初中数学中点模型的构造及应用汇编

合集下载

中考数学中点四大模型专题知识解读

中考数学中点四大模型专题知识解读

中点四大模型专题知识解读【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行等的应用。

【方法技巧】模型1 :倍长中线法如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种方法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进而得到AC=BE且AC//BE.模型2:平行线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.模型3:中位线如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:由中位线的性质可得,DE//BC且DE=1/2BC.模型4:连接直角顶点,构造斜中定理【典例分析】【模型1 倍长中线法】【典例1】【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.【变式1-1】(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.【变式1-2】如图,在△ABC中,已知:点D是BC中点,连接AD并延长到点E,连接BE.(1)请你添加一个条件使△ACD≌△EBD,并给出证明.(2)若AB=5,AC=3,求BC边上的中线AD的取值范围.【变式1-3】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.(1)延长DE到F,使得EF=DE;(2)作CG⊥DE于G,BF⊥DE于F交DE的延长线于F;(3)过点C作CF∥AB交DE的延长线于F.【模型2 平行线夹中点】【典例2】如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC =10,点E是CD的中点,求AE的长.【变式2-1】如图,AB∥CD,∠BCD=90°,AB=1,BC=4,CD=3,取AD的中点E,连结BE,则BE=.【变式2-2】如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F 处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.【变式2-3】如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.【模型3 中位线】【典例3】如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为()A.1B.2C.D.【变式3-1】如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.【变式3-2】如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:CD=EF;(2)四边形DEFC的面积为.【变式3-3】如图,在平行四边形ABCD中,点E在BC的延长线上,CE=DE=2BC.CD 的中点为F,DE的中点为G,连接AF,FG.(1)求证:四边形AFGD为菱形;(2)连接AG,若BC=2,,求AG的长.【模型4 连接直角顶点,构造斜中定】【典例4】用三种方法证明:直角三角形斜边上的中线等于斜边的一半.已知:如图,∠BCA =90°,AD=DB.求证:CD=AB.【变式4-1】直角三角形斜边上的中线长为10,则该斜边长为()A.5B.10C.15D.20【变式4-2】如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE 交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【变式4-3】用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.证法1:如图2,在∠ACB的内部作∠BCE=∠B,CE与AB相交于点E.∵∠BCE=∠B,∴.∵∠BCE+∠ACE=90°,∴∠B+∠ACE=90°.又∵,∴∠ACE=∠A.∴EA=EC.∴EA=EB=EC,即CE是斜边AB上的中线,且CE=AB.又∵CD是斜边AB上的中线,即CD与CE重合,∴CD=AB.请把证法1补充完整,并用不同的方法完成证法2.专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用。

中点模型构造

中点模型构造

例10. 已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°。如图,连接DE,设M为DE的中点,连接MB、 MC。求证:MB=MC。
考点 3:已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”
例11. 如图,在矩形ABCD中E为CB延长线上一点且AC=CE,F为AE的中点。求证:BF⊥FD。
巩固练习: 1. 如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于点F,AF与EF相等吗?
为什么?
2. 如图,在△ABC中,AD交BC于点D,点E是BC中点,EF∥AD交CA的延长线于点F,交AB于点G,若AD为△ABC 的角平分线,求证:BG=CF。
3. 如图,在△ABC中,AB=2AC,AD平分∠BAC,且AD=BD,求证:CD⊥AC。
例20. 在五边形ABCDE中,∠ABC=∠AED=90°,∠BAC=∠EAD,点F为CD的中点,求证:BF=EF。
例21. 如图1,△ABC中,AB=AC,AD⊥BC交BC于点D,点E在AB边上,点F在AC边的延长线上,连接EF交BC于点M, 交AD于点N,∠AEF=2∠F,EM=FM。 (1)求证:∠B= 3 ∠F。 2 (2)如图2,过点A作AH⊥EF于H,若AH=5,△AEN的面积为15,求线段CF的长。
6. 已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°。连接DE,设M为DE的中点,连接MB、MC。 求证:MB=MC。 A
C
E
M
D
B
7. 已知,在正方形ABCD中,对角线AC、BD相交于O点,AF为∠BAC的平分线,交BD于E点,BC于F点,求证: OE = 1 FC 。 2
A
A

初中数学常见模型之中点四大模型

初中数学常见模型之中点四大模型

巩固练习
1.(1)如图①,BD、CE 分别是△ABC 的外角平分,过点 A 作AD⊥BD、AE⊥CE,垂足分别为D、 E,连接DE。求证:DE∥BC,
(2)如图②,BD、CE 分别是△ABC 的内角平分,其它条件不变。上述结论是否成立?
(3) 如图③,BD 是△ABC 的内角平分,CE 是△ABC 的外角平分,其它条件不变。DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想BD 中,AB 与CD 相交于点O,AB=CD,E、F 分别是BC、AD 的中点,连接 EF 分别交DC、AB 于点M、N,判断△OMN 的形 状,请直接写出结论;
问题二:如图②,在△ABC 中,AC>AB,点D 在AC 上,AB=CD,E、F 分别是 BC、AD 的中点,连接EF 并延长,与BA 的延长线交于点 G,若 ∠EFC=60°,连 接GD,判断△AGD 的形状并证明。
3.问题 1:如图①,△ABC 中,点D 是AB 边的中点,AE⊥BC,BF⊥AC,垂足分别为点E、F, AE、BF 交于点M,连接DE、DF。若 DE =kDF ,则k 的值为 ;
问 题 2 : 如 图 ② , △ ABC 中 , CB=CA , 点 D 是 AB 边 的 中 点 , 点 M 在 △ ABC 内 部 , 且 ∠MAC=∠MBC。过点 M 分别作ME⊥BC,MF⊥AC,垂足分别为点E、F,连接DE、DF。若 DE=DF;
模型实例
例 1:如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE
并延长 AC 于点F,AF=EF。求证:AC=BE
巩固练习
1.如图,在△ABC 中,AB=12,AC=20,求BC 边上中线AD 的范围
2.如图,在△ABC 中,D 是BC 的中点,DM⊥DN,如果 求证:

初中数学几何中点模式解答

初中数学几何中点模式解答

初中数学几何中点模式解答数学几何中点模式解答:中点模式是初中数学中一种基本的几何模式,用来描述线段中点的性质和应用。

在数学中,中点是指线段的中点,即将线段分成两个等长的部分的一点。

以下是关于中点模式的解答,从简单到复杂逐步介绍。

1.线段的中点性质:-任何线段都有且只有一个中点。

-中点将线段分成两个等长的部分。

-连接线段两端点与中点可以形成一个三角形,而且这个三角形的三条边都等长。

2.线段的中点构造:-方法一:设线段的两个端点为A和B,画出AB的中垂线,中垂线与AB的交点即为线段的中点。

-方法二:设线段的两个端点为A和B,从A和B各自向线段内侧画一条等长的线段,两线段的交点即为线段的中点。

3.实际问题中的中点模式:-在建筑物或道路设计中,使用中点模式可以确保建筑物或道路的对称性。

-在几何作图中,可以利用中点模式画出等边三角形、平行四边形等特殊图形。

-在解题过程中,可以利用中点模式简化计算,减少计算量。

4.中点模式与其他几何模式的关系:-中点模式与垂直二等分线模式:若一条线段有且只有一个中点,则该线段的垂直二等分线也只有一个,反之亦然。

-中点模式与等长线段模式:若一条线段有且只有一个中点,则该线段的两个部分等长,反之亦然。

-中点模式与等腰三角形模式:若一条线段的两端点与中点可以形成一个等腰三角形,则该线段的两端点与中点共线,反之亦然。

5.练习题解答:(1)已知AB为直径的圆O上有点C,连接AO、BO,并延长线段AO、BO分别交圆O于点D、E。

证明:AC=BC。

解答:由于AB为直径,所以O是圆O的圆心,由于OC是线段中点构造法延长得来的一般线段,因此OC=OC,又由于线段OD是线段中点构造法延长得到的,所以OD=OC,同理OE=OC,所以三角形ODB和三角形OEC是等腰三角形,所以∠CDB=∠CEB,所以∠ADB=∠AEB,因此AD=AE,所以AC=BC。

中点模型的构造

中点模型的构造

AF中点,连接DM和EM.探究线段DM与EM的位置关系,并求
DM 的值. E(M 1)如图,当点B、C、H在一条直线上时,线段DM与EM的
位置关系是 , DM = ;
EM
解题思路:延长DM与EF交于点N
证明△ADM≌△FNM
又 ∵∠DEN=90° DM=NM
DM=MN, AD=NF EDN是等腰三角形 M是DN的中点
B
D
C
EAF AEF AEF BED
G BED
BE BG
G
AC BE
第3页/共7页
例题讲解
例1 如图所示,已知在∆ABC中,AD是BC边上的中
线,E是AD上一点,连接BE并延长交AC于点F,
AF=EF,求证:AC=BE
证法二:
A
延长ED至点G,使DG=DE,连接CG
点D是BC的中点
F E
常见的联想路径
1、已知任意三角形一边上的中点,可以考虑:
(1)倍长中线或类中线(与中点有关的线段)构造全等三
角形(八字全等)
A
A E
B
D
CB
D
C
F E
(2)三角形中位线定理 2、已知直角三角形斜边上中点,可以考虑构造斜边中线。
3、已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”
4、有些题目的中点不直接给出,此时需要我们挖掘题目中的隐含 中点,例如直角三角形中斜边中点,等腰三角形底边上的中点, 当没有这些条件的时候,可以用辅助线添加。
DM 1 EM
EM⊥DN
第5页/共7页
第6页/共7页
谢谢您的观看!
第7页/共7页
第2页/共7页
例题讲解
例1 如图所示,已知在∆ABC中,AD是BC边上的中

初中数学几何模型(二)中点模型

初中数学几何模型(二)中点模型

初中数学几何模型(二)中点模型初中数学几何问题经常遇到中点相关问题,与中点有关的主要知识点如下:1、等腰三角形“三线合一”。

2、直角三角形斜边上的中线等于斜边的一半。

3、三角形中位线平行且等于第三边的一半。

4、三角形的重心:三角形三边中线的交点。

6、三角形一边上的中点(中线或与中点有关的线段),考虑倍长中线法构造全等三角形;6、三角形一边垂线过这边中点时,可以考虑用垂直平分线的性质。

7、三角形中线平分三角形面积;一边上的等分点与顶点的线段等分三角形面积。

8、圆中弦(或弧)的中点,考虑垂径定理及圆周角定理(一)已知等腰三角形底边中点,就应该想到“三线合一”。

等腰三角形中出现底边中点时,辅助线常连接等腰三角形顶点与底边中点,利用等腰三角形“三线合一”性质得到角相等,得到垂直,得到全等三角形。

典型例题:例1、如图,在△ABC中,AB=AC=5,BC=6,M是BC的中点,MN⊥AC,求线段MN的长。

这里将用到“三线合一”、勾股定理和直角三角形斜边上的高等于两直角边的乘积除以斜边。

例2、已知:在Rt △ABC 中,AC=BC ,∠C=90°,D 为AB 边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F 。

(1)∠EDF 绕D 点旋转过程中,当点E 、F 在AC 、BC 上时,(如图①)求证:S △DEF +S △CEF =12S △ABC ; (2)∠EDF 绕D 点旋转过程中,当点E 、F 在AC 、BC 的延长线上时,在图②这种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,请说明理由。

略解:(1)如图,连接CD 。

∵点D 是AB 的中点,△ABC 是直角三角形,∴CD=12AB ,∴CD=BD ,∴S △CDB =12S △ABC , ∴∠ECD=12∠ACB=45°,∠FBD=45°, ∴∠ECD=∠FBD ,∴∠BDF+∠CDF=90°,∵∠EDF=90°,∴∠CDE+∠CDF=90°,∴∠CDE=∠BDF ,∴△CDE ≌△BDF (ASA ),∴S △CDE =S △BDF∵S △DEF +S △CEF =S △CDE +S △CDF =S △BDF +S △CDF =S △CDB ,∴S △DEF +S △CEF =12S △ABC 。

2021年中考复习第07讲—中点五大模型

2021年中考复习第07讲—中点五大模型
F
解答:类倍长中线+集散思想,可证
模型二:平行线夹中点模型
【例1】如图,在菱形ABCD中,ZA = 110°,仗尸分别是边A3和BC的中点,EP丄CD
于点P,
则ZFPC=(
)
A・35°
B・45°
C.50c
D・55°
D
解答:构造8字型全等【延长EF和DC交于点G】,得证D
【例2】如图,在平行四边形ABCD中,CD=2AD.BE丄4D于点6尸为DC的中点, 连接E0BF,下列结论
1ZABC=2ZABF
2 EF = BF
解答:构造8字型全等,得证1&l中,4D是BC边上的中线,E是ADL的一点,延长BE交
AC于F,AF=EF,求证:AC=BE
解答:
1方法一:倍长中线【AD=DG构造8字型全等+集散思想】
2方法二:类倍长中线【DG = DE构造8字型全等+集散思想】
可证
【例3】如图,在AABC中,AD交BC于点D,点疋是BC中点,EF//AD交C4的延 长线于点尸,交43于点G,若BG=CF,求证:4D为MBC的角平分线
总结(题目中出现中点时):
1倍长中线(普通的一个中点时)
2连出“三线合一”的线(出现底边上的中点时)
3连斜边上的中线(出现斜边上的中点时)
4构造中位线(出现多个中点时)
5构造8字型全等(平行线夹中点)
模型一:倍长中线模型
【例1】如图,在MBC中,4F = &AC=6,求BC边上的中线AD的取值范围
DC

初二全等中点模型多种类型

初二全等中点模型多种类型

中点模型【类型一】倍长中线或平行中线:以延长线段至某处使线段相等或者过某点做平行,构造出八字型全等【类型四】连接双中点形成中位线,基本结构是有中少底做平行,有底少中取中点【类型五】求证中点:倍长描述无法证明,只能用过某点做平行的方法构造出八字型的全等【例1】如图,在△ABC中,AB=AC,D是AB上一点,E是AC延长线上一点,且CE=BD,连接DE交BC于F.求证DF=EF【解答】证明:作DG∥AE,交BC于G;如图所示:则∠1=∠E,∠3=∠2,∵AB=AC,∴∠B=∠2,∴∠B=∠3,∴BD=DG,∵CE=BD,∴DG=CE,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS),∴DF=EF【例2】四边形ABCD中,AB=BC,∠ABC=90°,点E在BD上,点F在射线CD上,且AE=EF,∠AEF=90°,∠ABE=∠AEB,AG⊥BD,垂足为G,证明CD=DF【解答】解:如图①,过点C作CP⊥BD于P,过点F作FQ⊥BD交BD的延长线于Q,∴∠BPC=∠DPC=∠FQE=90°,∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵∠ABE=∠AEB,∴∠AEB+∠CBD=90°,∵∠AEF=90°,∴∠AEB+∠FEQ=90°,∴∠CBP=∠FEQ,∵AB=BC,AE=EF,AB=AE,∴BC=EF,在△BCP和△EFQ中,,∴△BCP≌△EFQ,∴CP=FQ,在△CPD和△FQD中,,∴△CPD≌△FQD,∴CD=DF【针对练习5】1.如图,在Rt△ABC中,∠BAC=90°,DB⊥BC,DA=DB,点E是BC的中点,DE与AB相交于点G.(1)求证:DE⊥AB;(2)如果∠FCB=∠FBC=∠DAB,设DF与BC交于点H,求证:DH=FH.2.如图1,在△ABC与△BDE中,∠ABC=∠BDE=90°,BC=DE,AB=BD,M、M′分别为AB、BD中点.(1)探索CM与EM′有怎样的数量关系?请证明你的结论;(2)如图2,连接MM′并延长交CE于点K,试判断CK与EK之间的数量关系,并说明理由.3.在△ABC与△BDE中,∠ABC=∠BDE=90°,BC=DE,AC=BE,M、N分别为AB、BD中点.连接MN交CE于点K.当C、B、D共线,AB=2BC时,探索CK与EK之间的数量关系,并证明;4.如图1,△ABC与△ADE都是以点A为顶点的等腰三角形,且∠BAC=∠DAE,BD⊥AD,ED的延长线交BC于点F,探究线段BF与CF的数量关系,并说明理由.5.如图,Rt△ABC中,∠ACB=90°.(1)分别以AB,AC为边向外作等边三角形ABD和等边三角形ACE,连接CE交AB于点F,若∠BAC=30°,求证:DF=EF;(2)分别以AB,AC为底边向形外作等腰三角形ABD和等腰三角形ACE,且∠ADB=∠AEC=2∠BAC=2α,试探究EF与DF的数量关系.6.如图,已知∠ACB=∠DAB=∠EAC=α(α≥90°),AD=AB,AC=AE,连接D、E交CA延长线于点M.(1)当α=90°时,求证:DM=ME;(2)当α≠90°时,(1)的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.7.如图,等腰直角三角形ABC中,AC=BC,点D在AB上一点,∠ECD=90°,CE=CD,作CF⊥AE交AE于点G,求证:点F是BD的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中点模型的构造及应用一、遇到以下情况考虑中点模型:任意三角形或四边形中点或与中点有关的线段出现两个或三个中点考虑三角形中线定理已知直角三角形斜边中点,可以考虑构造斜边中线已知等边、等腰三角形底边中点,可以考虑与顶角连接用“三线合一”有些题目不直接给出中点,我们可以挖掘其中隐含中点,比如等腰三角形、等边三角形、直角三角形、平行四边形、圆中圆心是直径中点等可以出现中点的图形通常考虑用中点模型三角形中线的交点称为重心,它把中线分的线段比为2:1二、中点模型辅助线构造方法分类(一)倍长中线法(构造全等三角形,八字全等)当已知条件中出现中线时,常常将此中线倍长构造全等三角形解决问题。

如图,在∆ABC中,D为BC中点,延长AD到E使AD=DE,连接BE,则有:∆ADC≌∆EDB。

作用:转移线段和角。

(二)倍长类中线法(与中点有关线段,构造全等三角形,八字全等)当已知条件中出现类中线时,常常将此类中线倍长构造全等三角形解决问题。

如图,在∆ABC中,D为BC中点,延长ED到F使ED=DF,连接CF,则有:∆BED≌∆CFD。

作用:转移线段和角。

(三)直角三角形斜边中线法当已知条件中同时出现直角三角形和中点时,常构造直角三角形斜边中线,然后再利用直角三角形斜边的中线性质解决问题。

如下图,在Rt ∆ABC 中,A C B 90∠=︒,D 为AB 中点,则有:12CD AD BD AB ===(四)等腰三角形三线合一当出现等腰三角形时,常隐含有底边中点,将其与顶角连接,可构成三线合一。

在∆中:(1)AC=;(2)CD 平分ACB ∠;(3)AD=,(4)CD AB ⊥ “知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出剩下两条。

(五)中位线法当已知条件中同时出现两个及以上中点时,常考虑构造中位线;或出现一个中点,要求证明平行线段或线段倍分关系时也常考虑构造中位线。

如图,在∆ABC 中,D ,E 分别是AB 、AC 边中点,则有DE BC ,1DE BC 2=。

三、练习(一)倍长中线法1.(2014秋•津南区校级期中)已知:在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .2.(2017•湘潭)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°.求∠B的度数3.(2017江西萍乡,15)如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.(1)求证:CF=AD;(2)若CA=CB,试判断四边形CDBF的形状,并说明理由.4.(2014•鄂尔多斯)如图1,在▱ABCD中,点E是BC边的中点,连接AE并延长,交DC的延长线于点F.且∠AEC=2∠ABE.连接BF、AC.(1)求证:四边形ABFC的是矩形;(2)在图1中,若点M是BF上一点,沿AM折叠△ABM,使点B恰好落在线段DF上的点B′处(如图2),AB=13,AC=12,求MF的长.5.(2017•贵阳,24)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为____________;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.(二)倍长类中线法1.(2016秋•江都区期中)已知:如图,E是BC的中点,点A在DE上,且∠BAE =∠CDE.求证:AB=CD.2.(2017•重庆,24)在△ABM 中,∠ABM =45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC .(1)如图1,若AB =,BC =5,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD =MC ,点E 是△ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF .3.(2017•山西,17)已知:如图,在▱ABCD 中,延长AB 至点E ,延长CD 至点F ,使得BE =DF .连接EF ,与对角线AC 交于点O .求证:OE =OF .(三)直角三角形斜边中线法1.(2016•乌鲁木齐,9)如上图,在Rt △ABC 中,点E 在AB 上,把这个直角三角形沿CE 折叠后,使点B 恰好落到斜边AC 的中点O 处,若BC =3,则折痕CE的长为( )A.B. C. D.62. (2015•乌鲁木齐,9)如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是( )A .1-) B. (1,C. 2-()D. (2,3.(2017•新疆,22)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积4.(2017•北京,22)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.5.(2015北京东城,23)如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值(四)等腰三角形三线合一1.(2017•荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l 交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°2.(2017•陕西,9)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C. D.3.(2017•呼和浩特,18)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC 的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.(五)中位线法1.(2015•郑州)如图,D是△ABC内一点,BD⊥CD,AD=12,BD=8,CD=6,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.14B.18C.20D.222.(2013•乌鲁木齐,15)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为________.3.(2017•遵义)如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.4.5B.5C.5.5D.64.(2017•天津,17)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为______.5.(2014春•硚口区期末)如图,已知△ABC的中线BD、CE相交于点O、M、N 分别为OB、OC的中点.(1)求证:MD和NE互相平分;(2)若BD⊥AC,EM=OD+CD=7,求△OCB的面积.6.(2017•云南,20)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.7.(2017•长春)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且1DE BC2(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:__________.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为______.8.(2015•巴东县模拟)如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC 的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=54,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.。

相关文档
最新文档