成都七中七年级上数学半期试题(供参考)

合集下载

【实用型】成都七中七年级(上)数学半期考试题.doc

【实用型】成都七中七年级(上)数学半期考试题.doc

成都七中嘉祥外国语学校初2013级七年级(上)数学半期考试题(时间120分钟,满分150分) 命题人:何江 审题人:罗志良温馨提示:亲爱的同学们,经过这段时间的学习,相信你已经拥有了许多知识财富!下面这套试卷是为了展示你最近的学习效果而设计的,只要你仔细审题,认真作答,遇到困难时不要轻易放弃,就一定会有出色的表现!注意:请将选择题和填空题的答案填在后面的表格中A 卷(100分)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、12的相反数的绝对值是 ( )A .12- B.2 C.-2 D. 122、下列语句中错误的是 ( ) A.数字0也是单项式 B.单项式-a 的系数与次数都是 1 C.21xy 是二次单项式 D.-32ab 的系数是 -32 3、下列各式计算正确的是 ( ) A .2(4)16--=- B .826(16)(2)--⨯=-+⨯- C .6565445656⎛⎫÷⨯=÷⨯ ⎪⎝⎭D. 20032004(1)(1)11-+-=-+ 4、如果3,1,a b a b ==>且,那么b a +的值是 ( ) A . 4 B . 2 C . 4- D . 4或25、下列说法上正确的是 ( ) A .长方体的截面一定是长方形; B .正方体的截面一定是正方形; C .圆锥的截面一定是三角形; D .球体的截面一定是圆6、 如图,四条表示方向的射线中,表示北偏东60°的是 ( )7、若x-y 2(x y)4, -6 2(x y)x-yx y x y -+=+++则代数式的值是 ( ) A .4 B .311C -3D 22..不能确定 8、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.姓名_____________________ 班级_____________________ 学号____________________ …………………………………密………………………………………封……………………………………线……………………………………..⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A. xy 7-B. xy 7+C. xy -D. xy +9、 下列说法正确的个数为 ( ) (1)过两点有且只有一条直线 (2)连接两点的线段叫做两点间的距离 (3)两点之间的所有连线中,线段最短 (4)射线比直线段一半 (5)直线AB 和直线BA 表示同一条直线A .2B .3C .4D .5 10、某电影院共有座位n 排,已知第一排的座位为m 个,后一排总是比前一排多1个,则电影院中共有座位 ( )A.mn+22nB. (1)2n n mn -+C.mn+nD. (1)2n n mn ++二、填空题:本大题共10小题,每小题3分,共18分,把答案填写在题中横线上.11、比较大小:–π________–3.14(填=,>,<号).12、单项式2a b -的系数是___________,单项式2715x y π-的次数是________.13、在数轴上,点M 表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是 .14、一桶油连桶的重量为a 千克,桶重量为b 千克,如果把油平均 分成3份,每份油的重量是____________.15、如图:三角形有___________个.15题16、为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米2.4元收费.小明家六月份交水费33. 6元,则小明家六月份实际用水______________立方米成都七中嘉祥外国语学校…..初2013级七年级(上)数学半期考试题(时间120分钟,满分150分) 命题人:何江 审题人:罗志良 注意:请将选择题和填空题的答案填在后面的表格中一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共10小题,每小题3分,共18分,把答案填写在横线上.11、 12、 13、14、 15、 16、三、图形题:本大题每小题5分,共10分.17、(本题5分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图主视图 左视图18、(本题5分)如图:正方形的边长为a 其中有一直径为a 的圆,阴影部分面积为S .(1)用含a 的代数式表示阴影面积S ;(2)当4a cm =时,求阴影部分面积S .( 3.14)π取四、运算题:本大题共2小题,共9分,解答应写出必要的计算过程. 19、(1)(本题4分) (-61+43-125)⨯)12(- 24132(2)(本题5分)()()[]2421315.011--⨯⨯---五、代数式运算题:本大题共2小题,每题5分,共15分,解答应写出必要的计算过程. 20、(1)(本题5分)化简 ]2)(5[)3(2222mn m mn m m mn +-----(2)(本题5分)先化简,再求值:22215{2[32(2)]}2abc a b abc ab a b ---- ,求当3,1,2=-==c b a 时的值.(3)(本题5分)若关于x y 、的代数式22(27)(291)x ax y bx x y +-+--+-的值与字母x 的取值无关,求a b -.六、解答题:本大题共3小题,每小题6分.共18分,解答应写出必要的计算过程或文字说明.21、(本题6分)如图,点P 在线段AB 上,点M N 、分别是线段AB AP 、的中点,若16AB =cm ,6BP =cm ,求线段NP 和线段MN 的长.22、(本题6分)如图,OE 为∠AOD 的角平分线,∠COD=41∠EOC ,∠COD=15°, 求:①∠EOC 的大小; ②∠AOD 的大小.23、(本题6分)“十·一”黄金周期间,上海世博园风景区7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):N P(1) 若9月30日的游客人数记为a ,请用a 的代数式表示10月2日的游客人数: 万人 .(2) 请判断七天内游客人数最多的是 日,最少的是 日. (3) 以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数情况:B 卷(50分)一、填空.(共5小题,每题4分,共20分)24、如果522)3(5x m y x n-+是关于x,y 的六次二项式,则m 、n 应满足条件____________. 25、7点20分,钟表上时针与分针所成的角是______________度26、已知多项式281468ax bx cx -+-,当3x =时值为2010,当3x =-时281468ax bx cx -++ 的值为 .(日) ………………..27、点,A B 在直线l 上,5AB =cm ,画点C ,使点C 是在直线l 上到点A 的距离是3的点,则点C 到点B 的距离是____________cm .28、如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见...的小立方体有______个.二、解答题(共30分)29、 (本题5分)已知a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()cda b m m m ++-的值是多少?30、(本题6分)数a ,b ,c 在数轴上的位置如图所示且c a =; (1)化简2a c b b a c b a b ++----++; (2)用“<”把a ,b ,b -,c 连接起来;31、(本题9分)全世界每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务,某地区沙漠原有面积100万公倾.为了解该地区沙漠面积的变化情况,进行了连续3年预计该地区沙漠的面积将继续按此趋势扩大.① ② ③(1)如果不采取措施,第4年底,该地区沙漠化面积将变成多少万公顷?(2)如果不采取措施,那么到第m 年底,该地区沙漠面积将变为多少万公顷?(3)如果第5年后采取措施,每年改造0.8万公倾沙漠,那么到第n 年该地区沙漠的面积为多少万公顷(5 n )?32、(本题10分)如图,有一个形如六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,依次类推.层数 1 2 3 4 5 6 该层对应的点数 所有层的总点数(2)写出第n 层所对应的点数.(3)如果某一层共96个点,你知道它是第几层吗? (4)有没有一层,它的点数为100点? (5)写出n 层的六边形点阵的总点数.美文欣赏1、 走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。

2022-2023学年四川省成都七中万达学校七年级(上)期中数学试卷

2022-2023学年四川省成都七中万达学校七年级(上)期中数学试卷

2022-2023学年四川省成都七中万达学校七年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题4分,共32分1.(4分)的倒数是()A.﹣2022B.2022C.D.2.(4分)下列运算正确的是()A.2ab+3ba=5ab B.a+a=a2C.5ab﹣2a=3b D.7a2b﹣7ab2=03.(4分)已知一天有86400秒,一年按365天计算共有31536000秒,“中国飞人”苏炳添经过5年(约157680000秒),从里约到东京,以9秒83创亚洲纪录的成绩成为首位闯进奥运会男子百米决赛的中国人,将157680000用科学记数法表示为()A.1.5768×108B.15.768×108C.1.5768×107D.15.768×1074.(4分)如图所示,是下列哪个几何体从三个方向看到的平面图形()A.B.C.D.5.(4分)下列各数中是负数的是()A.﹣(﹣)B.﹣|﹣2022|C.(﹣1)2022D.﹣(﹣)36.(4分)下列计算正确的是()A.x2﹣(2x﹣y2+y)=﹣2x+y2+yB.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣4)=2x2﹣3x+4D.2x2﹣2(y2﹣1)=2x2﹣2y2+27.(4分)已知|x|=6,y2=4,且xy>0,则x+y的值为()A.8B.﹣8C.8或﹣8D.2或﹣28.(4分)下列说法正确的个数有()(1)若|a|=|b|,则a=±b;(2)若a、b互为相反数,则=﹣1;(3)多项式5a2b2﹣2a2b+ab2﹣2的次数是5;(4)单项式7×103a4的次数是6;(5)﹣a一定是一个负数;(6)平方是本身的数是1.A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分共20分9.(4分)比较大小:(1)0.5﹣49;(2)﹣﹣.10.(4分)﹣的系数是,次数是.11.(4分)若5a m+2b4与﹣a5b n的和仍是一个单项式,则m+n=.12.(4分)将如图所示的平面展开图折叠成正方体后,相对面上两个数字或代数式互为相反数,则2x+3y =.13.(4分)在有理数范围内,定义一种新运算符号“⊕”,规定a⊕b=4a+5b﹣12,则(﹣5)⊕6的值为.三、解答题(本大题共5个小题,共48分14.(16分)计算:(1)13﹣(﹣17)+(﹣5)﹣17;(2)﹣12022×[6﹣(﹣3)2]+7+(﹣);(3)4a﹣5b﹣6c+7b+8a+3c;(4)﹣(﹣3xy2)﹣(+4x2y)+3(﹣5xy2+2x2y).15.(8分)先化简,再求值:2a2b﹣[3ab2﹣2(ab﹣a2b)]﹣2ab,其中a,b满足|b+1|+(3a﹣6)2=0.16.(7分)如图,已知线段AB=23,BC=15,点M是AC的中点.(1)求线段AM的长;(2)在CB上取一点N,使得CN:NB=1:2,求线段MN的长.17.(7分)已知有a、b、c在数轴上所对应的点的位置如图,且|a|=|c|.(1)求a+c的值.(2)化简|a+b|﹣|a﹣b|+2(a+c﹣b).18.(10分)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为5公里,行车时间为10分钟,则需付车费多少元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元?(用含a、b的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,并且小王的行车时间比小张的行车时间多24分钟,请计算说明两人下车时所付车费有何关系?一、填空每小题4分共20分19.(4分)设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的有理数,那么a2﹣b2+2d﹣c=.20.(4分)已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,则的值为.21.(4分)已知:C==3,C==10,C==15,…,观察上面的计算过程,寻找规律并计算C=.22.(4分)现用棱长为1cm的若干小正方体,按如图所示的规律在地上搭建若个几何体,图中每个几何体自上而下分别叫第一层,第二层……第n层(n为正整数),其中第一层摆放一个小正方体,第二层摆放3个小正方体,第三层放6个小正方体……依次按此规律继续放n层,为了美观将每个几何体的所有漏出部分(不包含底面)都喷涂油漆,已知喷涂1cm2需要0.2克,则喷涂该几何体要油漆克.23.(4分)我们知道,在数轴上,点M,N分别表示数m,n,则点M.N之间的距离为项式|m﹣n|,知点A,B,C,D在数轴上分别表示数a,b,c,d,且|a﹣c|=|b﹣c|=|d﹣a|=2(a≠b),则线段BD的长度为.二、解答题(共30分)24.(8分)给出新定义如下:f(x)=|2x﹣2|,g(y)=|y+3|;例如:f(2)=|2×2﹣2|=2,g(﹣6)=|﹣6+3|=3;根据上述知识,解下列问题:(1)若x=﹣2,y=3,则f(x)+g(y)=;(2)若f(x)+g(y)=0;求2x﹣3y的值;(3)若x<﹣3,化简:f(x)+g(x);(结果用含x的代数式表示)(4)若f(x)+g(x)=5,求x的值.25.(10分)观察下列式子,并完成后面的问题:13+23=13+23+33=13+23+33+43=…(1)13+23+33+43+…+n3=;(2)(2n)3=2n×2n×2n=2×2×2n•n•n=23n3=8n3.你能利用上述关系计算23+43+63+83+…+203=;(3)得用(1)、(2)得到结论,73+93+…+193等于多少吗?并写出你是怎样得到的?26.(12分)已知数轴上有A、B、C三点分别表示数﹣24,﹣10,10,两只电子蚂蚁甲、乙分别从A、C 两点同时相向而行,甲的速度为2个单位/秒,乙的速度为3个单位/秒(1)问甲、乙在数轴上的哪个点相遇?(2)同多少秒后甲到A、B、C三点的距离之和为46个单位?若此时甲调头往回走,甲、乙还能在数轴上相遇吗?若能求出相遇点若不能请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁,Q表示乙蚂蚁)分别从A、C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变直,写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所在连线段的中点.。

四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)

四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)

四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)1 / 12四川省成都七中2018-2019学年七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分) 1. 中国很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章在世界数学史首次正式引入负数,如果收入200元,记作: 元,那么 元表示 A. 支出140元 B. 收入140元 C. 支出60元 D. 收入60元 【答案】C【解析】解:如果收入200元,记作: 元,那么 元表示支出60元, 故选:C .首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2. 2018年9月20日至24日,第十七届中国西部国际博览会在四川成都举行,本次西博会上签约投资合作项目总投资约7900亿元,用科学记数法表示7900亿元为 元.A. B. C. D. 【答案】D【解析】解:将 用科学记数法表示为: . 故选:D .科学记数法的表示形式为 的形式,其中 ,n 为整数 确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同 当原数绝对值 时,n 是正数;当原数的绝对值 时,n 是负数.此题考查了科学记数法的表示方法 科学记数法的表示形式为 的形式,其中 ,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图所示的几何体的截面是A.B.C.D.【答案】B【解析】解:由图可得,截面的交线有4条,截面是四边形且邻边不相等,故选:B.根据截面与几何体的交线,即可得到截面的形状.本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.4.若a、b互为相反数,cd互为倒数,则的值是A. B. C. D. 1【答案】B【解析】解:、b互为相反数,cd互为倒数,,,,故选:B.根据a、b互为相反数,cd互为倒数,可以求得所求式子的值本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.5.点A在数轴上距原点3个单位长度,且位于原点左侧,若一个点从点A处左移4个单位长度,再右移1个单位长度,此时终点所表示的数是A. B. C. D. 0【答案】B【解析】解:点A在数轴上距离原点3个单位长度,且位于原点左侧若一个点从点A 处左移动4个单位长度,再右移1个单位长度,点A表示的数是,,即点A最终的位置在数轴上所表示的数是.故选:B.根据数轴上点的运动规律“左减右加”解答此题.本题考查数轴,解题的关键是能看懂题意,根据题意可以得到点A的运动路线.6.已知单项式与互为同类项,则为A. 1B. 2C. 3D. 4【答案】D【解析】解:单项式与互为同类项,,,,.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)则.故选:D.根据同类项的概念求解.本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.7.下列各组运算中,运算中结果相同的是A. 和B. 和C. 和D. 和【答案】A【解析】解:,,此选项符合题意;B.,,此选项不符合题意;C.,,此选项不符合题意;D.,,此选项不符合题意;故选:A.根据有理数的乘方的运算法则逐一计算可得.本题主要考查有理数的乘方,解题的关键是熟练掌握有理数的乘方的运算法则.8.下列各式一定成立的是A. B.C. D.【答案】C【解析】解:A、原式,故本选项错误.B、原式,故本选项错误.C、原式,故本选项正确.D、原式,故本选项错误.故选:C.根据去括号与添括号的方法解答.考查了去括号与添括号去括号规律: ,括号前是“”号,去括号时连同它前面的“”号一起去掉,括号内各项不变号; ,括号前是“”号,去括号时连同它前面的“”号一起去掉,括号内各项都要变号.9.已知,则代数式的值为A. 18B. 14C. 6D. 2【答案】A【解析】解:,原式,故选:A.原式变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.现有五种说法: 一个数,如果不是正数,必定是负数; 几个有理数相乘,当负因数有偶数个时,积的符号为正; 两数相减,差一定小于被减数;是5次单项式;是多项式其中错误的说法有3 / 12A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:一个数,如果不是正数,必定是负数和0,故 错误;几个不等于0有理数相乘,当负因数有偶数个时,积的符号为正,故 错误;如,所以两数相减,差不一定小于被减数,故 错误;是3次单项式,故 错误;是多项式,故 正确;即错误的个数是4个,故选:D.根据实数的分类、有理数的乘法法则、有理数的减法法则、单项式的次数、多项式的定义逐个判断即可.本题考查了实数的分类、有理数的乘法法则、有理数的减法法则、单项式的次数、多项式的定义等知识点,能熟记知识点的内容是解此题的关键.二、填空题(本大题共8小题,共32.0分)11.比较大小:______.【答案】【解析】解:,,,.故答案为:.根据两个负数相比较,绝对值大的反而小可得答案.此题主要考查了有理数的比较大小,关键是掌握有理数大小比较的法则: 正数都大于0; 负数都小于0; 正数大于一切负数; 两个负数,绝对值大的其值反而小.12.是一个______次二项式.【答案】五【解析】解:是一个五次二项式.故答案为:五.利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.此题主要考查了多项式的次数,正确把握相关定义是解题关键.13.绝对值大于1不大于4的所有负整数的积为______.【答案】【解析】解:绝对值大于1不大于4的所有负整数为,,,积为,故答案为:.先求出绝对值大于1不大于4的所有负整数,再求出积即可.本题考查了有理数的大小比较法则、绝对值和有理数的乘法,能求出绝对值大于1不大于4的所有负整数是解此题的关键.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)14.某果园去年的产值是x万元,今年的产值比去年增加,今年的产值是______万元.【答案】【解析】解:根据题意知,今年的产值是万元,故答案为:.今年的产值等于去年的产值加上增产的产值,由此列出代数式即可.此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.15.,,且有,则______.【答案】【解析】解:,,,,又,,或,;当,时,;当,时,;综上,,故答案为:.根据绝对值的定义,求出a,b的值,再由,得a,b异号,从而求得的值.本题考查了有理数的加法、乘法和绝对值运算,注互为相反数的两个数的绝对值相等.16.已知多项式是三次三项式,则m的值为______.【答案】【解析】解:由题意得:,且,解得:.故答案为:.根据多项式次数定义可得,再根据项数定义可得,再解即可.此题主要考查了多项式,关键是掌握多项式中次数最高的项的次数叫做多项式的次数多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数.17.定义:若,则称a与b是关于数n的“平衡数”比如3与是关于的“平衡数”,5与12是关于17的“平衡数”现有与为常数始终是数n的“平衡数”,则它们是关于______的“平衡数”.【答案】12【解析】解:与为常数始终是数n的“平衡数”,,即,解得:,即,故答案为:12利用“平衡数”的定义判断即可.此题考查了整式的加减,弄清题中的新定义是解本题的关键.5 / 1218.小明家有一个如图的无盖长方体纸盒,现沿着该纸盒的棱将纸盒剪开,得到其平面展开图若长方体纸盒的长、宽、高分别是a,b,单位:cm,则它的展开图周长最大时,用含a,b,c的代数式表示最大周长为______cm.【答案】【解析】解:如图:,这个平面图形的最大周长是.故答案为:.根据边长最长的都剪,边长最短的剪的最少,可得答案.此题主要考查了长方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.三、计算题(本大题共3小题,共32.0分)19.计算:【答案】解:;;;.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)【解析】根据有理数的加法可以解答本题;根据有理数的乘除法可以解答本题;先算小括号里的,再根据有理数的除法即可解答本题;先算小括号里的,再算中括号里的,然后根据有理数的乘除法和加法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.20.已知,.求;现有,当,时,求C的值.【答案】解:,,;,,当,时,.【解析】将,整体代入后化简即可;由可得,将,整体代入并且化简,再把,代入计算即可.本题考查了整式的加减,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成半径相同请用代数式表示装饰物的面积:______,用代数式表示窗户能射进阳光的面积是______结果保留当,时,求窗户能射进阳光的面积是多少?取小亮又设计了如图2的窗帘由一个半圆和两个四分之一圆组成,半径相同,请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?7 / 12【答案】【解析】解:根据圆的面积公式:装饰物的面积是,窗户能射进阳光部分面积是窗户的面积减去装饰物的面积,窗户能射进阳光的面积是;当,时,;如图2,窗户能射进阳光的面积,,,此时,窗户能射进阳光的面积更大,,此时,窗户能射进阳光的面积比原来大.故答案为:,根据圆的面积公式求出即可;根据长方形的面积公式列出式子,再根据圆的面积公式求出阴影部分的面积,再相减即可;根据得出的式子,再把a、b的数值代入即可求出答案;利用的方法列出代数式,两者相比较即可.此题考查列代数式以及代数式求值,注意利用长方形和圆的面积解决问题.四、解答题(本大题共6小题,共52.0分)22.化简:.【答案】解:.【解析】直接去括号再合并同类项得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.23.如图是5块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面对应的位置分别画出你所看到的几何体的形状图.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)【答案】解:三视图如图所示:【解析】根据主视图,左视图,俯视图的定义画出图形即可;本题考查作图三视图,解题的关键是理解主视图,左视图,俯视图的意义,属于中考常考题型.24.已知有理数a,b,c在数轴上对应位置如图所示:请用“”将a,b,c连接起来为______;试判断:______0,______0;化简:;【答案】【解析】解:由图可得:,;;;;故答案为:;;.根据有理数的大小比较即可;根据有理数的大小比较解答即可;根据绝对值化简解答即可.本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.25.为了鼓励居民节约用电,某市执行居民生活用电实行阶梯电价标准:每户每月用电量不超过180度的部分,每度电元,超过180度的部分,每度元;市民陈先生家7月份用电量为300度,陈先生7月份的电费应为多少元?陈先生8月份交了238元电费,请计算出陈先生8月份的用电量应为多少度?陈先生一家积极响应号召节约用电,9月份的一家用电量为x度取整数,请用含x的代数式表示陈先生一家9月份应交多少元电费?【答案】解:元.答:陈先生7月份的电费应为186元.设陈先生8月份的用电量为x度,,.根据题意得:,解得:.答:陈先生8月份的用电量应为380度.设陈先生一家9月份应交y元电费.根据题意得:当时,;9 / 12当时,.综上所述:陈先生一家9月份应交电费金额为.【解析】根据居民生活用电阶梯电价标准,即可求出陈先生7月份应交电费;设陈先生8月份的用电量为x度,结合可得出,由居民生活用电阶梯电价标准及陈先生8月份交了238元电费,即可得出关于x的一元一次方程,解之即可得出结论;设陈先生一家9月份应交y元电费,分及两种情况,找出y关于x的关系式,此题得解.本题考查了一元一次方程的应用、有理数的混合运算以及列代数式,解题的关键是:根据居民生活用电阶梯电价标准,列式计算;找准等量关系,正确列出一元一次方程;分及两种情况,找出y关于x的关系式.26.【情景背景】如图所示,将一个边长为1的正方形纸片分割成7个部分,部分 是边长为1的正方形纸片面积的一半,部分 是部分 面积的一半,部分 是部分 面积的一半,以此类推.如图中的阴影部分面积是______;受此启发,得到______;进而计算:______;【迁移应用】计算:______;【解决问题】计算;【答案】【解析】解:如图中的阴影部分面积是,故答案为:;受此启发,得到,故答案为:;,故答案为:;【迁移应用】设,则,,化简,得,四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)故答案为:;【解决问题】令,,,化简,得,原式.根据题意和图形可以解答本题;根据中的结果可以求得所求式子的值;根据题目中式子的特点可以求得所求式子的值;【迁移应用】根据题目中式子的特点可以求得所求式子的值;【解决问题】根据题目中式子的特点可以求得所求式子的值.本题考查数字的变化类、有理数的混合运算、列代数式,解答本题的关键是明确题意,求出所求式子的值.27.如图,在数轴上点A、B、C、D对应的数分别是a,b,c,d其中a,b满足.求A,B两点之间的距离;数轴上点A的左侧的点C,使,且满足,求数d.现在A、B两处分别放置一个小球,C、D两处分别放置一块挡板,已知小球以某一速度撞向另一静止小球时,这个小球停留在被撞小区的位置,被撞小球则以同样的速度向前运动,小球撞到左右挡板后以相同的速度反向运动,现A球以每秒1个单位长度的速度向右匀速运动,设运动的时间为秒;为何值时B球第二次撞向右侧挡板;在这段时间内,A、B两小球的距离为4时,请直接写出此时b的值.【答案】解:.,,,,;数轴上点A的左侧的点C,使,,,,11 / 12;根据题意可知,当B球第二次撞向右侧挡板时小球共行的路程为:,秒,故t为36秒时B球第二次撞向右侧挡板;,,在这段时间内,A、B两小球的距离为4时,此时或6.【解析】根据非负数的性质,求出a和b便可;先根据,列出c的方程求得c,再根据,求得结果;求出当B球第二次撞向右侧挡板时小球共行的路程便可;距原B球左右4个单位长度的点表示的数便是所求结果.本题主要考查了数轴的性质,涉及求数轴上两点的距离,非负数的性质,一元一次方程的应用,基础题,难度不大,关键是掌握两点距离公式体现数形结合的思想.。

四川省成都市龙泉驿区2023-2024学年上学期七年级期中数学试卷(含解析)

四川省成都市龙泉驿区2023-2024学年上学期七年级期中数学试卷(含解析)

2023-2024学年四川省成都市龙泉驿区七年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)如果某商场盈利5万记作+5万元,那么亏损4万元,应记作( )A.+4万元B.﹣4万元C.+1万元D.﹣1万元2.(4分)﹣2的相反数是( )A.﹣2B.﹣C.2D.3.(4分)我国神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间.从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里.将数据2.32亿用科学记数法表示为( )A.0.232×109B.2.32×108C.2.32×106D.23.2×1084.(4分)多项式3x2﹣2x+5的各项分别是( )A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,55.(4分)若数轴上点A表示的数是﹣1,则与点A相距2个单位长度的点表示的数是( )A.±3B.﹣3 或1C.±1D.1或36.(4分)若﹣2a m+5b2与a4b2n的和仍为单项式,则m﹣n的值为( )A.0B.2C.﹣1D.﹣27.(4分)下列各组数中,相等的一组是( )A.﹣|﹣2|与﹣(﹣2)B.﹣33与(﹣3)3C.与D.﹣54与(﹣5)48.(4分)根据流程图中的程序,若输入x的值为﹣1,则输出y的值为( )A.4B.7C.8D.187二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)比较大小:﹣ ﹣(选填“>”、“=”或“<”).10.(4分)单项式的系数为 ,次数为 .11.(4分)已知a,b互为相反数,且c,d互为倒数,m是最大的负整数,则3a﹣2023cd+3b+m的值为 .12.(4分)下表是国外城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)城市纽约巴黎东京多伦多时差(时)﹣13﹣7+1﹣12如果现在东京时间是16:00,那么纽约时间是 .(以上均为24小时制)13.(4分)当x=3时,ax3﹣bx+3的值是﹣1,则9a﹣b﹣1的值是 .三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(4分)计算:(1)﹣17+24+(﹣16)﹣(﹣9);(2);(3);(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2.15.(4分)化简:(1)﹣x2+3y+2x2﹣5y+1;(2)3x2﹣xy﹣2(x2﹣xy).16.(6分)先化简,再求值:,其中x=2,y=﹣.17.(6分)如图是2023年八月份的日历:(1)若将“H”形框上下左右移动,可框住另外七个数,若设“H”形框中的7个数中最中间一个数是x,请用含x的代数式由小到大依次表示出“H”形框中的其余6个数;(2)请问“H”形框能否框到七个数,使这七个数之和等于161?若能,请由小到大依次写出这七个数;若不能,请说明理由.18.(12分)2023年11月中国人民解放军空军八一飞行表演队应邀赴阿联酋参加于11月13日到17日举行的第十八届迪拜航空展,此次迪拜展是空军八一飞行表演队继2017年11月之后第二次亮相阿联酋,是空军八一飞行表演队换装歼﹣10C 后首次飞赴中东国家,针对此次航展空军八一飞行表演队编排了3套表演方案,共20多个表演动作.表演过程中一架歼﹣10C 表演机A 起飞后的高度变化如下表所示:高度变化上升4.2千米下降2.3千米上升1.5千米下降0.9千米上升1.1千米记作+4.2km﹣2.3km+1.5km﹣0.9km+1.1km(1)当表演机A 完成上述五个表演动作后,表演机A 的高度是多少千米;(2)如果表演机A 每上升或下降1千米需消耗1.7升燃油,那么表演机A 在这5个动作表演过程中,一共消耗了多少升燃油;(3)若另一架表演机B 在做花式飞行表演时,起飞后前四次的高度变化为:上升3.8千米,下降2.5千米,上升4.3千米,再下降1.9千米.若要使表演机B 在完成第5个动作后与表演机A 完成5个动作后的高度相同,表演机B 的第5个动作是上升还是下降,上升或下降多少千米?一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)当|2x +y |+5取最小值时,代数式x +y ﹣10的值为  .20.(4分)在数轴上,如果点A 表示的数为﹣3,点B 表示的数为1,一个小球从点A 出发,沿着数轴先向左移动7个单位长度,再向右移动4个单位长度,此时小球到达点C 处,则点A 到点C 的距离与点B 到点C之间的距离之和为  .21.(4分)如图所示,在长方形ABCD 中,AD =3AB ,在它内部有三个小正方形,正方形AEFG 的边长为m ,正方形GBIH 的边长为n ,则阴影部分的周长为 (用含m ,n 的代数式表示).22.(4分)已知有理数a,b,c在数轴上的位置如图所示,满足|a|<|b|<|c|,则|2a+c﹣b|﹣|a﹣c+b|+= .23.(4分)观察下列数表规律,第n列第二排的数为 (用含n的代数式表示).第1列第2列第3列第4列第5列……第n列第一排2﹣46﹣810…………第二排207421…………第三排2481632…………二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)【基本事实】我们知道整数和分数统称为有理数,为什么不是整数和小数统称为有理数呢?所有的分数都可以化成小数的形式,是不是所有的小数都可以化成分数形式呢?我们可以举例说明:有限小数0.2化成分数的形式是 ;无限循环小数又该如何化呢?我们以无限循环小数0.7为例进行说明:设=x,由=0.7777…可知,10x=7.7777…,所以10x=7+x,解方程,得x=,于是得,故化成分数的形式是 ,所有有限小数和无限循环小数 (填“是”或“不是”)有理数;而无限不循环小数是不可以化成分数的,所以π (填“是”或“不是”)有理数,那么无限不循环小数能通过数轴上的一个点来表示吗?我们将以π为例通过下列活动来探索:【数学活动】如图,直径为1的圆从原点出发沿数轴正方向滚动一周,圆上一点由原点O到达点O',则OO′= .【知识推理】判断:(填“正确”或“错误”)(1)任何一个有理数都可以用数轴上唯一的一个点来表示. (2)数轴上的点都表示有理数. (3)整数和小数统称为有理数. 25.(16分)(1)已知A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,若(x+y﹣2)2+|xy+1|=0,求3A﹣2(A+B)的值.(2)已知c<0<a,ab<0,|c|>|a|>|b|,化简:|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|.26.(20分)【问题背景】我们知道|x|的几何意义是:在数轴上数x对应的点到原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在数轴上,点A,B的位置如图1所示,AB=|1﹣(﹣2)|=3.【问题解决】(1)|2﹣(﹣3)|的几何意义是 .(2)如果点C为数轴上一点,它所表示的数为x,点D在数轴上表示的数为﹣2,那么CD = (用含x的代数式表示).【关联运用】(1)运用一:代数式|x+1|+|x+4|的最小值为 .(2)运用二:代数式|x﹣2|﹣|x+14|的最大值为 .(3)运用三:已知|x﹣1|+|x+3|=10,则x的值为 .(4)运用四:如图2所示,点E,F,G是数轴上的三点,E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,点E,F,G开始在数轴上运动,若点E以每秒2个单位长度的速度向左运动,同时,点F和点G分别以每秒3个单位长度和1个单位长度的速度向右运动,假设t秒后,若点E与点F之间的距离表示为EF,点E与点G之间的距离表示为EG,点F与点G之间的距离表示为FG.4秒后,若mFG﹣3EF的值是一个定值,试确定m的值.2023-2024学年四川省成都市龙泉驿区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)如果某商场盈利5万记作+5万元,那么亏损4万元,应记作( )A.+4万元B.﹣4万元C.+1万元D.﹣1万元【解答】解:如果某商场盈利5万记作+5万元,那么亏损4万元,应记作﹣4万元.故选:B.2.(4分)﹣2的相反数是( )A.﹣2B.﹣C.2D.【解答】解:﹣2的相反数是2,故选:C.3.(4分)我国神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间.从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里.将数据2.32亿用科学记数法表示为( )A.0.232×109B.2.32×108C.2.32×106D.23.2×108【解答】解:2.32亿=2.32×108.故选:B.4.(4分)多项式3x2﹣2x+5的各项分别是( )A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,5【解答】解:多项式3x2﹣2x+5的各项分别是3x2,﹣2x,5,故选:A.5.(4分)若数轴上点A表示的数是﹣1,则与点A相距2个单位长度的点表示的数是( )A.±3B.﹣3 或1C.±1D.1或3【解答】解:∵数轴上点A表示的数为﹣1,∴与点A相距2个单位长度的点表示的数是:﹣1﹣2=﹣3或﹣1+2=1,综上所述,表示的数是﹣3或1.故选:B.6.(4分)若﹣2a m+5b2与a4b2n的和仍为单项式,则m﹣n的值为( )A.0B.2C.﹣1D.﹣2【解答】解:根据题意可得,m+5=4,2n=2,解得:m=﹣1,n=1,则m﹣n=﹣1﹣1=﹣2.故选:D.7.(4分)下列各组数中,相等的一组是( )A.﹣|﹣2|与﹣(﹣2)B.﹣33与(﹣3)3C.与D.﹣54与(﹣5)4【解答】解:A、∵﹣|﹣2|=﹣2,﹣(﹣2)=2,∴﹣|﹣2|≠﹣(﹣2),故此选项不符合题意;B、∵﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C、∵,,∴,故此选项不符合题意;D、∵﹣54=﹣625,(﹣5)4=625,∴﹣54≠(﹣5)4,故此选项不符合题意;故选:B.8.(4分)根据流程图中的程序,若输入x的值为﹣1,则输出y的值为( )A.4B.7C.8D.187【解答】解:根据题意得:y=(﹣1)2×3﹣5=﹣2<0,y=(﹣2)2×3﹣5=7>0,符合题意,故选:B.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)比较大小:﹣ < ﹣(选填“>”、“=”或“<”).【解答】解:∵|﹣|=>|﹣|=.∴﹣<﹣.故答案为:<.10.(4分)单项式的系数为 ﹣ ,次数为 5 .【解答】解:单项式的系数为﹣、次数为5,故答案为:﹣,5.11.(4分)已知a,b互为相反数,且c,d互为倒数,m是最大的负整数,则3a﹣2023cd+3b+m的值为 ﹣2024 .【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1.∵m是最大的负整数,∴m=﹣1.∴3a﹣2023cd+3b+m=3(a+b)﹣2023cd+m=0﹣2023﹣1=﹣2024.故答案为:﹣2024.12.(4分)下表是国外城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)城市纽约巴黎东京多伦多时差(时)﹣13﹣7+1﹣12如果现在东京时间是16:00,那么纽约时间是 2:00 .(以上均为24小时制)【解答】解:∵由表格可得,东京时间比纽约时间快的时数为:1﹣(﹣13)=14,∴当东京时间是16:00时,纽约时间为:16﹣14=2(时),即如果现在东京时间是16:00,那么纽约时间是2:00,故答案为:2:00.13.(4分)当x=3时,ax3﹣bx+3的值是﹣1,则9a﹣b﹣1的值是 .【解答】解:把x=3代入ax3﹣bx+3=﹣1,得:27a﹣3b+3=﹣1,∴9a﹣b=,∴9a﹣b﹣1=﹣1=.故答案为:.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(4分)计算:(1)﹣17+24+(﹣16)﹣(﹣9);(2);(3);(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2.【解答】解:(1)﹣17+24+(﹣16)﹣(﹣9)=﹣17+24+(﹣16)+9=0;(2)=(﹣25)×××=﹣;(3)=(﹣)×(﹣48)+×(﹣48)﹣×(﹣48)=84+(﹣8)+30=106;(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2=(﹣1)+18×﹣4÷4=(﹣1)+10﹣1=8.15.(4分)化简:(1)﹣x2+3y+2x2﹣5y+1;(2)3x2﹣xy﹣2(x2﹣xy).【解答】解:(1)原式=x2﹣2y+1;(2)原式=3x2﹣xy﹣x2+2xy=2x2+xy.16.(6分)先化简,再求值:,其中x=2,y=﹣.【解答】解:原式=xy2﹣(3x2y﹣xy2﹣2xy)+2x2y﹣2xy﹣xy2=xy2﹣3x2y+xy2+2xy+2x2y﹣2xy﹣xy2=xy2﹣xy2+xy2﹣3x2y+2x2y+2xy﹣2xy=xy2﹣x2y,当x=2,y=时,原式=×2×﹣4×(﹣)=+2=.17.(6分)如图是2023年八月份的日历:(1)若将“H”形框上下左右移动,可框住另外七个数,若设“H”形框中的7个数中最中间一个数是x,请用含x的代数式由小到大依次表示出“H”形框中的其余6个数;(2)请问“H”形框能否框到七个数,使这七个数之和等于161?若能,请由小到大依次写出这七个数;若不能,请说明理由.【解答】解:(1)根据题意可得:“H”形框中的其余6个数分别为:x﹣8、x﹣6、x﹣1,、x+1、x+6、x+8;(2)能;理由:根据(1)中所得的7个数分别为:x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,则x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=161,解得:x=23,7个数分别为:15、17、22、23、24、29、3118.(12分)2023年11月中国人民解放军空军八一飞行表演队应邀赴阿联酋参加于11月13日到17日举行的第十八届迪拜航空展,此次迪拜展是空军八一飞行表演队继2017年11月之后第二次亮相阿联酋,是空军八一飞行表演队换装歼﹣10C后首次飞赴中东国家,针对此次航展空军八一飞行表演队编排了3套表演方案,共20多个表演动作.表演过程中一架歼﹣10C表演机A起飞后的高度变化如下表所示:上升4.2千米下降2.3千米上升1.5千米下降0.9千米上升1.1千米高度变化记作+4.2km﹣2.3km+1.5km﹣0.9km+1.1km (1)当表演机A完成上述五个表演动作后,表演机A的高度是多少千米;(2)如果表演机A每上升或下降1千米需消耗1.7升燃油,那么表演机A在这5个动作表演过程中,一共消耗了多少升燃油;(3)若另一架表演机B在做花式飞行表演时,起飞后前四次的高度变化为:上升3.8千米,下降2.5千米,上升4.3千米,再下降1.9千米.若要使表演机B在完成第5个动作后与表演机A完成5个动作后的高度相同,表演机B的第5个动作是上升还是下降,上升或下降多少千米?【解答】解:(1)4.2﹣2.3+1.5﹣0.9+1.1=3.6(千米),即表演机A的高度是3.6千米;(2)(4.2+2.3+1.5+0.9+1.1)×1.7=10×1.7=17(升),即表演机A在这5个动作表演过程中,一共消耗了17升燃油;(3)3.6﹣(3.8﹣2.5+4.3﹣1.9)=3.6﹣3.7=﹣0.1(千米),即表演机B的第5个动作是下降,下降0.1千米.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)当|2x+y|+5取最小值时,代数式x+y﹣10的值为 ﹣10 .【解答】解:∵|2x+y|+5取最小值,|2x+y|≥0,∴当2x+y=0时,符合题意,∴x+y﹣10=(2x+y)﹣10=0﹣10=﹣10.故答案为:﹣10.20.(4分)在数轴上,如果点A表示的数为﹣3,点B表示的数为1,一个小球从点A出发,沿着数轴先向左移动7个单位长度,再向右移动4个单位长度,此时小球到达点C处,则点A到点C的距离与点B到点C之间的距离之和为 10 .【解答】解:由题意得,点C表示的数是﹣3﹣7+4=﹣6,因为点A表示的数为﹣3,点B表示的数为1,所以点A到点C的距离为﹣3﹣(﹣6)=﹣3+6=3,点B到点C的距离为1﹣(﹣6)=1+6=7,所以点A到点C的距离与点B到点C之间的距离之和为3+7=10,故答案为:10.21.(4分)如图所示,在长方形ABCD中,AD=3AB,在它内部有三个小正方形,正方形AEFG的边长为m,正方形GBIH的边长为n,则阴影部分的周长为 8m+6n (用含m,n的代数式表示).【解答】解:根据观察可知,图中阴影部分的周长与长为CI、宽为AB的矩形周长相同,在长方形ABCD中,AD=BC,AD=3AB,∵正方形AEFG的边长为m,正方形GBIH的边长为n,∴AB=m+n,BC=3(m+n),∵CI=BC﹣BI,∴CI=3(m+n)﹣n=3m+2n,∴阴影部分的周长为:2(AB+CI)=2(m+n+3m+2n)=8m+6n,故答案为:8m+6n.22.(4分)已知有理数a,b,c在数轴上的位置如图所示,满足|a|<|b|<|c|,则|2a+c﹣b|﹣|a﹣c+b|+= 3a﹣2 .【解答】解:由图可知,2a>0,c﹣b>0,a﹣c+b<0,ab<0,ac>0,∴|2a+c﹣b|﹣|a﹣c+b|+﹣=2a+c﹣b+(a﹣c+b)﹣1﹣1=2a+c﹣b+a﹣c+b﹣1﹣1=3a﹣2,故答案为:3a﹣2.23.(4分)观察下列数表规律,第n列第二排的数为 (用含n的代数式表示).第1列第2列第3列第4列第5列……第n列第一排2﹣46﹣810…………第二排207421…………第三排2481632…………【解答】解:∵第一排第n列的数为:(﹣1)n+12n,第三排第n列的数为:2n,∴第n列第二排的数为:,二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)【基本事实】我们知道整数和分数统称为有理数,为什么不是整数和小数统称为有理数呢?所有的分数都可以化成小数的形式,是不是所有的小数都可以化成分数形式呢?我们可以举例说明:有限小数0.2化成分数的形式是 ;无限循环小数又该如何化呢?我们以无限循环小数0.7为例进行说明:设=x,由=0.7777…可知,10x=7.7777…,所以10x =7+x,解方程,得x=,于是得,故化成分数的形式是 ,所有有限小数和无限循环小数 是 (填“是”或“不是”)有理数;而无限不循环小数是不可以化成分数的,所以π 不是 (填“是”或“不是”)有理数,那么无限不循环小数能通过数轴上的一个点来表示吗?我们将以π为例通过下列活动来探索:【数学活动】如图,直径为1的圆从原点出发沿数轴正方向滚动一周,圆上一点由原点O到达点O',则OO′= π .【知识推理】判断:(填“正确”或“错误”)(1)任何一个有理数都可以用数轴上唯一的一个点来表示. 正确 (2)数轴上的点都表示有理数. 错误 (3)整数和小数统称为有理数. 错误 【解答】解:【基本事实】0.2==;设=x,由=0.37373737…可知,100x=37.373737…,所以100x=37+x,解方程,得x=,于是得故=;所有有限小数和无限循环小数是有理数;无限不循环小数是不可以化成分数的,所以π不是有理数;【数学活动】因为圆的周长为π×1=π,所以OO′=π,故答案为:π;【知识推理】(1)任何一个有理数都可以用数轴上唯一的一个点来表示.正确;(2)数轴上的点都表示有理数.错误;(3)整数和小数统称为有理数.错误.故答案为:正确;错误;错误.25.(16分)(1)已知A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,若(x+y﹣2)2+|xy+1|=0,求3A﹣2(A+B)的值.(2)已知c<0<a,ab<0,|c|>|a|>|b|,化简:|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|.【解答】解:(1)∵(x+y﹣2)2+|xy+1|=0,∴x+y﹣2=0,xy+1=0,∴x+y=2,xy=﹣1,∵A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,∴3A﹣2(A+B)=3A﹣2A﹣2B=A﹣2B=2x2﹣x+y﹣4xy﹣2(x2﹣2x﹣y﹣xy+3)=2x2﹣x+y﹣4xy﹣2x2+4x+2y+2xy﹣6=3x+3y﹣2xy﹣6=3(x+y)﹣2xy﹣6=3×2﹣2×(﹣1)﹣6=6+2﹣6=2;(2)∵c<0<a,ab<0,|c|>|a|>|b|,∴b<0,c﹣a<0,a+b>0,b﹣c>0,∴|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|=﹣b﹣2(a﹣c)﹣(a+b)+b﹣c=﹣b﹣2a+2c﹣a﹣b+b﹣c=﹣b﹣3a+c.26.(20分)【问题背景】我们知道|x|的几何意义是:在数轴上数x对应的点到原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在数轴上,点A,B的位置如图1所示,AB=|1﹣(﹣2)|=3.【问题解决】(1)|2﹣(﹣3)|的几何意义是 点2与点﹣3之间的距离 .(2)如果点C为数轴上一点,它所表示的数为x,点D在数轴上表示的数为﹣2,那么CD = (用含x的代数式表示).【关联运用】(1)运用一:代数式|x+1|+|x+4|的最小值为 3 .(2)运用二:代数式|x﹣2|﹣|x+14|的最大值为 16 .(3)运用三:已知|x﹣1|+|x+3|=10,则x的值为 4或﹣6 .(4)运用四:如图2所示,点E,F,G是数轴上的三点,E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,点E,F,G开始在数轴上运动,若点E以每秒2个单位长度的速度向左运动,同时,点F和点G分别以每秒3个单位长度和1个单位长度的速度向右运动,假设t秒后,若点E与点F之间的距离表示为EF,点E与点G之间的距离表示为EG,点F与点G之间的距离表示为FG.4秒后,若mFG﹣3EF的值是一个定值,试确定m的值.【解答】解:【问题解决】(1)|2﹣(﹣3)|的几何意义是点2与点﹣3之间的距离,故答案为:点2与点﹣3之间的距离;(2)C表示的数为x,点D在数轴上表示的数为﹣2,则x与﹣2之间的距离CD=,故答案为:;【关联运用】(1)运用一:代数式|x+1|+|x+4|表示点x与﹣1的距离与点x与点﹣4距离的和,当x<﹣4时,|x+1|+|x+4|=﹣x﹣1﹣x﹣4=﹣2x﹣5>3,当﹣4≤x≤﹣1时,|x+1|+|x+4|=﹣x﹣1+4+x=3,当x>﹣1时,|x+1|+|x+4|=x+1+4+x=5+2x>3,综上所述:当﹣4≤x≤﹣1时,|x+1|+|x+4|取最小值为3,故答案为:3;(2)运用二:|x﹣2|﹣|x+14|表示点x与2的距离与点x与点﹣14距离的差,当x≤﹣14时,|x﹣2|﹣|x+14|=2﹣x+x+14=16;当﹣14<x<2时,|x﹣2|﹣|x+14|=2﹣x﹣(x+14)=﹣12﹣2x此时﹣16<﹣12﹣2x<16;当x≥2时,|x﹣2|﹣|x+14|=x﹣2﹣(x+14)=﹣16;综上所述:当x≤﹣14时,代数式|x﹣2|﹣|x+14|取最大值为16;故答案为:16;(3)运用三:由(1)知当﹣3≤x≤1时|x﹣1|+|x+3|取最小值4,∴|x﹣1|+|x+3|=10时,x<﹣3或x>1,故当x<﹣3时不,则1﹣x﹣x﹣3=10,解得:x=﹣6,当x>1时,x﹣1+x+3=10,解得:x=4,故答案为:4或﹣6;(4)运用四:∵E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,∴根据题意可得:t s时,E点表示数是﹣5﹣2t,F点表示数是﹣2+3t,G点表示数是6+t,由已知可知F点始终在E点右侧,故EF=﹣2+3t﹣(﹣5﹣2t)=3+5t而FG==,当mFG﹣3EF的值是一个定值时则m﹣3(3+5t)为定值,当8﹣2t≥0时,即t≤4时m﹣3(3+5t)=m(8﹣2t)﹣9﹣15t=8m﹣9﹣(2m+15)t,∴2m+15=0,解得m=﹣7.5,此时定值为8m﹣9=﹣69;当8﹣2t<0时,即t>4时m﹣3(3+5t)=﹣8m+2mt﹣9﹣15t=﹣8m﹣9+(2m﹣15)t,∴2m﹣15=0,解得:m=7.5,此时定值为﹣8m﹣9=﹣69;综上所述:mFG﹣3EF的值是一个定值时,m的值为±7.5.。

成都七中初中初一上期数学试卷及详解

成都七中初中初一上期数学试卷及详解

2018-2019某七初初一(上)数学半期
匹配度分析
【某七初半期第3题】【秋季.勤思班.第一讲例题3;敏学班,第一讲例题
4】
【某七初半期第4题】【秋季.勤思班.第二讲.例题3(1)】
【某七初半期第5题】【秋季.敏学班.第二讲.例题6】
【某七初半期第9题】【秋季.勤思班.第五讲.例题6】
【某七初半期第17题】【秋季.勤思班.第一讲例题6】
【某七初半期第18题】【秋季.敏学班.第五讲.例题5】【某七初半期第19题】【秋季.敏学班.第四讲.例题1(1)】【某七初半期第23题】【秋季.勤思班.第五讲.例题4】【某七初半期第27题】【秋季.敏学班.第三讲.例题7】
【某七初半期第28题】【秋季.国庆短期班A班.第二讲.例题5】。

2024-2025学年四川省成都市成华区成都七中英才学校七年级上学期入学考试数学试题

2024-2025学年四川省成都市成华区成都七中英才学校七年级上学期入学考试数学试题

2024-2025学年四川省成都市成华区成都七中英才学校七年级上学期入学考试数学试题1.经过不在同一直线上的四个点中的任意两点画直线,一共可以画____条.2.a、b是自然数,规定则的值是____.3.用1、5、7三个数字和小数点组成两位小数,其中最大的数比最小的数大____.4.某工厂有一批煤,原计划每天烧吨,可以烧100天,实际每天烧煤比原计划节约.实际可以烧____天.5.找规律,填一填:1,8,27,____,125,216,…6.26比一个数的少4,这个数是____.7.一个圆柱和一个圆锥,底面周长的比是,体积比是,它们高的最简整数比是____.8.父亲对儿子说:“我像你这么大时,你才4岁.当你像我这么大时,我就79岁了.”现在父亲____岁.9.把一根60米长的钢筋锯成每段一样长的小段,共锯11次,每段长____米.10.计算.(1)(2)(3)(4)(5)11.解方程.(1)(2)12.一辆快车和一辆慢车,同时分别从甲、乙两地出发,相向而行,经过6小时相遇,相遇后快车继续按相同的速度行驶3小时到达乙地.已知慢车每小时行驶45千米,甲、乙两地相距多少千米?13.某环保队有甲、乙、丙三支队伍,现计划在A地植树1000棵,在B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵.甲在A地,乙在B地,丙在A与B两地之间来回帮忙,同时开始,同时结束,丙在A地植树____棵.14.将化成小数,小数部分第100位上的数字是____.15.王叔叔只记得李叔叔的电话号码是76045□□,还记得最大数字是7,各个数字又不重复.王叔叔要拨通李叔叔的电话,最多要试打______次.16.两数相除,商4余8,被除数、除数、商、余数四数之和等于415,则被除数是____.17.如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的.那么,这样的四位数最多能有____个.18.小明把6个数分别写在3张卡片的正面和反面,每个面上写1个数,每张卡片正、反面上的2个数的和相等,然后他将卡片放在桌子上,发现正面写着28,40,49,反面上的数都只能被1和它自己整除,那么反面上的3个数的平均数是____.19.某产品的成本包括两部分,一部分是直接生产成本,每个需8元;另一部分是管理、宣传、营销等与产品间接有关的费用,共10000元.如果此产品定价12元,要使利润达到营业额的以上,至少要生产____个产品.20.蓄水池有甲、丙两条进水管和乙、丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时.要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有池水,如果按甲、乙、丙、丁的顺序,轮流打开,每次开1小时,则____小时后水开始溢出水池.21.如图,A、B是圆直径的两端,小张在A点,小王在B点,同时出发反向而行,他们在C点第一次相遇,C点离A点100米,在D点第二次相遇,D点离A点有60米,求这个圆的周长.22.某次考试共有100道题,每题1分,做错不扣分,甲、乙、丙3位同学分别得90分、70分、50分,其中3个人都做出来的题叫作“容易题”,只有1个人做出来的题叫作“较难题”,没人做出来的题叫作“特难题”,且“较难题”的个数是“特难题”的3倍,又已知丙同学做出的题中超过的是“容易题”,但又不全是“容易题”.“特难题”共有多少道?23.(组合图形求面积)在矩形中,,,点是的中点,点是的中点,连接、、,把图形分成六块,求阴影部分的面积.24.一条河的岸边有A、B两个码头,A在上游,B在下游.甲、乙两人分别从A、B同时划船出发,相向而行,4小时后相遇.如果甲、乙两人分别从A、B同时划船出发,同向而行,乙16小时后追上甲.已知甲在静水中的划船速度为每小时6千米,则乙在静水中的划船速度为每小时多少千米?。

四川省成都七中2022-2023学年度上期初一半期数学试题及参考答案

四川省成都七中2022-2023学年度上期初一半期数学试题及参考答案

2022-2023学年度上期初2022级半期考试数学参考答案A卷(100分)一.选择题(共8小题,每题4分,满分32分)1.【解答】解:根据“点动成线,线动成面,面动成体”,将矩形纸片ABCD绕边CD所在直线旋转一周,所得到的立体图形是圆柱.故选:A.2.【解答】解:流星滑过天空留下一条痕迹,这种生活现象可以反映的数学原理是点动成线.故选:A.3.【解答】解:如果运进粮食20t记作:+20t,那么运出粮食15t记作﹣15t,故选:C.4.【解答】解:将67000吨用科学记数法表示为:6.7×104吨.故选:B.5.【解答】解:从上面看的视图中可以看出最底层小正方体的个数为6,从正面看的视图可以看出小正方体的层数为1、2、1层,从左面看的视图可以看出小正方体的层数为1、2、1层,所以该几何体的正中间是两个小正方体.所以构成这个立体图形的小正方体的个数为6+1=7(个)故选:B.6.【解答】解:∵6+(﹣4)=6﹣4=2,∴A选项符合题意;∵﹣9﹣(﹣4)=﹣9+4=﹣5,∴B选项不符合题意;∵|﹣9|+4=9+4=13,∴C选项不符合题意;∵﹣9﹣4=﹣(9+4)=﹣13,∴D选项不符合题意;故选:A.7.【解答】解:由题意可知:x=±3,y=±6,∵x>y,∴x=3,y=﹣6或x=﹣3,y=﹣6,当x=3,y=﹣6时,x+y2=3+(-6)2=39,当x=﹣3,y=﹣6时,x+y2=﹣3+(﹣6)2=﹣33,故选:B.8.【解答】解:A、ab<0,故A符合题意;B、a+b>0,正确,故B不符合题意;C、a﹣b>0,正确,故C不符合题意;D、|a|﹣|b|>0,正确,故D不符合题意.故选:A.二.填空题(共5小题,每题4分,共20分)9.【解答】解:﹣3<;∵|﹣|=,|﹣|=,>,∴﹣>﹣.故答案为:<;>.10.【解答】解:由n棱柱有3n条棱,所以一个棱柱有18条棱,则它是18÷3=6,因此它是六棱柱,而六棱柱有6+2=8个面,故答案为:八.11.【解答】解:在图中添加一个小正方形,使它能折成一个正方体的情况如下:故答案为:4.12.【解答】解:当点B在A的左边时,﹣1﹣3=﹣4,当点B在A的右边时,﹣1+3=2,故答案为:2或﹣4.13.【解答】解:∵(a﹣3)4+|b+7|=0,∴a﹣3=0,b+7=0,∴a=3,b=﹣7,∴a+b=3﹣7=﹣4.故答案为:﹣4.三.解答题(共5小题,共48分)14.计算(20分,每小题4分):【解答】解:(1)原式=﹣2﹣3﹣1+5=﹣1;(2)原式=(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=18﹣4+15=29;(3)原式=﹣1×2+4÷4=﹣2+1=﹣1;(4)原式=﹣4﹣6+=﹣9;(5)原式=﹣9÷9+6+4=﹣1+6+4=9.15.(6分)【解答】解:如图所示:(各2分)从正面看从左面看从上面看16.(6分)【解答】解:∵a,b互为倒数,c,d互为相反数,x的平方是3∴ab=1,c+d=0,x=3或-3,(3分)则原式=9﹣(1+0)+1=9﹣1+1=9或原式=-9﹣(1+0)+1=-9.(2分)则原式的答案为9或-9.(1分)17.(8分)【解答】 ,,a b c 都是非零有理数,,a b c ∴均为正数或者均为负数或者有一个或两个数为负数因此,分以下四种情况:(1)当,,a b c 均为正数时,则0abc >,则|U +|U +|U +B |BU =+++B B =1+1+1+1=4;(2分)(2)当,,a b c 均为负数时,则0abc <,则|U +|U +|U +B |BU =−+−+−+B −B=-1+(-1)+(-1)+(-1)=-4;(2分)(3)当,,a b c 中有一个数为负数时,不妨设a 为负数,则0abc <,|U +|U +|U +B |BU =−+++B −B =-1+1+1+(-1)=0;(2分)(4)当,,a b c 中有两个数为负数时,不妨设a 和b 为负数,则0abc >,|U +|U+|U +B |BU =−+−++B B =-1+(-1)+1+1=0;(2分)综上,|U +|U +|U +B |BU 的值为0,-4或4.18.(8分)【解答】解:(1)(+100﹣200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2分)(2)+400﹣(﹣200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3分)(3)5000×7+(100﹣200+400﹣100﹣100+350+150)=35600(个),0.2×35600=7120(元).(3分)故本周口罩加工厂应支付工人的工资总额是7120元.(不作答-1分)B 卷(50分)一.填空题(共5小题,每题4分,共20分)19.【解答】解:2021的相反数是﹣2021,|﹣2021|=2021.故答案为:2021.20.【解答】解:∵折成正方体后,x,y与其相对面上的数字相等,∴x=﹣2,y=3,∴x y=(﹣2)3=﹣8.故答案为:﹣8.21.【解答】解:|-1|+(-3)+|-5|+(-7)+···+|-97|+(-99)=-2+-2+···+-2两两组合,每一个组合的和为-2,一共有(99-1)/2+1=50个数,共25组,故答案为-50.22.【解答】解:|x+8|+|x−3|表示x到-8的距离与x到3的距离的和,由数形结合可知,x为4或-9.23.【解答】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.二.解答题(共3小题,共30分)24.(8分)【解答】解:(1)∵3>2>1>0>﹣1>﹣2,(不作答-1分)∴47+3=50(元),47﹣2=45(元),50﹣45=5(元),答:价格最高的一件比价格最低一件多5元;(2分)(2)7×3+6×2+3×1+5×0+4×(﹣1)+5×(﹣2)=22(元),答:总售价超过22元;(3分)(3)(47﹣32)×30=450(元),450+22=472(元),答:赚了472元.(3分)25.(10分)【解答】解:(不作答-1分)(1)V=8×5×6=240(立方厘米)(3分)(2)V=8×5×6﹣π×22×6=240﹣24π(立方厘米).(3分)(3)2×(5×6+5×8+6×8)﹣2π×22+6×2π×2=16π+236(平方厘米)表面积为16π+236平方厘米.(4分)26.(12分)【解答】解:(1)由题意知:OC=120,∴当P运动到点C时,t=120÷4=30(秒);(3分)(2)①当点P、Q还没有相遇时,4t+6t=120﹣60,解得:t=6,(2分)②当点P、Q相遇后,4t+6t=120+60,解得:t=18,(2分)综上所述,经过6秒或18秒P,Q两点相距60cm;(3)∵PA+PB=2|QB﹣QC|=48,∴PA+PB=48,|QB﹣QC|=24,∵在数轴上,点A对应的数为40,点B对应的数为80,点C对应的数为120,∴点P对应的数为36或84(1分),点Q对应的数为88或112,(1分)①点P对应的数为36时,OP=36,t=36÷4=9(s),若点Q对应的数为88时,CQ=120﹣88=32,a=32÷9=,(0.5分)若点Q对应的数为112时,CQ=120﹣112=8,a=8÷9=(舍弃),(0.5分)②点P对应的数为82时,OP=82,t=82÷4=21(s),若点Q对应的数为88时,CQ=120﹣88=32,a=32÷21=,(0.5分)若点Q对应的数为112时,CQ=120﹣112=8,a=8÷21=(舍弃),(0.5分)(舍弃给1分)综上所述,点Q的运动速度为:单位长度/秒或单位长度/秒.。

四川省成都七中初中学校2020届半期考试(数学)答案解析

四川省成都七中初中学校2020届半期考试(数学)答案解析

四川省成都七中初中学校2020届半期考试(数学)一、选择题(共10小题,共0分)1.如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是( )A:B:C:D:【考点】简单几何体的三视图【分析】本题主要考查简单几何体的三视图,解答本题的关键是熟练掌握几何体的三视图.【解答】解:主视图即从正看,本题几何体两层,上层两个小正方体,下层左对齐三个小正方体,所以主视图应两行,上面一行两个小正方形,下面一行左对齐三个小正方形.故选D.【答案】 D2.的倒数是( )A:B:C:D:【考点】【分析】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.根据乘积为1的两个数互为倒数,可得答案. 【解答】解:的倒数是,故选C.【答案】 C3.在-2,π,15,0,,六个数中,整数的个数为( )A:1B:2C:3D:4【考点】实数【分析】解:因为-2、15、0是整数,π是无理数,、是分数.所以整数共3个.故选C.先判断每个数是什么数,最后得到整数的个数.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.【答案】 C4.下列各数-2,,,中最大的是( )A:-2B:C:,D:【考点】绝对值(二),有理数的大小比较【分析】本题主要考查比较有理数的大小,解答本题的关键是熟练掌握比较有理数的大小的法则.【解答】解:所有正数大于负数,所以A、C排除,.【答案】 B5.作为世界文化遗产的长城,其总长大约为将用科学记数法表示为( )A:B:C:D:【考点】科学记数法与有效数字【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n是负数.【解答】解:,故选B.【答案】B6.下列关于单项式的说法中,正确的是( )A:系数是3,次数是2B:系数是,次数是2C:系数是,次数是2D:系数是,次数是3【考点】单项式【分析】本题主要考查单项式,解答本题的关键是熟练掌握单项式的系数和次数的定义.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是,次数是2,只有C正确.【答案】 C7.下列各式运算正确的是( )A:B:C:D:【考点】合并同类项,去括号与添括号【分析】解:A、,故此选项错误;B、,无法合并,故此选项错误;C、,故此选项错误;D、,正确.故选:D.直接利用合并同类项法则判断得出答案.此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.【答案】 D8.若与是同类项,则ab的值为( )A:1B:2C:3D:4【考点】代数式求值,合并同类项【分析】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.根据同类项中相同字母的指数相同的概念求解.【解答】解:与是同类项,,b=1,则.故选B.【答案】 B9. 已知:,则( )A:0B:C:2D:4【考点】绝对值(二)【分析】本题考查的是非负数的性质,掌握有限个非负数的和为零,那么每一个加数也必为零是解题的关键.【解答】解:,,,解得a=1,..故选A.【答案】 A10.某企业去年产值p万元,今年比去年增产,今年产值是( ) A:万元B:万元C:万元D:万元【考点】列代数式【分析】本题考查了增长率的知识,增长后的收入增长前的收入,今年产值去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值万元,故选A.【答案】 A二、填空题(共10小题,共0分)1.一个直棱柱有12条棱,则它是______棱柱.【考点】点、线、面、体【分析】本题考查了棱柱的相关知识.由棱数除以3判断棱柱的名称是解题关键.【解答】解:一个棱柱有12条棱,这是一个四棱柱,它有6个面.故答案为四.【答案】四2.多项式是____次____项式.【考点】多项式【分析】此题考查了多项式的项和次数的定义.一个多项式含有几项,就叫几项式;多项式中次数最高的项的次数叫做多项式的次数;如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.根据多项式的项和次数的定义求解即可.【解答】解:是四次五项式.故答案为四;五.【答案】四;五3. 绝对值小于4.5的所有整数的和为_____.【考点】绝对值(二),有理数的加法【分析】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.找出绝对值小于4.5的所有负整数,求出之和即可.【解答】解:绝对值小于4.5的所有负整数为-4,-3,-2,-1,0、1、2、3、4 之和为.故答案为0.【答案】4.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为0,则_____.【考点】代数式求值【分析】本题考查了正方体的展开图形,注意从相对面入手,分析解答问题.利用正方体及其表面展开图的特点,根据相对面上的两个数之和为0,也就是互为相反数,求出x、y的值,从而得到的值.【解答】解:解:将题图中平面展开图按虚线折叠成正方体后,可知标有数字“2”的面和标有x的面是相对面,标有数字“4”的面和标有y的面是相对面,∵相对面上两个数之和为0,,,.故答案为-10.【答案】-105.当a=____时,有最小值,且最小值是_____.【考点】绝对值(二)【分析】本题考查的是绝对值的性质,掌握任意一个数的绝对值都是非负数是解题的关键.根据任意一个数的绝对值都是非负数进行解答.【解答】解:由于绝对值是非负数,那么取得最小值时,,由此可判断出最小值.,∴当时,即a=1时的值最小为2故答案为1,2.【答案】1,26.若单项式与的和仍是单项式,`则______.【考点】代数式求值,合并同类项,一元一次方程【分析】本题考查了同类项的知识,掌握同类项中的两个相同:(1)所含字母相同,(2)相同字母的指数相同,是解答本题的关键.先判断出-x y与 x y是同类项,然后根据同类项所含相同字母的指数相同可得出m、n的值,代入即可得出答案.【解答】解:∵单项式与 x y的和仍为单项式,∴单项式与 x y是同类项,,,故m =-2,∴ m (-2)故答案为 4.【答案】47.若关于x、y的多项式化简后不含二次项,则m=______ .【考点】多项式【分析】解:,因为化简后不含二次项,所以,解得.故答案为:.首先合并同类项,不含二次项,说明xy项的系数是0,由此进一步计算得出结果即可.此题考查并同类项的方法,明确没有某一项的含义,就是这一项的系数为0.【答案】8.已知,则代数式的值为 ______ .【考点】整式加减运算法则【分析】解:原式,故答案为:-10.把,代入代数式进行计算即可.此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.【答案】 -109.已知,,且,求_____.【考点】绝对值(二)【分析】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,根据绝对值的性质求出a、b的值,再根据负数的绝对值等于它的相反数解答.【解答】解:,,,,,,即,或,b=2 ,或,综上所述,或-5.故答案为-1或-5.【答案】-1或-510.我们将记作读作n的阶乘),如:,,,若设,则S除以的余数是_____.【考点】有理数的除法【分析】本题考查规律型:数字的变化类,解答此类问题的关键是弄清新定义,得出的数据变化的规律是解题的关键.由知,可将原式两边都加上,即可得,所以S除以的余数是-1,再根据能被整除,求出S除以的余数是多少即可.【解答】解:,,即,则,能被整除,与1的和能被整除,除以的余数是:.故答案为.【答案】三、计算题(共3小题,共0分)1.计算题(1)(3)【考点】有理数的混合运算【分析】此题考查有理数的混合运算,先算乘方,再算乘除,最后算加减,如果有括号,先算括号里的.(1)小数与小数相加减,分数与分数相加减,再计算即可;(2)先算乘方,再算乘除,最后算加减,如果有括号,先算括号里的;(3)先算乘方,再算乘除,最后算加减,如果有括号,先算括号里的;(4)先利用乘法分配律计算,再相减.【答案】解:=-7;(2);=3;=25.2.化简(或求值)先化简,再求值:,其中,.【考点】代数式求值,合并同类项,去括号与添括号,整式加减运算法则【分析】本题主要考查整式的加减,解答本题的关键是熟练掌握去括号和合并同类项.(1)去括号、合并同类项即可;(2)去括号、合并同类项,注意第二个括号有两层,可由里向外去;(3)先去括号合并同类项把原式化简,再代入求值即可.【答案】(1)解:原式(2)原式(3)原式把,代入得:=4.3. 已知a、b互为相反数,c、d互为倒数,m的平方是4,求的值.【考点】相反数,有理数的乘方(二),平方根,代数式求值【分析】本题考查了代数式求值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值. 求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.根据相反数、倒数和平方的意义得到,,,分别代入计算即可.【答案】解:、b互为相反数,c、d互为倒数,m的平方是4,,,,∴原式=,当m=2时,原式;当原式,即的值为5或-11.四、解答题(共6小题,共0分)1.画出如图所示几何体的主视图、左视图、俯视图.【考点】简单几何体的三视图【分析】此题考查几何体的三视图.分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示,实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【答案】解:如图所示:2.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的-3-201 2.5差值(单位:千克)筐数142328筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?【考点】正数与负数,有理数的加法,有理数减法法则,有理数的乘法,有理数的混合运算【分析】本题考查的知识点有正数和负数、有理数加法、有理数减法、有理数乘法、有理数的混合运算.解题关键是读懂题意,分别列式计算.(1)把最重的一筐与最轻的一筐相减即可;(2)将20筐白菜的重量相加计算即可;(3)将总质量乘以每千克售价2.6元并计算即可.【答案】解:(1)千克).答:最重的一筐比最轻的一筐重5.5千克.=8(千克).答:20筐白菜总计超过8千克.元).答:出售这20筐白菜可卖元.3.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付\_ 元;若在乙店购买,则总共需要付_______ 元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?【考点】一元一次方程的应用【分析】本题主要考查了一元一次方程的应用,根据题意先求出两家的收费表达式是关键.(1)设购买x只茶杯时,甲商场收费为30,在乙商场收费为;(2)把分别代入(1)中的两店表达式,款数较少的甲店为所选.【答案】解:(1)设购买x只茶杯时,在两家商店所需付款分别为:甲店:乙店:;(2)把分别代入(1)中得甲店为元,乙店为元,答:当需购买15只茶杯时,选择去甲店购买更合算.4. 已知数a、b、c在数轴上的位置如图所示,化简.【考点】绝对值(二),整式加减运算法则【分析】本题考查了整式的加减;熟练掌握绝对值的性质得出各式的绝对值是解决问题的关键.先根据题意得出a、b、c的取值范围,再得出a+b,,a+c的正负性,根据绝对值的性质求出各式的绝对值,化简合并即可.【解答】解:根据题意得:,,,,,,∴原式.故答案为-2c.【答案】-2c5. 已知,.(1)若与的和仍是单项式,求的值;(2)若的值与y的值无关,求x的值.【考点】非负数的性质:偶次方,合并同类项,去括号与添括号,整式加减运算法则,一元一次方程【分析】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.(1)先根据单项式的定义求出x、y的值,再求即可.(2)根据的值与y无关,令含y的项系数为0,解关于x的一元一次方程即可求得x的值.【答案】解:(1)由题意与的和仍是单项式得:x=2,,解得:y=3.所以:.将x=2,y=3,代入得:原式=26.(2)由(1)得,.由题得,,所以.6. 在数轴上,点M,N表示的数分别为,,我们把,之差的绝对值叫做点M,N之间的距离,即已知数轴上三点A,O,B表示的数分别为-3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)若,则x=________;(3)若,求x的取值范围?(4)若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,【考点】数轴,绝对值(二),一元一次方程【分析】本题考查了绝对值,数轴,主要利用了数轴上两点间的距离的表示方法,读懂题目信息,理解两点间的距离的表示方法是解题的关键.(1)根据数轴上两点间的距离的表示列出方程求解即可;(2)根据AB的距离为4,小于6,分点P在点A的左边和点B的右边两种情况分别列出方程,然后求解即可;(3)根据点P在B点或B点右边,然后写出x的取值范围即可;(4)设运动时间为t,分别表示出点P、E、F所表示的数,然后根据两点间的距离的表示列出绝对值方程,然后求解即可.【解答】解:(1)由题意得,,解得;故答案为故答案为-1;,点P到点A,点B的距离之和是6,∴点P在点A的左边时,,解得,点P在点B的右边时,,解得x=2,综上所述,或2;故答案为故答案为-4或2;见答案.【答案】解:;或2;(3)根据题意得:,则点P在B点或B点右边,;(4)设运动时间为t,点P表示的数为-3t,点E表示的数为,点F表示的数为,∵点P到点E,点F的距离相等,,解得或t=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中嘉祥外国语学校七年级(上)数学半期考试题(时间120分钟,满分150分) 命题人:何江 审题人:罗志良温馨提示:亲爱的同学们,经过这段时间的学习,相信你已经拥有了许多知识财富!下面这套试卷是为了展示你最近的学习效果而设计的,只要你仔细审题,认真作答,遇到困难时不要轻易放弃,就一定会有出色的表现!注意:请将选择题和填空题的答案填在后面的表格中A 卷(100分)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、12的相反数的绝对值是 ( )A .12- B.2 C.-2 D. 122、下列语句中错误的是 ( ) A.数字0也是单项式 B.单项式-a 的系数与次数都是 1 C.21xy 是二次单项式 D.-32ab 的系数是 -32 3、下列各式计算正确的是 ( ) A .2(4)16--=- B .826(16)(2)--⨯=-+⨯- C .6565445656⎛⎫÷⨯=÷⨯ ⎪⎝⎭D. 20032004(1)(1)11-+-=-+ 4、如果3,1,a b a b ==>且,那么b a +的值是 ( ) A . 4 B . 2 C . 4- D . 4或25、下列说法上正确的是 ( ) A .长方体的截面一定是长方形; B .正方体的截面一定是正方形; C .圆锥的截面一定是三角形; D .球体的截面一定是圆6、 如图,四条表示方向的射线中,表示北偏东60°的是 ( )7、若x-y 2(x y)4, -6 2(x y)x-yx y x y -+=+++则代数式的值是 ( ) 姓名_____________________ 班级_____________________ 学号____________________ …………………………………密………………………………………封……………………………………线……………………………………..A .4B .311 C -3 D 22..不能确定 8、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( ) A. xy 7- B. xy 7+ C. xy - D. xy + 9、 下列说法正确的个数为 ( ) (1)过两点有且只有一条直线 (2)连接两点的线段叫做两点间的距离 (3)两点之间的所有连线中,线段最短 (4)射线比直线段一半 (5)直线AB 和直线BA 表示同一条直线A .2B .3C .4D .5 10、某电影院共有座位n 排,已知第一排的座位为m 个,后一排总是比前一排多1个,则电影院中共有座位 ( )A.mn+22nB. (1)2n n mn -+C.mn+nD. (1)2n n mn ++二、填空题:本大题共10小题,每小题3分,共18分,把答案填写在题中横线上.11、比较大小:–π________–3.14(填=,>,<号).12、单项式2a b -的系数是___________,单项式2715x y π-的次数是________.13、在数轴上,点M 表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是 .14、一桶油连桶的重量为a 千克,桶重量为b 千克,如果把油平均 分成3份,每份油的重量是____________.15、如图:三角形有___________个.15题16、为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米2.4元收费.小明家六月份交水费33. 6元,则小明家六月份实际用水______________立方米成都七中嘉祥外国语学校七年级(上)数学半期考试题(时间120分钟,满分150分) 命题人:何江 审题人:罗志良 注意:请将选择题和填空题的答案填在后面的表格中一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的. 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共10小题,每小题3分,共18分,把答案填写在横线上.11、 12、 13、14、 15、 16、三、图形题:本大题每小题5分,共10分.17、(本题5分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图主视图 左视图18、(本题5分)如图:正方形的边长为a 其中有一直径为a 的圆,阴影部分面积为S .(1)用含a 的代数式表示阴影面积S ;(2)当4a cm =时,求阴影部分面积S .( 3.14)π取姓名_____________________ 班级_____________________ 学号____________________ …………………………………密………………………………………封……………………………………线……………………………………..24132四、运算题:本大题共2小题,共9分,解答应写出必要的计算过程. 19、(1)(本题4分) (-61+43-125)⨯)12(-(2)(本题5分)()()[]2421315.011--⨯⨯---五、代数式运算题:本大题共2小题,每题5分,共15分,解答应写出必要的计算过程. 20、(1)(本题5分)化简 ]2)(5[)3(2222mn m mn m m mn +-----(2)(本题5分)先化简,再求值:22215{2[32(2)]}2abc a b abc ab a b ---- ,求当3,1,2=-==c b a 时的值.(3)(本题5分)若关于x y 、的代数式22(27)(291)x ax y bx x y +-+--+-的值与字母x 的取值无关,求a b -.六、解答题:本大题共3小题,每小题6分.共18分,解答应写出必要的计算过程或文字说明.21、(本题6分)如图,点P 在线段AB 上,点M N 、分别是线段AB AP 、的中点,若16AB =cm ,6BP =cm ,求线段NP 和线段MN 的长.22、(本题6分)如图,OE 为∠AOD 的角平分线,∠COD=41∠EOC ,∠COD=15°, 求:①∠EOC 的大小; ②∠AOD 的大小.23、(本题6分)“十·一”黄金周期间,上海世博园风景区7天假期中每天旅游的人数变化如下表AN(正数表示比前一天多的人数,负数表示比前一天少的人数):(1) 若9月30日的游客人数记为a ,请用a 的代数式表示10月2日的游客人数: 万人 .(2) 请判断七天内游客人数最多的是 日,最少的是 日. (3) 以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数情况:B 卷(50分)一、填空.(共5小题,每题4分,共20分)24、如果522)3(5x m y x n-+是关于x,y 的六次二项式,则m 、n 应满足条件____________. (日)25、7点20分,钟表上时针与分针所成的角是______________度26、已知多项式281468ax bx cx -+-,当3x =时值为2010,当3x =-时281468ax bx cx -++ 的值为 .27、点,A B 在直线l上,5AB =cm ,画点C ,使点C 是在直线l 上到点A 的距离是3的点,则点C 到点B 的距离是____________cm .28、如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见...的小立方体有______个.二、解答题(共30分)29、 (本题5分)已知a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()cda b m m m ++-的值是多少?30、(本题6分)数a ,b ,c 在数轴上的位置如图所示且c a =; (1)化简2a c b b a c b a b ++----++; (2)用“<”把a ,b ,b -,c 连接起来;31、(本题9分)全世界每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务,某地区沙漠原有面积100万公倾.为了解该地区沙漠面积的变化情况,进行了连续3年的观察,并将每年年底的观察结果,记录如下表:① ② ③第三年底 100.6预计该地区沙漠的面积将继续按此趋势扩大.(1)如果不采取措施,第4年底,该地区沙漠化面积将变成多少万公顷?(2)如果不采取措施,那么到第m 年底,该地区沙漠面积将变为多少万公顷?(3)如果第5年后采取措施,每年改造0.8万公倾沙漠,那么到第n 年该地区沙漠的面积为多少万公顷(5 n )?32、(本题10分)如图,有一个形如六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,依次类推.层数 1 2 3 4 5 6 该层对应的点数 所有层的总点数(2)写出第n 层所对应的点数.(3)如果某一层共96个点,你知道它是第几层吗? (4)有没有一层,它的点数为100点? (5)写出n 层的六边形点阵的总点数.。

相关文档
最新文档