直线与圆锥曲线的位置关系专题复习

合集下载

直线与圆锥曲线的位置关系(总结归纳)

直线与圆锥曲线的位置关系(总结归纳)

y=±
33x,
∴有- 33≤k≤ 33.
• 答案:C
• 【例1】 已知直线y=(a+1)x-1与曲线y2=ax恰有一 个公共点,求实数a的值.
解• 析分证:联结析立论:方程.先组用yy2==代(aax+数. 1)方x-法1,即联(1)立当 a方=0程时,组此解方程决组恰,有再一组从解几为何xy==上10.,验
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
1.直线y=kx-k+1与椭圆 x2 y2 1 的位置关系为( A )
(A) 相交 (B) 相切 9 (C)4相离
(D) 不确定
2.已知双曲线方程x2-y2=1,过P(0,1)点的直线l与双曲线
只有一个公共点,则l的条数为( A )
(A)4
(B)3
(C)2
(D)1
3.过点(0,1)与抛物线y2=2px(p>0)只有一个公共点的直线
a

4 0,-1,-5时,
直线 y=(a+1)x-1 与曲线 y2=ax 恰有一个公共点.
三、弦的中点问题
x2 y2 设 A(x1,y1),B(x2,y2)是椭圆a2+b2=1 上不同的两点,
且 x1≠x2,x1+x2≠0,M(x0,y0)为 AB 的中点,则xaxa212222++ybyb212222==11,.

线与圆锥曲线的位置关系(八大题型)(课件)-2025年高考数学一轮复习(新教材新高考)

线与圆锥曲线的位置关系(八大题型)(课件)-2025年高考数学一轮复习(新教材新高考)


,两式相减得

+ −

+

+
=
+


=

− ,故

=



=
知识梳理·基础回归
知识点3:点差法

(2)运用类似的方法可以推出;若是双曲线

, ,则 =
= 1,①
= 1②
①-②得
1 +2 1 −2
16
+
1 +2 1 −2
12
= 0,

3
1
2
∵ 1 + 2 = 4,1 + 2 = 2,∴ = − = − 2,
1
∴此弦所在的直线方程为 − 1 =
【方法技巧】
点差法
3
− (
2
2
− 2),即3 + 2 − 8 = 0.
2

2
2
【解析】当 ≥ 0时,曲线 −
= 1,即 − =
9
4
9
4
3
一条渐近线方程为: = 2 ,直线与渐近线平行;
当 <
2
0时,曲线
9


4
=
2
1,即
9
2
+
4
画出曲线和直线的图像,如图所示:
根据图像知有2个公共点.
故选:B
1,双曲线右半部分;
= 1,椭圆的左半部分;
).
题型突破·考法探究
16
弦所在的直线方程为
2
+
12

寒假专题复习直线与圆锥曲线

寒假专题复习直线与圆锥曲线

寒假专题复习——直线与圆锥曲线回扣教材:复习课本选修2——1:课本第67页至第71页要求掌握的内容:①直线与圆锥曲线的位置关系 ②圆锥曲线的弦长 (一)知识梳理:1、直线与圆锥曲线的位置关系是 ., ., .。

相交时有 .个交点,相切时有 .个交点,相离时有 .个交点。

2、判断直线l 和圆锥曲线C 的位置关系,通常是将直线l 的方程0Ax By C ++=带入圆锥曲线C 的方程(,)0F x y =,消去y(也可以消去x)得到一个关于变量x (或y )的一元方程,即{0(,)0Ax By C F x y ++==,消去y 得ax 2+bx+c=0(此方程称为消元方程)。

当a ≠0时,若有∆>0,直线l 和圆锥曲线C ;∆<0,直线l 和圆锥曲线C当a=0时,得到的是一个一元一次方程则直线l 和圆锥曲线C 相交,且只有一个交点,此时,若C 是双曲线,则直线l 与双曲线的 平行;若C 是抛物线,则直线l 与抛物线的 平行。

3、连接圆锥曲线两个点的线段成为圆锥曲线的弦设直线l 的方程f (,)0x y =,圆锥曲线C 的方程(,)0F x y =,直线l 与圆锥曲线C 的两个不同交点为1,12,2(,)0()(),(,)0f x y A x y x y F x y =⎧⎨=⎩、B 联立,消去y 得ax 2+bx+c=0,则1,2x x 是它两个不等实根.(1)由根与系数的关系有1212x x x x +==( ),( )(2)设直线l 的斜率为k,A,B 两点之间的距离若消去x,则 A,B 两点之间的距离|AB|=4、在给定的圆锥曲线f (,)0x y =中,求中点(m,n )的弦AB 所在的直两种处理方法:(1)由根与系数的关系法:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解。

(2)点差法:若直线l 与圆锥曲线C 的两个不同的交点A ,B ,首先设出交点坐标1,12,2()(),A x y x y 、B 代入曲线C的方程,通过作差,构造出12121212,,,x x y y x x y y ++--,从而建立中点坐标与斜率的关系。

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。

高考第一轮复习数学直线与圆锥曲线的位置关系

高考第一轮复习数学直线与圆锥曲线的位置关系
评述:本题考查了两直线垂直的充要条件、三角形的面积公式、函数与方程的思想,以及分析问题、解决问题的能力.
例3在抛物线y2=4x上恒有两点关于直线y=kx+3对称,求k的取值范围.
剖析:设B、C两点关于直线y=kx+3对称,易得直线BC:x=-ky+m,由B、C两点关于直线y=kx+3对称可得m与k的关系式,
答案:
5.求过点0,2的直线被椭圆x2+2y2=2所截弦的中点的轨迹方程.
解:设直线方程为y=kx+2,
把它代入x2+2y2=2,
整理得2k2+1x2+8kx+6=0.
要使直线和椭圆有两个不同交点,则Δ>0,即k<- 或k> .
设直线与椭圆两个交点为Ax1,y1、Bx2,y2,中点坐标为Cx,y,则
2.涉及直线与圆锥曲线相交弦的问题,主要有这样几个方面:相交弦的长,有弦长公式|AB|= |x2-x1|;弦所在直线的方程如中点弦、相交弦等、弦的中点的轨迹等,这可以利用“设点代点、设而不求”的方法设交点坐标,将交点坐标代入曲线方程,并不具体求出坐标,而是利用坐标应满足的关系直接导致问题的解决.
3.涉及到圆锥曲线焦点弦的问题,还可以利用圆锥曲线的焦半径公式即圆锥曲线的第二定义,应掌握求焦半径以及利用焦半径解题的方法.
条条条条
解析:数形结合法,同时注意点在曲线上的情况.
答案:B
2.已知双曲线C:x2- =1,过点P1,1作直线l,使l与C有且只有一个公共点,则满足上述条件的直线l共有
条条条条
解析:数形结合法,与渐近线平行、相切.
答案:D
3.双曲线x2-y2=1的左焦点为F,点P为左支下半支上任意一点异于顶点,则直线PF的斜率的变化范围是

高中数学直线和圆锥曲线常考题型汇总及例题解析

高中数学直线和圆锥曲线常考题型汇总及例题解析

高中数学直线和圆锥曲线常考题型汇总及例题解析题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题题型九:四点共线问题题型十:范围问题(本质是函数问题)题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)【题型一】数形结合确定直线和圆锥曲线的位置关系【题型二】弦的垂直平分线问题【题型三】动弦过定点的问题【题型四】过已知曲线上定点的弦的问题【题型五】共线向量问题【题型六】面积问题【题型七】弦或弦长为定值问题【题型八】角度问题【题型九】四点共线问题【题型十】范围问题(本质是函数问题)【题型十一】存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)例题&解析集合例1:例2:例3:例4:例5:例6:刷有所得:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.例7:答案:解析:刷有所得:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.例8:解析:定点问题例9:解析:例10:例11:解析:例12:例13:答案:例14:例15:解析:离心率问题例16:答案:D解析:刷有所得:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 例17:答案:C 解析:例18:答案:C解析:刷有所得:求离心率的值或范围就是找的值或关系。

九年级数学圆锥曲线期末复习3

九年级数学圆锥曲线期末复习3

高 二 数 学 期 末 复 习 三(圆锥曲线综合问题)一、知识回顾1.直线与圆锥曲线的位置关系:在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.注意:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“0∆>”,尤其是在应用韦达定理解决问题时,必须先有“0∆>”.②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.2.弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则22|||AB x x -,若12,y y 分别为A 、B 的纵坐标,则12|||AB y y =-=,若弦AB 所在直线方程设为x ky b =+,则AB 12y -。

注意:焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和,或统一(第二)定义求解。

3.圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。

在椭圆12222=+by a x 中,以00(,)P x y 为中点的弦所在直线的斜率0202y a x b k -=;在双曲线22221x y a b-=中,以00(,)P x y 为中点的弦所在直线的斜率0202y a x b k =;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率)0(00≠=y y pk 。

注意:如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.4.常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法等), 以及如何利用曲线的方程讨论曲线的几何性质,这是解析几何的两类基本问题,也是解析几何的基本出发点.注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.②在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.二、典型例题例1.(1)椭圆284722=+y x 上的点到直线01623=--y x 的最短距离为13138; (2)过抛物线x y 22=焦点的直线交抛物线于A 、B 两点,已知ΔABO 重心的横坐标为3(O 为坐标原点),则|AB|=___10____(3*)已知直线1+-=x y 与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,且线段AB 的中点在直线02:=-y x l 上,则此椭圆的离心率为22(4*)若椭圆11022=+m y x 与双曲线122=-b y x 有相同的焦点,且),310(y P 椭圆与双曲线的一个交点,则椭圆与双曲线的方程分别为,11022=+y x 1822=-y x 。

直线与圆锥曲线的位置关系专题复习

直线与圆锥曲线的位置关系专题复习
类题通法 减,式中含有 x1+x2,y1+y2,xy11--yx22三个未知量,这样就直接
联系了中点和直线的斜率,借用中点P公A式R即T 可1求得斜率. 2.根与系数的关系:
即联立直线与圆锥曲线的方程得到方程组,化为一元二次 方程后由根与系数的关系求解.
01
添加标题
遇到弦中点,两式减一减; 若要求弦长,韦达来帮忙.
线 段 的 中 点 , 求 直 线 L 的 方 程 .
探究三 圆锥曲线中弦的中点问题
变 式 : 求 直 线 L:x+2y-8=0被 椭 圆 x2y21所 截 得 的 36 9
线 段 的 中 点 P的 坐 标 .
处理中点弦问题常用的求解方法
1.点差法: 即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相
y=kx+2, 联立方程组x92+y2=1, 解得 x2+9(kx+2)2=9, 即(1+9k2)x2+36kx+27=0.
∵直线 m 与椭圆交于 A、B 两点,
∴Δ=(36k)2-4×27(1+9k2)>0,即
9k2-3>0,∴k>
33或
k<-
3 3 .(*)
设 A、B 两点的坐标是 A(x1,y1),B(x2,y2), 则 x1+x2=-1+369k2,x1·x2=1+279k2. 由于以 AB 为直径的圆过原点,∴x1x2+y1y2=0, 即 x1x2+(kx1+2)(kx2+2)=0.
y(12=)若2p直x线: 与对称轴平行或重合,则相交且只有一个交点.
(2)若直线与对称轴相交,

y=kx+ my2=2p
得:
故①△>0 相交 ②△=0 x 相切 A③x△2+<B0x+C相=离0
yy
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆锥曲线的位置关系
一.知识网络结构:
2. 直线与圆锥曲线的位置关系:
⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到ax2 bx c 0。

① .若a=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;
当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。

② .若a 0,设b2 4ac。

a . 0时,直线和圆锥曲线相交于不同两点,相交。

b. 0时,直线和圆锥曲线相切于一点,相切。

c. 0时,直线和圆锥曲线没有公共点,相离。

二.常考题型解读:题型一:直线与椭圆的位置关系:
2 2
例1.椭圆—J 1上的点到直线X 2y .2 0的最大距离是()
16 4
A.3
B. ,11
C. 2 2
D. . 10
2 2
例2.如果椭圆—y 1的弦被点(4,2)平分,则这条弦所在的直线方程是()
36 9
A. x 2y 0
B. x 2y 4 0
C. 2x 3y 12 0
D. x 2y 8 0
题型二:直线与双曲线的位置关系:
例3.已知直线L:y kx 1与双曲线C:x2 y2=4。

⑴若直线L与双曲线C无公共点,求k的范围;⑵若直线L与双曲线C有两个公共点,求k 的范围;
⑶若直线L与双曲线C有一个公共点,求k的范围;⑷若直线L与双曲线C的右支有两个公共点,求k的范围;⑸若直线L与双曲线C的两支各有一个公共点,求k的范围。

题型三:直线与抛物线的位置关系:
例4.在抛物线y2 2x上求一点P,使P到焦点F与P到点A(3,2)的距离之和最小。

题型四:弦长问题:
直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方法是:设而不求, 根据根与系数的关系,进行整体代入。

即当直线
斜率为k 与圆锥曲线交于点A x i ,y i , 可根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关 系得到两根之和,两根之积的代数式,然后再进行整体带入求解
1的右焦点F 2,倾斜角为300的直线交双曲线于A 、B 两点,求AB 题型五:中点弦问题: 求以某定点为中点的圆锥曲线的弦的方程的几种方
法:
⑴•点差法:将弦的两个端点坐标代入曲线方程,两式相减,即可确定弦的斜率,然后由点 斜式得出弦的方程;
⑵.设弦的点斜式方程,将弦的方程与曲线方程联立,消元后得到关于
x (或y )的一元二 次方程,用根与系数的关系求出中点坐标,从而确定弦的斜率 k ,然后写出弦的方程; ⑶•设弦的两个端点分别为X i ,y i ,X 2,y 2,则这两点坐标分别满足曲线方程,又
竺 空,上准 为弦的中点,从而得到四个方程,由这四个方程可以解出两个端点,从 2 2
而求出弦的方程。

例6.已知双曲线方程2x 2 y 2=2。

⑴求以A 2,1为中点的双曲线的弦所在的直线方程; ⑵过点1,1能否作直线L ,使L 与双曲线交于Q i , Q 2两点,且Q i ,Q 2两点的中点为1,1如 果存在,求出直线L 的方程;如果不存在,说明理由。

题型六:圆锥曲线上的点到直线的距离问题:
例7.在抛物线y 2 64x 上求一点,使它到直线 L : 4x 3y 46 0的距离最短,并求这个 最短距离。

练习 题
B x 2, y 2 时,则 AB k 2 % x 2 二昴
k 2 ; Xi 2 X 2 4x 1x 2
2
例5.过双曲线—
3
k 12「厂y 2 L 4y i y 2
A %,y 2 ,
B X 2,y 2 (为 x ?)两点,且 AB 9 .⑴求该抛物线的方程;⑵O 为坐标原点, 1. (09上海)过点A (1,0)作倾斜角为一的直线,与抛物线 y 2 2x 交于M 、N 两点,则
4
MN = _______
写出所涉及到的公式:
2. (09海南)已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于
A, B 两点,
若P 2,2为AB 的中点,则抛物线C 的方程为 _________ 。

2 2
3. ( 08宁夏海南)过椭圆— 壬1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,
5 4
O 为坐标 原点,则△ OAB 的面积为
4. ( 11全国)已知直线L 过抛物线C 的焦点,且与C 的对称轴垂直,L 与C 交于A, B 两点,
|AB| 12,
P 为C 的准线上一点,贝U ABP 的面积为(
) A. 18
B. 24
C. △ OAF (O 为坐标原点)的面积为4,则抛物线方程为(
2
7. (10全国)设F 1 , F 2分别是椭圆E : x 2+^=1 (0< b < 1)的左、右焦点,过F 1的直线
b
L 与E 相交于A 、B 两点,且|AF 2,| AB ,BF ?成等差数列。

⑴求|AB ⑵若直线L 的斜率为 1,求b 的值。

8. ( 11江西)已知过抛物线 y 2 2px p 0的焦点,斜率为 2、2的直线交抛物线于
5. (09山东)设斜率为2的直线I 过抛物线y 2
ax (a 0)的焦点F,且和y 轴交于点A,若 36 D. 48 2 2 A. y 4x B. y 8x
C. y 2 4x
D. 8x
6. (09山东)设双曲线 2 x 2 a 2 y_ b 2
1的一条渐近线与抛物线 y=x 2 +1只有一个公共点,则双
曲线的离心率为().A.
B. 5
C.
C为抛物线上一点,若OC OA OB,求的值.。

相关文档
最新文档