北师大版八年级数学下册 认识分式-教案
北师大版数学八年级下册《分式及分式的相关概念》教案1

北师大版数学八年级下册《分式及分式的相关概念》教案1一. 教材分析北师大版数学八年级下册《分式及分式的相关概念》这一章节是在学生已经掌握了实数、代数式、方程等知识的基础上进行教授的。
分式作为初中数学中的一个重要内容,不仅在学习代数方程求解、函数等方面有重要作用,而且对于培养学生的逻辑思维能力、抽象思维能力也具有重要意义。
本节内容主要介绍分式的定义、分式的基本性质、分式的运算以及分式的相关概念。
二. 学情分析学生在学习这一章节时,已经具备了一定的数学基础,但分式的概念和性质较为抽象,对于部分学生来说理解上可能存在一定难度。
因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行引导,帮助学生理解和掌握分式的相关概念。
三. 教学目标1.理解分式的定义,掌握分式的基本性质。
2.学会分式的运算方法,提高运算能力。
3.理解分式的相关概念,如分母、分子、分式方程等。
4.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.分式的定义和基本性质。
2.分式的运算方法。
3.分式的相关概念。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生主动探究、积极参与,提高学生的学习兴趣和积极性。
六. 教学准备1.教学课件或黑板。
2.教学素材,如分式的例子、练习题等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如“某商品的原价是200元,现在打8折,求打折后的价格。
”让学生感受分式在实际生活中的应用。
2.呈现(10分钟)讲解分式的定义,如“分式是形如a/b的表达式,其中a和b都是整式,b不为0。
”同时,呈现分式的基本性质,如“分式的分子和分母都乘以(或除以)同一个不为0的整式,分式的值不变。
”3.操练(10分钟)让学生进行分式的基本运算,如分式的加减乘除。
教师引导学生总结运算规律,巩固所学知识。
4.巩固(10分钟)讲解分式的相关概念,如分母、分子、分式方程等。
通过具体例子,让学生理解分式方程的解法。
北师大版八年级下册《认识分式》教案

北师大版八年级下册《认识分式》教案1. 教材及教学目标1.1 教材本课程的教材为《北师大版八年级数学》第二册,第四章节——认识分式。
1.2 教学目标1.知道什么是分式,认识分式的定义、性质和简单的基本运算;2.能够将一个正整数表示为两个整数的商,熟练掌握分式的约分和通分方法;3.能够根据具体情况,选用合适的分数单位进行计算;4.能够应用分式在实际问题中解决问题。
2. 教学重点1.分式的定义和性质,基本运算方法;2.分式的约分和通分方法。
3. 教学难点将分式的运用发挥到解决实际问题的能力。
4. 教学内容及方法4.1 教学内容4.1.1 分式的定义和性质•分式的定义,分式的分子、分母、分式的值、分数的正、负、零等概念;•分式的基本性质:倒数的倒数、分式的分子或分母乘同一数、交换律、结合律;4.1.2 分式的基本运算方法•分式的加、减、乘、除法的基本运算法则;•分式的约分和通分方法;•分式的比较。
4.1.3 分式在实际问题中的应用•将生活实际问题用分式形式表示;•利用分式解决实际问题。
4.2 教学方法本课程采用以下教学方法:4.2.1 讲述法通过讲解教师能够将学生对该概念的认识提高至一个新的水平,教师应该关注学生的反应以及他们的反馈,以评估学生对该概念的理解程度。
4.2.2 例题导入法在教学过程中,选择一些典型的例子,逐步举例说明分式的定义、性质以及约分和通分方法等,使学生能够深入理解该概念,同时积极参与到教学中来。
4.2.3 练习法在教学的过程中,老师可以在讲解后提出一些练习题,供学生上课完成或者在下一节课前完成。
这样既能考查学生对该概念的理解程度,又能将教学内容与实际应用结合起来。
4.2.4 讨论法在教学的过程中,将学生分成小组,引导他们一起讨论课上学过的内容。
让学生自己思考和解决问题,加深学生对该概念的理解,同时也能让学生相互交流,增强学生的技能,并提高他们的动手能力。
5. 教学步骤5.1 教学准备•教师要先做好课前的准备,包括准备好教学用具、复习教材内容等;•学生应该带齐教材、笔和作业本等,准备好听课。
认识分式 教学设计 北师大版数学八年级下册

北师大版义务教育教科书《八年级下册》第五章《认识分式》教学设计一.教材分析本节课是北师大版八年级(下)第五章《分式与分式方程》第一节内容.学生在小学已经学习了有关分数及其运算的相关知识,本套教材又分别在七、八年级探究了“字母表示数”、“代数式”、“整式”、“因式分解”等内容,本节将继续学习代数式的另一组成部分——分式.作为本章的起始课,本节课起着承接分数、整式,引领分式性质、运算、分式方程以及反比函数相关知识的重要作用.本节课基于数学建模和类比思想,在具体情境中抽象出分式模型,类比分数掌握分式的概念,理解分式有无意义的条件,通过数学活动发展学生归纳、反思、总结的学习意识.二.学情分析在知识上,学生在小学学过分数,而分式可以看成是分数的“代数化”,所以其性质与运算是相类似的.在前面的学习中,学生已经学会用字母表示实际问题中的数量关系,在整式的学习中,学生已经会对整式进行分类,并初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想.在能力上,八年级学生已经有了合作学习的组织能力和方法,具有了一定的的分类、归纳、反思、总结等数学活动经验,为本节课开展提供了保障.三.教学目标分析1、结合具体情境体会分式的意义,体会分式时刻画现实世界中一类量的教学模型,发展符号意识.2、了解分式的概念,明确分式与整式的区别.3、会求分式的值,了解分式有意义的条件.重点:分式的概念;难点:分式有意义的条件及其在实际情景中的意义.四.教法与学法分析教法:“情境引入—类比交流—总结提炼—拓展应用”教学模式.学法:类比、交流、展示、应用.五.教学过程分析环节一:情境引入感受模型请你完成下列填空:(1)半径为a的圆的周长为,面积为;(2)一大盒牛奶m毫升,把这盒牛奶倒入某种玻璃杯中,刚好倒满3杯,则这种杯子的容量是毫升;(3)面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林2400公顷,计划每月固沙造林x公顷,实际每月固沙造林的面积比原计划多30公顷,则实际每月固沙造林公顷,计划完成造林任务需要个月,实际完成造林任务需要个月;(4)2014年青岛世界园艺博览会吸引了成千上万的参观者,某一段时间内的统计结果显示,前a天日均参观人数为3万人,后b天日均参观人数为5万人,这(a+b)天共有万名参观者,日均参观人数为万人;(5)新华书店库存一批图书,其中一种图书的原价是每册m元,现每册降价x元销售,当这种图书全部售出时,其销售额为n元,降价销售开始时,新华书店这种图书的库存量是册.【设计意图】1、提供丰富的生活情境,激发学生学习的欲望,同时让学生体会数学与生活的联系.2、利用代数式的实际背景,让学生初步感受分式的模型作用,体会分式的意义.3、问题的设置涉及到单字母和多字母的,涉及分母含字母和不含字母的,既为明确分式特征做铺垫,也为后续学习提供素材.【教学策略】独立思考—交流讨论—展示答案.环节二:探究交流提炼概念1.你能将上面的代数式分类吗?分类的依据是什么?2.对于代数式2400x ,2400+30x,35+ba ba+,nm x-,它们有哪些共同特征?与整式有什么不同?3.师生交流,生生交流,归纳总结:分式的概念:一般地,用A,B两个整式,A B÷可以表示成AB的形式.如果B中含有字母,那么称AB为分式.其中A称为分式的分子,B称为分式的分母.4.对于分式中的分母有什么要求?类比分数得到:3÷5=35A÷B=AB(整数)(整数)(分数) ( 整式)(整式)(分式)(不为0)(含字母,不为0)5. 你能再举几个分式的例子吗?跟进练习:下列代数式中哪些是分式?1a ,4a ,2m m n -,12a b +,23x y -,14x x+-+,2221x x x ++. 【设计意图】1、 让学生经历对代数式分类的过程,渗透代数式知识系统的建构.2、学生通过思考,交流,归纳,建立分式的概念. 3、 类比分数,明确分式的特征——①分子、分母都是整式;②分母含有字母且不能为零.用彩色粉笔标记关键点.4、 学生自己举例,丰富了对分式的认识,配合跟进练习,进一步加深了对分式特征认知.【教学策略】1、学生可能会提供的多种分类方式,予以鼓励,明确分类的依据. 2、 鼓励学生用自己的语言描述分式的共同特征,如果遇到困难可以适时安排小组讨论,或引导学生可以从形式,所含运算等方面进行思考.3、 及时追问,明确分式的特征,渗透类比思想.环节三:应用新知,提升能力例1:(1) 当a =1,2,-1时,分别求分式121a a +-的值; (2) 当a 取何值时,分式121a a +-有意义? 跟进练习:211m m m -+当取何值时,分式的值为零?【设计意图】1、学会求分式的值. 2、 理解分式有意义的条件和分式值为零的条件.【教学策略】1、分式求值较为简单,学生独立完成. 2、 引导学生理解分式有无意义的条件,结合具体题目分析分式值为零应满足的条件.3、适时小结,分式有意义对应分母不为零;分式值为零不仅要求分子为零,还要关注分母不能为零.环节四 :回归生活 拓展认知例2:新华书店库存一批图书,其中一种图书的原价是每册m 元,现每册降价x 元销售,当这种图书全部售出时,其销售额为n 元,降价销售开始时,新华书店这种图书的库存量是n m x -册.(1)(2)上述计算过程,表示什么实际意义呢?(3)何时分式无意义?此时又对应什么实际意义呢?【设计意图】这一部分虽然难度不大,但是这样安排有利于让学生结合问题情境,感受分式的模型作用,体会分式求值,分式无意义在具体情境中的实际含义.预计学生会有恍然大悟之感.【教学策略】 8,2,3000n m x n m x===-当时,分式的值为多少?师生问答,在独立思考的基础上进行适当的讨论交流,鼓励学生用通俗的语言表达自己的理解.环节五:小结串联,纳入系统1.在本节课中,你感受最深的是什么?2.你还有什么疑惑的地方吗?3.你愿意对这章的后继学习作一下展望吗?【设计意图】1、从多角度出发,完善学生的知识体系,实现其思维的升华.2、再次渗透类比的思想,结合小学对分数相关知识的学习,展望本章后续的学习内容,鼓励学生增强信心.【教学策略】学生发言小结为主,教师适时补充.环节六:达标检测,评价矫正1.当x取何值时,下列分式有意义?(1)21x-(2)219x-2. 当x=0,-2,12时,分别求分式2132xx-+的值.3.把甲、乙两种饮料按质量比:x y混合在一起,可以调制成一种混合饮料,调制1Kg这种混合饮料需要多少甲种饮料?【设计意图】评价是升华认知层次的有效措施,进一步丰富了分式的背景,拓展了学生的认知,给孩子的思维插上了的翅膀.【教学策略】学生独立完成,展示交流,关注通过率.环节七:布置作业继续学习必做题:课本习题5.1 知识技能1-3题选做题:课本习题5.1问题解决4-5题【设计意图】1、课后继续学习,拓展认知,保持学习的连贯性.2、分层作业,关注不同层次的学生.【教学策略】课后独立完成.。
北师大版数学八年级下册5.1认识分式(教案)

-分式的简化:学会约分和分解因式的方法,简化分式。
-举例:给出具体的分式,演示如何通过找出公因式或分解因式来简化分式。
-分式的乘除法:掌握分式乘除法的法则,并能熟练进行运算。
-举例:通过典型例题,讲解分式乘除法的步骤和注意事项。
-分式的乘方:理解分式乘方的运算规则,并能正确应用。
北师大版数学八年级下册5.1认识分式(教案)
一、教学内容
本节内容选自北师大版数学八年级下册第五章第一节“认识分式”。主要包括以下内容:
1.分式的定义:让学生理解分式的概念,掌握分子、分母、分式值等基本要素。
2.分式的性质:通过实例引导学生发现并总结分式的性质,如分子分母同乘(除)一个非零数,分式的值不变。
-分式的乘方:对于分式乘方的运算,学生可能不理解指数对分子分母的影响。
-突破策略:通过具体例题,让学生观察指数变化对分式值的影响,并总结规律。
-分式的应用:在解决实际问题时,学生可能不知道如何建立分式模型。
-突破策略:提供丰富的实际情境,指导学生如何将问题转化为分式问题,并逐步引导他们建立分式模型。
五、教学反思
在今天的课堂中,我们探讨了分式的概念、性质以及它们在现实生活中的应用。我发现学生们对于分式的定义和基本性质掌握得相对较好,但在具体的简化运算和应用方面,部分学生还存在一定的困难。
首先,我注意到在讲解分式简化时,有些学生对于如何寻找公因式、分解因式还不够熟练。这说明在今后的教学中,我需要更加注重基础知识的教学,如因式分解的技巧,以便让学生在解决分式简化问题时更加得心应手。
3.分式的简化:教授如何将分式进行简化,包括约分、分解因式等方法。
4.分式的乘除法:介绍分式乘除法的法则,并通过例题进行讲解和练习。
北师大数学八年级下册5.1《认识分式一》教案

北师大版数学八年级下册《认识分式(一)》教课设计(1)第五章分式与分式方程1.认识分式(一)银川市回民中学马秀文一、学生知识情况剖析学生在小学学过分数,其实分式是分数的“代数化”,因此其性质与运算是完整近似的.在前方的学习中学生已经学会用字母表示实质问题中的数目关系,此中包含整式与分式等数目关系.在整式的学习中,学生初步具备了用整式表示现真相境中的数目关系,成立数学模型的思想.在有关的学习中学生初步具备了察看、概括、类比、猜想的能力以及自主探索、合作沟通的能力.二、教课任务剖析本节课是分式的开端课,是学生学习了整式、因式分解基础长进行的的,是下一步学习分式的性质、分式的运算以及分式方程的前提,因此分式的观点及分式在什么条件下存心义是本节课的要点和难点。
由于分式与分数近似,因此为了打破要点和难点,采纳了类比的学习方法,让学生学会自主探究,合作沟通,老师的讲和学生的学相联合。
分式是表示现实世界中一类量的数学模型,为了让学生领会这一点,在课题引入时从实质生活情形出发,让学生经历用字母表示实质问题中数目关系的过程。
依据三维教课目的及新课程标准对本节课的要求,联合目前学生的心理特色以及现有的认知水平,制定本课的教课目的:1、认识分式的观点,明确分式和整式的差别;2、让学生经历用字母表示实质问题中数目关系的过程,领会分式是表示现实世界中的一类量的数学模型.3、培育学生察看、概括、类比的思想,让学生学会自主探究,合作沟通.三、教课过程剖析本节课共设计了6个教课环节:知识回首——情形引入——自主探究——练习提升——讲堂反应——自我小结第一环节知识回首问题: 1.什么是分数? 2.什么是整式?1/4北师大版数学八年级下册《认识分式(一)》教课设计(1)活动目的:由于分式观点的学习是学生经过察看,比较分式与整式的差别进而获取分式的观点,因此一定娴熟掌握整式的观点.而复习分数便于类比学习分式第二环节情形引入问题情形(1)面对目前严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一按限期内固沙造林2400公顷,实质每个月固沙造林的面积比原计划多30公顷,结果提早达成一原计划的任务。
八年级数学下册《分式》教案北师大版

八年级数学下册《分式》教案北师大版第一章:分式的概念与基本性质1.1 分式的概念学习目标:理解分式的定义,掌握分式的构成要素。
教学内容:介绍分式的定义,解释分子和分母的概念。
教学方法:通过实际例子,让学生理解分式的含义,并进行练习。
1.2 分式的基本性质学习目标:掌握分式的基本性质,包括分式的乘除法、乘方等。
教学内容:介绍分式的基本性质,解释分式的乘除法规则,展示乘方运算的例子。
教学方法:通过实际例子,让学生掌握分式的基本性质,并进行练习。
第二章:分式的运算2.1 分式的加减法学习目标:掌握分式的加减法运算规则,能够正确进行计算。
教学内容:介绍分式的加减法规则,展示例题,并进行练习。
教学方法:通过实际例子,让学生理解分式的加减法运算规则,并进行练习。
2.2 分式的乘除法学习目标:掌握分式的乘除法运算规则,能够正确进行计算。
教学内容:介绍分式的乘除法规则,展示例题,并进行练习。
教学方法:通过实际例子,让学生理解分式的乘除法运算规则,并进行练习。
第三章:分式的应用3.1 分式在实际问题中的应用学习目标:学会将实际问题转化为分式问题,并运用分式进行解决。
教学内容:介绍分式在实际问题中的应用,展示例题,并进行练习。
教学方法:通过实际问题,让学生学会将问题转化为分式问题,并运用分式进行解决。
3.2 分式在几何问题中的应用学习目标:学会将几何问题转化为分式问题,并运用分式进行解决。
教学内容:介绍分式在几何问题中的应用,展示例题,并进行练习。
教学方法:通过几何问题,让学生学会将问题转化为分式问题,并运用分式进行解决。
第四章:分式的综合练习4.1 分式的综合练习(一)学习目标:综合运用分式的概念、基本性质和运算规则进行练习。
教学内容:提供一系列分式的练习题,让学生综合运用所学知识进行解答。
教学方法:通过练习题,让学生巩固分式的概念、基本性质和运算规则,提高解题能力。
4.2 分式的综合练习(二)学习目标:综合运用分式的概念、基本性质和运算规则进行练习。
北师大版八年级数学下册5.1《认识分式》优质教案

《认识分式》教案教学目标一、知识与技能1、使学生了解分式的概念,明确分式中分母不能为0是分式成立的条件.2、使学生理解分式的基本性质.并运用分式的基本性质对分式进行恒等变形.二、过程与方法能从具体情境中抽象出数量关系和变化规律,经历对具体问题的探索过程,进一步培养符号感.三、情感态度和价值观通过丰富的现实情境,使学生在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心.教学重点:理解分式的特点;掌握分式基本性质的内容,并有意识地运用它化简分式.教学难点:分式基本性质的运用.教学过程:一、知识回顾: 你能判断下面哪些式子是整式吗? x 2+xy+y 2 -3x 2y 3 5x-1 a学生回忆旧知回答:整式有a ,x 2+xy+y 2 ,-3x 2y 3 ,5x-1,说一说 、 、 与上面的整式有什么区别.引出本课主体----认识分式 二、探究新知(一) 探究分式的概念1、 出示一组图片,并提出问题:2m n -a 9a 1-m 3m 32m n -a 9a 1-xy y xy y面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林2400hm 2,实际每月固沙造林的面积比原计划多30hm 2,结果提前完成原计划的任务.如果设原计划每月固沙造林xhm 2,那么(1)原计划完成造林任务需要多少个月?(2)实际完成造林任务用了多少个月?师生共同分析:题中的等量关系如下:原计划完成造林任务需的时间=固沙造林总公顷数÷原计划每月固沙造林的数量原计划每月固沙造林的公顷数+30=实际每月固沙造林的公顷数.根据分析列出方程:(1),(2)2、做一做:(1)2010年上海世博会吸引了成千上万的参观者,某一时段内的统计结果显示,前a 天日均参观人数35万人,后b 天日均参观人数45万人,这(a+b )天日均参观人数为多少万人?(2)文林书店库存一批图书,其中一种图书的原价是每册a 元,现降价x 元销售,当这种图书的库存全部售出时,其销售额为b 元.降价销售开始时,文林书店这种图书的库存量是多少?学生分析题意,列出方程:(1),(2)(2)同学们观察我们列出的几个代数式,,,,它们有什么共同特征?它们与整式有什么不同?学生分组讨论后回答:上面的几个代数式的共同特征:这些式子都可写成 的形式,分子、分母都是整式, 分母中都含字母 它们与整式的不同点就在于它们的分母中都含有字母,而整式的分母中不含有字母.归纳总结:整式A 除以整式B ,可以表示成 BA 的形式.如果除式B 中含有字母,那么称B A为分式,其中A 称为分式的分子,B 称为分式的分母.注意:①分子分母都是整式;②分母中含有字母 ;③分母不能为零.3、例题讲解.①当a=1,2时,分别求分式 的值. +-a 12a 1BA②当a 为何值时,分式 有意义?解:①当a=1时, 当a=2时, ②当分母的值等于零时,分式没有意义,除此以外,分式都有意义.由分母2a-1=0,得a=1/2.所以,当a 取1/2以外的任何实数时,分式 有意义.注意:性质中是同时乘以或除以同一个不为零的整式. 三、练一练1、下列式子中,哪些是整式?哪些是分式?2、已知分式 (1) 当x 为何值时,分式无意义?(2) 当x 为何值时,分式有意义?3.分式 232+-x x 无意义,X应取什么数?分式 3322+-x x 有意义,X应取什么数?若分式 121+-x x 的值为0,则X的值是__.四、课堂小结谈谈你这节课有什么收获?分式的概念: ①子分母都是整式,②分母中含有字母,③分母不能分式的三个件条:分式无意义的条件,分式有意义的条件,分式的值为零的条件。
北师大版认识分式方程说课稿8篇

北师大版认识分式方程说课稿8篇今天我说课的内容是八年级数学下册《分式方程》的第二课时,我将从以下几方面进行介绍。
一、教材的地位和作用:本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。
跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。
二、教学目标1.使学生理解分式方程的意义。
2.使学生掌握可化为一元一次方程的分式方程的一般解法。
3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法。
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧。
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。
三、重、难点分析本节重点是可化为一元一次方程的分式方程求解中的转化。
解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。
难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于八年级学生理解有一定的困难,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。
四、教学方法:本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。
再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。
特别注重 ;精讲多练 ;,真正体现以学生为主体。
上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。
五、教学过程(一)复习:(1)什么叫分式方程?设计意图:主要让学生继续区分整式方程与分式方程的区别,为新授做铺垫,使学生能积极投入到下面环节的学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《1 认识分式》教案
第1课时
教学目标
1、使学生了解分式的概念,明确分式中分母不能为0是分式成立的条件.
2、使学生能求出分式有意义的条件.
3、通过对分式的学习,培养学生严谨的学习态度,培养学生数学建模的思想.
教学重点、难点
重点:理解分式的概念,明确分式成立的条件.
难点:明确分式有意义的条件.
教学过程
一、问题情境
1、在小学人们学习了分数,那么5÷3可以写成什么?
2、根据上面的问题,填空:
(1)长方形的面积为10cm2,长为7cm,宽___cm;长方形的面积为S,长为a,宽应为______. (2)把体积为200cm的水倒入底面积为33cm2的圆柱形容器中,水面高度为______cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为______.
二、新课讲授
请同学们根据问题1的回答,回答出第2题的问题.教师与学生一起及时纠正学生出现的错误.
学生回答,教师写出答案:(1),.(2),.
新课:下面请同学们看一下这四个式了,看它们有什么相同点和不同点?
学生根据自己的观察,说出、是分数,是整式.而另两个式子,看他们有什么特点,请同学们自己总结一下,学生说出分母中有字母.
请大家归纳一下这个式子是什么式子,有什么特点?学生回答分母中含有字母.
学生归纳:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫分式.
引导学生回答出,(1)分式与分数一样,A叫分子,B叫分母.那么小学学习过的分数中的分母有什么限制,(分母不能为零.)分式中对分母的要求也是分母不能为零,对于分式分母为零时分式才有意义.
(2)分母中含有字母.
请同学们再举出一些分式的例子.
例:填空
(1)当x______时,分式有意义.(2)当x_____时,分式有意义.
(3)当b____时,分式有意义.
(4)当x、y满足关系______时,分式有意义.
解:(1)当分母3x≠0时,x≠0时,分式有意义.
(2)当分母x-1≠0时,x≠1时,分式有意义.
(3)当分母5-3b≠0时,b≠时,分式有意义.
(4)当分母x-y≠0时,x≠y时,分式有意义.
教师与学生共同讨论完成.学生说出解题过程,教师板书.
学生归纳总结:(1)分式有意义,分母不能为0.这是分式有意义的前提.
(2)注意解题格式,分式有意义与分子无关.
(3)请同学们总结一下分式什么条件下没有意义?
三、小结:请同学们总结下本节课里你有哪些收获?
学生说出结论,教师补充.
四、教学反思:
这一课学生对什么是分式掌握较好,能区分整式与分式,对保证分式有意义需满足什么条件能很好地指出来.
第2课时
教学目标
1、使学生理解分式的基本性质.
2、使学生运用分式的基本性质对分式进行恒等变形.
3、通过对分式的基本性质的学习培养学生抽象概括的能力.
教学重点、难点
重点:理解分式的基本性质.
难点:分式基本性质的运用.
教学过程
一、复习提问
1、什么叫分式?
2、小学学习的分数的基本性质是什么?举例说明.
引言:我们小学学习了分数的基本性质,今天我们为学习分式的基本性质.
二、新课讲授
根据分数的基本性质,分式可仿照分数的性质
=;=(C≠0).
请同学们根据上面的式子和以前学过的分数的基本性质,总结出分式的基本性质是什么?学生回答出来,教师及学生补充完整.
分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
=;=(C≠0)
注意:分式的基本性质的条件是乘(除以)一个不等于0的整式.
指出分式的性质与分数的性质的不同,乘以(除以)一个不等于0的整式,分数是乘以(除以)一个不等于0的数.
例:填空
(1)=;(2)=.
(3)=;(4)=.
分析:引导学生根据分式的基本性质,来对分式进行化简.
(1)是乘以一个整式ab,注意是分子和分母都乘以这个整式.
(2)是分子和分母都乘以b,分式的值不变.
(3)是分子x2+xy=x(x+y),对照分子,可以看出分子和分母都除以x,分式的值不变,所以填x.
(4)把分母分解因式x2-2x=x(x-2),对照分母,可以看出分子、分母都除以x,分式的值不变,所以填1.
三、小结:请同学们总结下本节课里你有哪些收获?
分式的基本性质成立的条件是都乘以或除以一个不等于0的整式.
四、教学反思:
这一课学生能用类比的方法很快从分数的基本性质得到分式的基本性质.但在实际运用中还有些同学对用字母表示的式子不习惯.。