《变量与函数》课件PPT
合集下载
变量与函数-完整版课件

问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而 变化?当一个变量取定一个值时,另一个变量的值是唯一确定 的吗?
问题3:在上面的4个问题中,两个变量之间的对应关系有什么 共同特征?请你再举出一些对应关系具有这种共同特征的例子.
以上四个变化过程中,两个变量之间的对应关系都满足: 对于一个变量取定一个值时,另一个变量就有唯一确定的 值与其对应.
活动六:升华概念
问 我市白天乘坐出租车收费标准如下:乘坐里程不超
题 过3公里,一律收费8元;超过3公里时,超过3公里
探
的部分,每公里加收1.8元;设乘坐出租车的里程为x (公里)(x为整数),相对应的收费为y(元).
究
(1)请分别写出当0<x≤3和x>3时,表示y与x
的关系式,并直接写出当x=2和x=6时对应的y值;
活动四:辨析概念
问
题 问题4:下列曲线中,表示y不是x的函数是( ), 探 怎样改动这条曲线,才能使y是x的函数?
究
y
y
y
O
x
O
x
O
x
O
x
A
B
C
D
选B. 将第一象限或第三象限的曲线去掉等,只要满足“对 于x的每一个确定的值,y都有唯一确定的值与其对应”,都 能使y是x的函数.
活动五:运用概念
问
问题4:如何确定函数值?
作业布置
1.完成教材第75页练习第2题,习题19.1第1~5题及第10、11题.
2. 下列图形中的曲线不表示y是x的函数的是( )
y
y
y
y
O
x
O
x
O
x
O
x
A
B
人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)

子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?
《变量与函数》优质ppt3

2.从典型实例中抽象概括出 解:(1)常量是3000,-300;
在你周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在. 在你周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在. (3)当 x = 200时,函数 y 的值为y=50-0.
函 数 的 概 念 , 了 解 函 数 的 概 S = Лr2
(1)请分别写出当0<x≤3和x>3时,表示y与x的 关系式,并直接写出当x=2和x=6时对应的y值;
下面问题中变化的量和不变的量: (2) 电影票的售价为10元/张,如果 第一场售出票150张,第二场售出205张,第三晚场售出 310张,三场电影票的票房收入各多少元?设某场电影售 出x 张票,票房收入y 元。
第一场票房收入 = 10×150 = 1500 (元)
第二场票房收入 = 10×205 = 2050 (元)
(1)是整式:自变量取值范围为:任意实数;
1 . 体 会 运 动 变 化 过 程 中 的 数 在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y
是x的函数。 x=6时,y×6+2. 时间x是自变量,心脏部位的生物电流y是x的函数。
一边长x米 3 3.5 4 4.5
D
C
另一边长为y米 2
1
y
试用含x的式子 表示y._____y_=_5_-_x_____
A
x
B
说一说
上述运动变化过程中出现的数量,你认为可以怎样 分类?
数值不断 变化的量
数值固定 不变的量
变量 常量
变量:在一个变化过程中,数值发生变化的量为变量。 常量:在一个变化过程中,数值始终不变的量为常量。
在你周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在. 在你周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在. (3)当 x = 200时,函数 y 的值为y=50-0.
函 数 的 概 念 , 了 解 函 数 的 概 S = Лr2
(1)请分别写出当0<x≤3和x>3时,表示y与x的 关系式,并直接写出当x=2和x=6时对应的y值;
下面问题中变化的量和不变的量: (2) 电影票的售价为10元/张,如果 第一场售出票150张,第二场售出205张,第三晚场售出 310张,三场电影票的票房收入各多少元?设某场电影售 出x 张票,票房收入y 元。
第一场票房收入 = 10×150 = 1500 (元)
第二场票房收入 = 10×205 = 2050 (元)
(1)是整式:自变量取值范围为:任意实数;
1 . 体 会 运 动 变 化 过 程 中 的 数 在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y
是x的函数。 x=6时,y×6+2. 时间x是自变量,心脏部位的生物电流y是x的函数。
一边长x米 3 3.5 4 4.5
D
C
另一边长为y米 2
1
y
试用含x的式子 表示y._____y_=_5_-_x_____
A
x
B
说一说
上述运动变化过程中出现的数量,你认为可以怎样 分类?
数值不断 变化的量
数值固定 不变的量
变量 常量
变量:在一个变化过程中,数值发生变化的量为变量。 常量:在一个变化过程中,数值始终不变的量为常量。
《变量与函数》一次函数PPT课件

悬挂重 物的质 量m(Kg) 弹簧长 度L(cm)
1
10.5
2
11
3
11.5
4
12பைடு நூலகம்
5
12.5
L=10+0.5m
问题3
每张电影票的售价为10元,如果早场售出票150张,日场 售出票205张,晚场售出票310张,三场电影的票房收入各 多少元?设一场电影售出票 x 张,票房收入为y元,怎样用 含x 的式子表示 y?
t和s
,变量是
(2)“弹簧伸长问题”, L=10+0.5m , 变量是 ;常量是 0.5和10 m和L
(3)“票房收入问题”中y=10x,常量是 10 是 x 和y ; ,变量
如果一辆汽车从甲地驶向相距120千米的乙 地,那么它行驶的时间(t)与速度(v)之 间有什么样的关系呢?
tv=120
变量为:时间、速度 常量为:路程
(2)给定变量x的一个值,相应的变量y的值唯一确 定吗? (3)怎样用关于x的代数式来表示y?
Y=2x
练习2:下图是体检时的心电图.其中图上点的横坐标
x表示时间,纵坐标y•表示心脏部位的生物电流,它们是 两个变量.在心电图中,对于x的每一个确定的值,y都 有唯一确定的对应值吗?
y
o
x
练习3:在下面的我国人口数统计表中,年份与人口 数可以记作两个变量x与y,•对于表中每一个确定的 年份(x),都对应着一个确定的人口数(y)吗?
这些是否是函数?如果是请写出它们的自变量的 取值范围,如果不是请说明理由。
(1)|y|=x+1; 整式:全体实数.
(2)Y=x2+4x+12
(3)y2=x
自变量在分母位置:使分母不等于0.
x ( 4) y x 1
1
10.5
2
11
3
11.5
4
12பைடு நூலகம்
5
12.5
L=10+0.5m
问题3
每张电影票的售价为10元,如果早场售出票150张,日场 售出票205张,晚场售出票310张,三场电影的票房收入各 多少元?设一场电影售出票 x 张,票房收入为y元,怎样用 含x 的式子表示 y?
t和s
,变量是
(2)“弹簧伸长问题”, L=10+0.5m , 变量是 ;常量是 0.5和10 m和L
(3)“票房收入问题”中y=10x,常量是 10 是 x 和y ; ,变量
如果一辆汽车从甲地驶向相距120千米的乙 地,那么它行驶的时间(t)与速度(v)之 间有什么样的关系呢?
tv=120
变量为:时间、速度 常量为:路程
(2)给定变量x的一个值,相应的变量y的值唯一确 定吗? (3)怎样用关于x的代数式来表示y?
Y=2x
练习2:下图是体检时的心电图.其中图上点的横坐标
x表示时间,纵坐标y•表示心脏部位的生物电流,它们是 两个变量.在心电图中,对于x的每一个确定的值,y都 有唯一确定的对应值吗?
y
o
x
练习3:在下面的我国人口数统计表中,年份与人口 数可以记作两个变量x与y,•对于表中每一个确定的 年份(x),都对应着一个确定的人口数(y)吗?
这些是否是函数?如果是请写出它们的自变量的 取值范围,如果不是请说明理由。
(1)|y|=x+1; 整式:全体实数.
(2)Y=x2+4x+12
(3)y2=x
自变量在分母位置:使分母不等于0.
x ( 4) y x 1
19.1.1 变量与函数(第2课时)课件

(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.
变量与函数(第一课时)课件2021-2022学年人教版八年级数学下册

t/h 1
2
3
4
5 请说明你的道理:
s/km 60 120 180 240 300 路程 =_速__度__×__时__是 _时__间__t_、__路__程__s____.不变化的量是 速__度__6_0_千__米__/_时__. (2)试用含t的式子表示s.s=_6_0__t.
例2 观察图表,根据表格中的数据回答问题:
梯形个数 1 2 3 4 5 … 图形周长 5 8 11 14 17 …
(1)设图形的周长为l,梯形的个数为n,试写出l与n的关系式; (2)在上述变化过程中,常量、变量分别是什么? (3)求n=11时图形的周长. 解:(1)l=3n+2; (2)常量是3,2,变量是l,n; (3)当n=11时,l=3×11+2=35,即此时图形的周长为35.
这个问题反映了圆的面积S随半径R的变化过程.
4. 用 10m 长 的 绳 子 围 一 个 矩 形 . 当 矩 形 的 一 边 长 x 分 别 为
3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值随x的值
变化而变化吗 当x=3m,y=10÷2-3=2m 当x=3.5m,y=10÷2-3.5=1.5m 当x=4m,y=10÷2-4=1m
这个问题反映了匀速行驶的汽车
所行驶的路程___s_随行驶时间__t_
的变化过程.
2.每张电影票的售价为10元,如果早场售出票150张,日场售出205张,
晚场售出310张,三场电影票的票房收入各多少元?若设一场电影售
出票 x 张,票房收入为 y 元,y的值随x的值的变化而变化吗?
(1)早场票房收入 = 10×150 = 1500(元) 请说明道理:
例题与练习
练习 1.下表是某报纸公布的世界人口数据情况,表中的变量( C )
19.1.1变量与函数.1.1常量与变量ppt公开课课件

(注:变量和常量是相对的)
2.若1吨民用自来水的价格为3.2元,则所交水费金额y(元)
与使用自来水的数量x(吨)之间的关系为_y__=__3_._2_x__,其 中变量是__y_,__x___,常量是__3_._2___.
知识点1:常量与变量判别
1、在面积S一定的ABC,若它的底边是a, 底边上的高是h,则在三角形的面积公式
a和h S 1 ah中,变量是 2
,常量是 1 和s 2
2、圆的周长公式C 2r(其中C为周长,r为半径)中,变量是
常量是 2和
r和c,
3、常量和变量是在“某一过程中”来研究、确定的,以S vt为例,若速度v固定,
v 则常量是
,变量是 s和h
想一想: 常量和变量是对某一变化过程来说的,
所挂重物
1
2
(kg)
受力后的弹
簧长度L 10.5 11
(cm)
3
4
5
11.5 12 12.5
m
10+0.5m
2.试用含m的式子表示L: L=_1__0_+_0__.5__m___
1.某市的自来水价为4元/t,现要抽取若干户居民调查水费支出 情况,记某户每月用水量为X t,月应交水费为y元。
y=4x
V 400h 高h(单位:cm)之间关系式__________
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用 含x的式子表示y.
份数/份 1
2
3
4…
总价/元 0.4 0.8 1.2 1.6 …
x与y之间的关系式为__y_=___0__._4_x__.这个问题中,_0__._4是常量,x__,___y__是变量.
2.若1吨民用自来水的价格为3.2元,则所交水费金额y(元)
与使用自来水的数量x(吨)之间的关系为_y__=__3_._2_x__,其 中变量是__y_,__x___,常量是__3_._2___.
知识点1:常量与变量判别
1、在面积S一定的ABC,若它的底边是a, 底边上的高是h,则在三角形的面积公式
a和h S 1 ah中,变量是 2
,常量是 1 和s 2
2、圆的周长公式C 2r(其中C为周长,r为半径)中,变量是
常量是 2和
r和c,
3、常量和变量是在“某一过程中”来研究、确定的,以S vt为例,若速度v固定,
v 则常量是
,变量是 s和h
想一想: 常量和变量是对某一变化过程来说的,
所挂重物
1
2
(kg)
受力后的弹
簧长度L 10.5 11
(cm)
3
4
5
11.5 12 12.5
m
10+0.5m
2.试用含m的式子表示L: L=_1__0_+_0__.5__m___
1.某市的自来水价为4元/t,现要抽取若干户居民调查水费支出 情况,记某户每月用水量为X t,月应交水费为y元。
y=4x
V 400h 高h(单位:cm)之间关系式__________
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用 含x的式子表示y.
份数/份 1
2
3
4…
总价/元 0.4 0.8 1.2 1.6 …
x与y之间的关系式为__y_=___0__._4_x__.这个问题中,_0__._4是常量,x__,___y__是变量.
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册

(2)用关系式表示你猜想的变化规律,并指出关系式中的常量. 变化规律满足:y=280-x,关系式中的常量是:数字280.
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说一说
你能举出一个变化过程的例子,并说出其中的变量 和常量吗?试一试!
你能确定下列变化过程中的变量吗? (1)小敏长高了; (2)在汤中加水,汤变淡了; (3)小狗越来越可爱了.
课堂小结
这节课你有哪些收获?
你还想继续探究吗?
课后作业
作业:教科书第71~72页练习.
数值不断 变化的量
数值固定 不变的量
变量 常量
辨一辨
指出下列变化过程中的变量和常量: (1)汽油的价格是7.4元/升,加油 x L,车主加油 付油费 y 元; (2)小明看一本200 页的小说,看完这本小说需要 t 天,平均每天所看的页数为 n; (3)用长为40 cm 的绳子围矩形,围成的矩形一边 长为 x cm,其面积为 S cm2.
找一找
下面问题中变化的量和不变的量: (2)每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.
找一找
(3)一石激起千层浪,圆形的水波慢慢地扩大, 在这一过程中,当圆的半径r 分别为10 cm,20 cm, 30 cm 时,圆的面积S 分别为多少?在这个过程中, 哪些量是变化的?那些量是不变的?
如图,小球在斜坡上滚动,请观察这一运动变化过 程,你注意到了什么变化?
s
x y
变化的量: 小球在斜坡上滚动的路程s,小球离起点的水平距离 x;小球离水平面的高度y. 不变的量: 斜坡高度,斜坡长度,斜坡水平长度等.
找一找
下面问题中变化的量和不变的量: (1)汽车以60 km/h 的速度匀速行驶,行驶时间为 t h,行驶路程为 s km.
找一找
下面问题中变化的量和不变的量: (4)用10 m长的绳子围一个矩形,当矩形的一边长 x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y 分 别为多少?在矩形改变形状的变化过程中,哪些量是变 化的?哪些量是固定不变的?DC来自yAx
B
说一说
上述运动变化过程中出现的数量,你认为可以怎样 分类?
八年级数学 下册
19.1.1 变量与函数(1)
• 学习目标: 1.了解变量与常量的意义; 2.体会运动变化过程中的数量变化.
•学习重点: 了解变量与常量的意义,充分体会运
动变化过程中数量的变化.
万物皆变
如图,小球在斜坡上滚动,请观察这一运动变化过 程,你注意到了什么变化?
s
x y
万物皆变 从数学角度 研究变化过程 关注其中数量的变化,用数量变化描述变化规律