5.3.1平行线的性质(教案)

合集下载

教学设计6:5.3.1 平行线的性质

教学设计6:5.3.1 平行线的性质

5.3.1平行线的性质一、教学目标知识与能力:1、了解并掌握平行线的性质,并能利用平行线的性质进行相关的数学计算。

2、能够区分平行线的性质和判定,能够利用平行线的性质进行简单的逻辑推理。

方法与过程:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。

情感态度与价值观:经历自己探索平行线性质的过程,进一步培养学生的逻辑思维能力,提高学生对简单几何图形的感知能力。

二、教学重难点教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。

教学难点:能区分平行线的性质和判定,平行线的性质应用。

三.教具准备多媒体课件,直尺,三角板,粉笔四、教学设计活动2:二、探索发现,讲授新知问题1、作业本有平行线吗?请你找出两条平行线来?问题2、同学们你们将用什么方法在两平行线上来寻找同位角之间的关系?(1) 在我们刚才的一组平行线a∥b的基础上,再画一条截线c,使之与直线a、b相交,并标出所形成的八个角.(2) 测量上面一组同位角的大小,记录下来.同桌互相讨论一下从中你能发现什么结论?说出你的猜想:两条平行线被第三条直线所截,同位角相等教师活动:幻灯片展示问题,指导学生自己动手参与平行线的西瓜汁探索过程,教师巡视加以指导。

引导学生大胆的猜想。

学生活动:在教师的引导下,积极地动手参与活动,探索发现结论,经历平行线性质的探索过程。

学生活动:根据探索过程,总结相关结论,举手回答问题教师活动:根据学生的猜想,请学生回答得到的结论,并根据学生的结论给出平行线的性质1,(幻灯片出示性质一)。

10分钟活动3:讨论:如果直线a与b不平行,你的猜想还成立吗?再任意画一条直线d,同样度量并计算各个角的度数,你的猜想还成立吗?同桌互相讨论一下从中你能发现什么结论?平行线的性质1(公理):两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

教师活动:将学生分成若干小组,讨论两直线不平行的时候结论是否成立,并在教室巡视,针对个别情况进行指导学生活动:小组讨论交流。

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:(1)理解平行线的定义;(2)掌握平行线的性质;(3)能够运用平行线的性质解决实际问题。

2. 过程与方法:(1)通过观察、思考、交流,培养学生的抽象思维能力;(2)利用几何画板软件,直观展示平行线的性质,提高学生的动手操作能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神。

二、教学重点与难点1. 教学重点:(1)平行线的定义;(2)平行线的性质。

2. 教学难点:(1)平行线性质的推导与理解;(2)运用平行线性质解决实际问题。

三、教学方法1. 情境创设:利用生活实例引入平行线的概念,激发学生兴趣;2. 合作学习:分组讨论,共同探索平行线的性质;3. 直观展示:利用几何画板软件,动态展示平行线的性质;4. 练习巩固:设计相关习题,巩固所学知识。

四、教学过程1. 导入新课:(1)利用生活实例,如同一平面内两条永不相交的直线;(2)引导学生思考:如何判断两条直线是否平行?2. 探究平行线的性质:(1)学生分组讨论,共同探究平行线的性质;(2)每组汇报探究成果,师生共同总结平行线的性质。

3. 直观展示:(1)利用几何画板软件,动态展示平行线的性质;(2)引导学生观察、思考,加深对平行线性质的理解。

4. 练习巩固:(1)设计相关习题,让学生运用所学知识解决问题;(2)教师点评,纠正错误,巩固知识点。

五、课后作业1. 概念巩固:回顾平行线的定义,加深对平行线概念的理解;2. 性质练习:完成课后习题,运用平行线的性质解决问题;3. 拓展延伸:探究平行线在实际生活中的应用,如交通规则等。

六、教学评估1. 课堂提问:通过提问了解学生对平行线性质的理解程度;2. 课后作业:检查学生完成作业的情况,巩固所学知识;3. 小组讨论:观察学生在小组讨论中的表现,了解合作学习能力;4. 期中期末考试:检验学生对平行线知识的掌握程度。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。

2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的对应角相等。

(2)平行线之间的夹角相等。

(3)平行线与截线所形成的内错角相等。

(4)平行线与截线所形成的同位角相等。

三、教学重点与难点1. 教学重点:平行线的性质及其应用。

2. 教学难点:平行线性质的推理和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。

2. 利用几何画板等软件,直观展示平行线的性质。

3. 组织小组讨论,培养学生的合作能力。

五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。

2. 自主探究:学生独立观察、操作,发现平行线的性质。

3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。

4. 教师讲解:总结平行线的性质,并进行推理和证明。

5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。

6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。

7. 作业布置:布置适量作业,巩固所学知识。

六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。

2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。

3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。

3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。

七年级下册数学5.3.1平行线的性质集体备课教案

七年级下册数学5.3.1平行线的性质集体备课教案
【合作探究】
(一)平行线性质
1、观察思考:教材19页思考
2、探索活动:完成教材19页探究
3、归纳性质:
同位角。
两条平行线被第三条直线所截,。

∵a∥b(已知)
同位角。∴∠1=∠5(两直线平行,同位角相等)
∵a∥b(已知)
简单说成:两直线平行。∴∠3=∠5()
∵a∥b(已知)
。∴∠3+∠6=180°()
【学习体会】
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
问题补充(个性设计)
那么,无论D点移动到任何位置,
总有三角形与AB n
三角形ABC的面积相等,理由是。
【展示提升】
(一)例(教材20)如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?
1、分析①梯形这条件说明∥。
②∠A与∠D、∠B与∠C的位置关系是,数量关系是。
(二)练一练:教材21页练习1、2
3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.
学习重、难点
平行线性质的研究和发现过程是本节课的重点.
正确区分平行线的性质和判定是本节课的难点.
主要设想、措施
(学法、教法)
自主探究,得出结论,老师点评,共同归纳,巩固练习




【自主学习】
1、预习疑难:
2、平行线判定:
作垂线,垂足为F,这样做出的垂线段EF的长度是平行线的距离。
2、结论:两条平行线的距离处处相等,而不随垂线段的位置而改变
3、对应练习:如右图,已知:直线m∥n,A、B为C D m
直线n上的两点,C、D为直线m上

5.3.1 平行线的性质 教案

5.3.1 平行线的性质 教案

课题§ 5.3.1 平行线的性质课时第1课时课型新授教学目标知识与技能1、探究直线平行的性质,掌握平行线的三条性质;2、能灵活运用平行线的性质进行简单的推理和计算。

过程与方法经历平行线性质的探究过程,从中体会研究几何图形的方法。

情感、态度与价值观通过观察、交流等活动,进一步发展空间思维能力,推理能力和有条理的表达能力;教学重点探究平行线性质,理解平行线的性质并能进行简单推理和计算。

教学难点能区分平行线的性质和判定,平行线的性质与判定的混合应用。

教学方法探究、归纳教学准备教案教学过程一、问题引入:引导学生逆向思维:同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行。

反过来,如果两直线平行,同位角、内错角、同旁内角又有什么样的关系呢?在这一节课里,同学们把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达呢?这就是接下来我们要研究的问题。

二、探究:1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P18图5.3-1)。

2、现在请同学们用量角器把自己画的图中各个角测出度数,把结果填入表内。

角∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8度数3、请同学们根据上表测量所得数据作出猜想:(1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?(3)图中哪些角是同旁内角?它们具有怎样的数量关系?4、验证猜想:学生活动:再任意画一条截线d,同样度量并比较各对同位角的度数,你的猜想还成立吗?2、实践操作、得出结论:线段B 1C 1,B 2C 2……B 5C 5同时垂直于两条平行直线A 1B 5和A 2C 5,并且它们的长度相等。

3、两条平行线间距离的定义:线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段;第二点线段B 1C 1同时垂直这两条平行线。

教学设计4:5.3.1 平行线的性质

教学设计4:5.3.1 平行线的性质

5.3.1 平行线的性质教学目标1、知识与技能:经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的和计算。

2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步分析、概括、表达能力。

3、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

教学过程设计本节课的流程分五部分:创设情境激发兴趣;数形结合探究性质;归纳性质说理证明;应用新知巩固练习;课堂小结布置作业.(一)创设情境激发兴趣出示问题:已知公路c分别与两条互相平行的公路a,b相交,两辆汽车在公路a,b上同向行驶,拐弯后上公路c又同向行驶。

(1) 如果公路c与公路a的交角为70O,那么公路c与公路b的交角是多少度呢?(2) 如果两条直线平行,同位角,内错角,同旁内角各有什么关系呢?【设计意图】设计意图:利用情景导入,引出新问题,为学生将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。

(二)探究新知实验猜想问题1:作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?【设计意图】通过动手画图,度量角度等简单易行的操作,调动所有学生参加到课堂教学的活动中来,再通过自己的独立思考,小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。

问题2:大家解决问题的方法一样吗?得到的结论相同吗?学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:(1)用量角器进行度量;(2)通过剪纸拼图进行比较.。

鼓励学生在独立思考的基础上与他人合作交流,每个学生的独立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.。

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《平行线的性质》一. 教材分析《平行线的性质》是人教版数学七年级下册第5章第3节的内容,本节课主要让学生掌握平行线的性质。

教材通过实例引入平行线的性质,然后引导学生通过观察、猜想、证明等过程,掌握平行线的性质。

教材内容紧密联系学生的生活实际,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。

二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的概念,掌握了直线和射线的性质,能熟练画直线和射线。

但学生对平行线的性质认识不足,需要通过实例来引导他们观察、思考、总结平行线的性质。

三. 教学目标1.知识与技能:让学生掌握平行线的性质,能运用平行线的性质解决实际问题。

2.过程与方法:培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:平行线的性质。

2.难点:如何引导学生观察、思考、总结平行线的性质。

五. 教学方法1.采用问题驱动法,引导学生观察、思考、总结平行线的性质。

2.利用小组合作学习,培养学生团队协作精神,提高学生解决问题的能力。

3.通过实例讲解,使学生能将所学知识应用于实际问题中。

六. 教学准备1.准备相关课件,展示平行线的性质。

2.准备实例,让学生观察、思考、总结平行线的性质。

3.准备练习题,巩固所学知识。

七. 教学过程导入(5分钟)教师通过展示实际生活中的平行线例子,如教室里的黑板、书桌、地板等,引导学生观察并提问:“你们能发现这些平行线有什么特点吗?”学生通过观察,激发学习兴趣,发现问题。

呈现(10分钟)教师展示课件,呈现平行线的性质,引导学生猜想并提问:“你们认为平行线有哪些性质呢?”学生通过观察、思考,提出猜想。

操练(15分钟)教师引导学生进行小组合作学习,让学生通过实际操作,证明平行线的性质。

教师巡回指导,解答学生疑问。

巩固(10分钟)教师呈现练习题,让学生运用所学知识解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3.1平行线的性质
(教案)
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
5.3 平行线的性质
5.3.1 平行线的性质
【知识与技能】
1.掌握平行线的性质定理.
2.综合运用平行线的判定及性质进行简单的证明或计算.
【过程与方法】
1.经历猜想、实践、探究不难得到平行线的性质定理.在此基础上,结合前节的知识,进行简单的证明或计算.
2.培养学生逆向思维的能力.
【情感态度】
培养学生逆向思维的能力.
【教学重点】
掌握平行线的性质定理,综合运用平行线的判定及性质进行简单的证明或计算.
【教学难点】
综合运用平行线的判定及性质进行简单的证明或计算.
一、情境导入,初步认识
问题利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?二、思考探究,获取新知
可将上述问题细化:
1.如图,直线a∥b,直线a,b被直线c所截.
(1)请填表:
(2)如果a与b不平行,∠1与∠2还有以上关系吗?
(3)通过(1)(2)的探究,你能得到什么结论?
2.如图,直线a∥b,则∠3与∠2相等吗为什么∠3与∠4互补吗
思考1.你能根据以上探究,归纳出平行线的三个性质定理吗?
2.平行线的性质定理与相应的判定定理是怎样的关系?
【归纳结论】1.平行线的性质:
性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.
性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.
性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.
2.平行线的性质定理与相应的判定定理的已知部分和结论部分正好相反,它们是互逆关系.
三、运用新知,深化理解
1.如图,已知AB∥CD,AD∥BC,∠A与∠C有怎样的大小关系,为什么?
2.已知AB∥CD,直线EF分别交AB,CD于M,N,MP平分∠EMA,NQ平分
∠MNC,那么MP∥NQ,为什么?
3.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=_____.
第3题图第4题图
4.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.
5.(江西中考)一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=_____度.
【教学说明】题1、2可让学生独立思考完成.题3、4可让同学们分组讨论、交流,有困难时,教师给予提示指导,如何作辅助线.题5与生活实际联系,让学生拓展思维.
【答案】1.解:∠A=∠C,理由如下:
AB∥CD,∠A与∠D为同旁内角,
即∠A+∠D=180°;
AD∥BC,∠D与∠C为同旁内角,
即∠D+∠C=180°.
所以∠A+∠D=∠D+∠C,即∠A=∠C.
2.解:AB∥CD,∠EMA与∠MNC为同位角,即∠EMA=∠MNC.
MP平分∠EMA,NQ平分∠MNC,则∠EMP=1
2
∠EMA,∠MNQ=
1
2
∠MNC.
所以∠EMP=∠MNQ,则MP∥NQ.
3.90°解析:如图,经点F作AB的平行线,则∠1与∠3,∠2与∠4为内错角.
根据平行线的性质得∠1=∠3,∠2=∠4,所以∠1+∠2=∠3+∠4=∠EFH=90°.
4.40°解析:如图,过点C作GH∥DE.
所以∠DCH+∠CDE=180°(两直线平行,同旁内角互补).
因为∠CDE=140°(已知),
所以∠DCH=180°-∠CDE=40°.
又因为AB∥DE(已知),
所以AB∥GH(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).
所以∠ABC=∠BCH(两直线平行,内错角相等).
因为∠ABC=80°(已知),
所以∠BCH=80°(等量代换).
所以∠BCD=∠BCH-∠DCH=40°.
5.270 解析:如图,过B作BG∥CD,则∠CBG+∠BCD=180°,∠ABG=90°,于是可得∠ABC+∠BCD=90°+180°=270°.
四、师生互动,课堂小结
平行线的性质:
1.两直线平行,同位角相等.
2.两直线平行,内错角相等.
3.两直线平行,同旁内角互补.
在有关图形的计算和推理中,常见一类“折线”“拐角”型问题,解决这类问题的方法是:经过拐点作平行线,沟通已知角和未知角的联系,从而化“未知”为“可知”,这种方法应熟练掌握,如“”“”“”型要引起注意.
1.布置作业:从教材“习题5.3”中选取.。

相关文档
最新文档