的闭环特征方程为
s4 2s3 s2 2s 1 0
试用劳斯判据判断系统的稳定性。
在劳斯表第1列系数中,ε是接近
在零初始条件下,若闭环系统的输入信号 r(t) 在[0,) 上满足 r(t) N ,而在此输入信
号作用下的输出响应 c(t)
g( )r(t
)d
满足
自动控制原理第四章-1-劳斯稳定性判据

04
劳斯稳定性判据的优缺点
优点
简单易行
劳斯稳定性判据是一种直接的方法,用于确定系统的稳定 性。它不需要求解系统的极点,只需要检查劳斯表格的第 一列。
普遍适用性
劳斯稳定性判据适用于所有线性时不变系统,无论系统是 单输入单输出(SISO)还是多输入多输出(MIMO)。
数学基础
劳斯稳定性判据基于数学中的因式分解和不等式性质,具 有坚实的数学基础。
劳斯稳定性判据的局限性在于它只能判断系统 的稳定性,无法给出系统动态性能的评估和优 化。
对自动控制原理的展望
随着科技的发展,自动控制原理的应用领域不断扩大,涉及到工业、交通、医疗、 农业等多个领域。
未来,自动控制原理将与人工智能、机器学习等先进技术相结合,实现更加智能化、 自适应的控制方案。
自动控制原理的理论体系也将不断完善和发展,以适应不断变化的应用需求和技术 环境。
2
在航空航天领域,为了确保飞行器的安全和稳定, 需要利用劳斯稳定性判据对飞行控制系统进行稳 定性分析和设计。
3
在化工领域,为了确保生产过程的稳定和安全, 需要利用劳斯稳定性判据对工业控制系统进行稳 定性分析和设计。
02
劳斯稳定性判据的基本原理
线性系统的稳定性
线性系统
01
在自动控制原理中,线性系统是指系统的数学模型可以表示为
缺点
01
对初始条件的敏感性
劳斯稳定性判据对系统的初始条件非常敏感。即使系统在大部分时间内
是稳定的,如果初始条件设置不正确,可能会导致错误的稳定性判断。
02
数值稳定性问题
在计算劳斯表格时,可能会遇到数值稳定性的问题,例如数值溢出或数
值不精确。这可能会影响判据的准确性。
系统的稳定性常见判据

定义:
无输入时的初态
系统在初始状态作用下
输入引起的初态
输出
收敛(回复平衡位置)
(响应) 发散(偏离越来越大)
系统稳定 系统不稳定
2. 系统稳定条件
线性定常系统:
anxo(n) (t )
an
1
x ( n1) o
(
t
)
a1
x o(
其中:
A1
an1an2 anan3 an1
A2
an1an4 anan5 an1
A3
an1an6 anan7 an1
B1
A1an3 an1 A2 A1
B2
A1an5 an1 A3 A1
B3
A1an7 an1 A4 A1
s0 F1
Routh 判据:Routh表中第一列各元符号改变的次数等于系统特
t
)
a0 xo(t )
xi(t )
自由响应
强迫响应
n
n
xo(t ) A1ie sit A2ie sit B(t )
i 1
i 1
系统的初态引 输入引起的 起的自由响应 自由响应
si:系统的特征根
2. 系统稳定条件
1) 当系统所有的特征根si(i=1,2,…,n)均具有负实部(位
于[s]平面的左半平面)
lt im
n i 1
A1i e si t
n i 1
A2i e si t
0
自由响应收敛,系统稳定
2) 若有任一sk具有正实部(位于[s]平面的右半平面)
lim e skt
t
ltim
劳斯判据判定稳定性

劳斯判据即Routh-Hurwitz判据一、系统稳定的必要条件判据是判别系统特征根分布的一个代数判据。
要使系统稳定,即系统全部特征根均具有负实部,就必须满足以下两个条件:1)特征方程的各项系数都不等于零。
2)特征方程的各项系数的符号都相同。
此即系统稳定的必要条件。
按习惯,一般取最高阶次项的系数为正,上述两个条件可以归结为一个必要条件,即系统特征方程的各项系数全大于零,且不能为零。
二、系统稳定的充要条件系统稳定的充要条件是表的第一列元素全部大于零,且不能等于零。
运用判据还可以判定一个不稳定系统所包含的具有正实部的特征根的个数为表第一列元素中符号改变的次数。
运用判据的关键在于建立表。
建立表的方法请参阅相关的例题或教材。
运用判据判定系统的稳定性,需要知道系统闭环传递函数或系统的特征方程。
在应用判据还应注意以下两种特殊的情况:1.如果在表中任意一行的第一个元素为0,而其后各元不全为0,则在计算下一行的第一个元时,该元将趋于无穷大。
于是表的计算无法继续。
为了克服这一困难,可以用一个很小的正数代替第一列等于0的元素,然后计算表的其余各元。
若上下各元符号不变,切第一列元素符号均为正,则系统特征根中存在共轭的虚根。
此时,系统为临界稳定系统。
2.如果在表中任意一行的所有元素均为0,表的计算无法继续。
此时,可以利用该行的上一行的元构成一个辅助多项式,并用多项式方程的导数的系数组成表的下一行。
这样,表中的其余各元就可以计算下去。
出现上述情况,一般是由于系统的特征根中,或存在两个符号相反的实根(系统自由响应发散,系统不稳定),或存在一对共轭复根(系统自由响应发散,系统不稳定),或存在一对共轭的纯虚根(即系统自由响应会维持某一频率的等幅振荡,此时,系统临界稳定),或是以上几种根的组合等。
这些特殊的使系统不稳定或临界稳定的特征根可以通过求解辅助多项式方程得到。
三、相对稳定性的检验对于稳定的系统,运用判据还可以检验系统的相对稳定性,采用以下方法:1)将s平面的虚轴向左移动某个数值,即令s=z-(((为正实数),代入系统特征方程,则得到关于z的特征方程。
第四章稳定性分析——劳讲义斯判据4-1

21
THANKS
第二步:建立劳斯表(又叫劳斯阵列)。 例:五阶系统,其特征方程:
a 5 s 5 a 4 s 4 a 3 s 3 a 2 s 2 a 1 s a 0 0
9
s5
a5
a3
a1
s4
a4
a2
a0
s3
A1
a4a3 a5a2 a4
A2
a4a1 a5a0 a4
0
s2
B1
A1a 2 a 4 A2 A1
13
s5
1
52
s4
1
51
s3
0 ( )
10
s2
5 1
10
s1 5 1 2 0 0
5 1
s0
1
00
5 1 0
5 12
0
5 1
劳斯表中第一列元素符号的变化两次, 说明特征方程有两个正实部的根,所以系统不 稳定。
14
(2)某一行元素全为零 在劳斯表中,如果出现某一行元素全为零,
说明特征方程存在大小相等符号相反的实根 和(或)共轭虚根,或者共轭复根。
s0 2 0
因劳斯表中第一列元素无符号变化,所以系统稳 定。 令: ss1 1
20
原特征方程,经过整理,得到 s1 特征方程:
s1 35s1 23s110
s
3 1
1
3
s
2 1
5
1
s
1 1
2.8
0
s
0 1
1
0
劳斯表中第一列元素符号变化一次,所以有一 个特征方程根在垂线 s1右边。即有一个根在阴影 区内。
即输出增量收敛于原平衡工作点,线性系统稳定 。