专题三-直线、圆、圆锥曲线测试题(文科)解析

合集下载

2024年高考数学一模好题分类汇编:直线与圆、圆锥曲线(解析版)

2024年高考数学一模好题分类汇编:直线与圆、圆锥曲线(解析版)

直线与圆、圆锥曲线题型01 直线与圆题型02 椭圆题型03 双曲线题型04 抛物线题型01 直线与圆1(2024·浙江·校联考一模)圆C :x 2+y 2-2x +4y =0的圆心C 坐标和半径r 分别为()A.C 1,-2 ,r =5B.C 1,-2 ,r =5C.C -1,2 ,r =5D.C -1,2 ,r =5【答案】A【详解】圆C :x 2+y 2-2x +4y =0,即C :x -1 2+y +2 2=5,它的圆心C 坐标和半径r 分别为C 1,-2 ,r = 5.故选:A .2(2024·河南郑州·郑州市宇华实验学校校考一模)“a ≤-5或a ≥5”是“圆C 1:x 2+y 2=1与圆C 2:(x +a )2+(y -2a )2=36存在公切线”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】C【详解】圆C 1的圆心为0,0 ,半径r 1=1,圆C 2的圆心为-a ,2a ,半径r 2=6,所以两圆的圆心距为d =C 1C 2 =a 2+4a 2=5a 2,两圆内含时,即5a 2<6-1 ,解得-5<a <5,所以当两圆有公切线时,a ≥5或a ≤-5,所以“a ≤-5或a ≥5”是“圆C 1:x 2+y 2=1与圆C 2:(x +a )2+(y -2a )2=36存在公切线”的充要条件.故选:C .3(2024·黑龙江齐齐哈尔·统考一模)已知圆C 1:(x -3)2+y 2=1,C 2:x 2+(y -a )2=16,则下列结论正确的有()A.若圆C 1和圆C 2外离,则a >4B.若圆C 1和圆C 2外切,则a =±4C.当a =0时,圆C 1和圆C 2有且仅有一条公切线D.当a =-2时,圆C 1和圆C 2相交【答案】BCD【详解】C 13,0 ,C 20,a ,C 1C 2 =9+a 2,r 1=1,r 2=4.若C1和C 2外离,则C 1C 2 =9+a 2>r 1+r 2=5,解得a >4或a <-4,故A 错误;若C 和C 外切,C C =9+a 2=5,解得a =±4,故B 正确;当a =0时,C 1C 2 =3=r 2-r 1,C 1和C 2内切,故C 正确;当a =-2时,3<C 1C 2 =13<5,C 1和C 2相交,故D 正确.故选:BCD4(2024·河南郑州·郑州市宇华实验学校校考一模)在直角坐标系xOy 中,直线l 1的参数方程为x =3ty =4t -1 (t 为参数),直线l 2的参数方程为x =12s y =32s(s 为参数).(1)求这两条直线的普通方程(结果用直线的一般式方程表示);(2)若这两条直线与圆C :(x -3)2+(y -4)2=m 2都相离,求m 的取值范围.【答案】(1)l 1:4x -3y -3=0,l 2:3x -y =0(2)4-332<m <33-42【详解】(1)直线l 1的参数方程为x =3t y =4t -1 ,则4x =12t3y =12t -3 ,两式相减得4x -3y -3=0直线l 2的参数方程为x =12sy =32s ,则s =2x 代入y =32s ,得y =3x ,3x -y =0;(2)圆C 的圆心为3,4 ,半径为m ,若l 1,l 2与圆C :(x -3)2+(y -4)2=m 2相离,所以12-12-35>m33-42>m,即35>m 33-42>m,解得4-332<m <33-42.5(2024·重庆·统考一模)过点P 作圆C :x 2+y 2-4x -43y +15=0的两条切线,切点分别为A ,B ,若△PAB 为直角三角形,O 为坐标原点,则OP 的取值范围为()A.2-2,2+2B.4-2,4+2C.2-2,2+2D.4-2,4+2【答案】D【详解】圆C :(x -2)2+(y -23)2=1的圆心C (2,23),半径r =1,由PA ,PB 切圆C 于点A ,B ,且△PAB 为直角三角形,得∠APB =90°,|PA |=|PB |,连接AC ,BC ,则∠CAP =∠CBP =90°,即四边形APBC 是正方形,|PC |=2,因此点P 在以点C 为圆心,2为半径的圆上,而|OC |=22+(23)2=4,于是|OP |max =4+2,|OP |min =4-2,所以OP 的取值范围为4-2,4+2 .故选:D6(2024·江西吉安·吉安一中校考一模)已知圆C :x 2+y 2-4x -14y +45=0及点Q (-2,3),则下列说法正确的是()A.直线kx -y -2k +1=0与圆C 始终有两个交点B.若M 是圆C 上任一点,则|MQ |的取值范围为22,62C.若点P (m ,m +1)在圆C 上,则直线PQ 的斜率为14D.圆C 与x 轴相切【答案】B【详解】依题意,圆C :(x -2)2+(y -7)2=8,圆心C (2,7),半径r =22,对于A ,直线kx -y -2k +1=0恒过定点(2,1),而点(2,1)在圆C 外,则过点(2,1)的直线与圆C 可能相离,故A 不正确;对于B ,|CQ |=42,点Q 在圆C 外,由CQ -r ≤MQ ≤CQ +r 得:22≤MQ ≤62,故B 正确.对于C ,点P (m ,m +1)在圆C 上,则(m -2)2+(m -6)2=8,解得m =4,而点Q (-2,3),则直线PQ 的斜率为m -2m +2=13,故C 不正确;对于D ,点C (2,7)到x 轴距离为7,大于圆C 的半径,则圆C 与x 轴相离,即圆C 与x 轴不相切,故D 不正确;故选:B7(2024·河北·校联考一模)已知圆C :x 2+2x +y 2-1=0,直线mx +n y -1 =0与圆C 交于A ,B 两点.若△ABC 为直角三角形,则()A.mn =0B.m -n =0C.m +n =0D.m 2-3n 2=0【答案】A【详解】因为圆C :x 2+2x +y 2-1=0,圆心为C -1,0 ,半径为r =2,即CA =CB =2因为△ABC 为直角三角形,所以AB =CB2+CA 2=2,设圆心C -1,0 到直线mx +n y -1 =0的距离为d ,d =-m -nm 2+n 2=m +nm 2+n 2由弦长公式AB =2r 2-d 2得d =1,所以m +nm 2+n2=1,化简得mn =0.故选:A .8(2024·广东深圳·校考一模)已知圆C :x 2+y 2-2kx -2y -2k =0,则下列命题是真命题的是()A.若圆C 关于直线y =kx 对称,则k =±1B.存在直线与所有的圆都相切C.当k =1时,P x ,y 为圆C 上任意一点,则y +3x 的最大值为5+3D.当k =1时,直线l :2x +y +2=0,M 为直线l 上的动点,过点M 作圆C 的切线MA ,MB ,切点为A ,B ,则CM ⋅AB 最小值为4【答案】BCD【详解】解:圆C :x 2+y 2-2kx -2y -2k =0,整理得:x -k 2+y -1 2=k +1 2,所以圆心C k ,1 ,半径r =k +1 >0,则k ≠-1对于A ,若圆C 关于直线y =kx 对称,则直线过圆心,所以1=k 2,得k =±1,又k =-1时,r =0,方程不能表示圆,故A 是假命题;对于B ,对于圆C ,圆心为C k ,1 ,半径r =k +1 >0,则k ≠-1,当直线为x =-1时,圆心到直线的距离d =k -(-1) =k +1 =r ,故存在直线x =-1,使得与所有的圆相切,故B 是真命题;对于C ,当k =1时,圆的方程为x -1 2+y -1 2=4,圆心为C 1,1 ,半径r =2由于P x ,y 为圆C 上任意一点,设y +3x =m ,则式子可表示直线y =-3x +m ,此时m 表示直线的纵截距,故当直线与圆相切时,可确定m 的取值范围,于是圆心C 1,1 到直线y =-3x +m 的距离d =3+1-m12+32=r =2,解得m =3-3或m =5+3,则3-3≤m ≤5+3,所以y +3x 的最大值为5+3,故C 为真命题;对于D ,圆的方程为x -1 2+y -1 2=4,圆心为C 1,1 ,半径r =2,如图,连接AC ,BC ,因为直线MA ,MB 与圆C 相切,所以MA ⊥AC ,MB ⊥BC ,且可得MA =MB ,又AC =BC =r =2,所以MC ⊥AB ,且MC 平分AB ,所以S =1CM ⋅AB =2S =2×1MA ⋅AC ,则CM ⋅AB =2MA ⋅AC =2CM 2-r 2×2=4CM 2-4,则CM ⋅AB 最小值即CM 的最小值,即圆心C 1,1 到直线l :2x +y +2=0的距离d =CM min =2+1+222+12=5,所以CM ⋅AB 的最小值为4,故D 为真命题.故选:BCD .9(2024·安徽合肥·合肥一六八中学校考一模)已知直线y =kx +2k ∈R 交圆O :x 2+y 2=9于P x 1,y 1 ,Q x 2,y 2 两点,则3x 1+4y 1+16 +3x 2+4y 2+16 的最小值为()A.9 B.16C.27D.30【答案】D【详解】由题设直线与y 轴的交点为A 0,2 ,设弦PQ 的中点为E x ,y ,连接OE ,则OE ⊥PQ ,即OE ⊥AE ,所以OE ⋅AE=0,即x ,y ⋅x ,y -2 =x 2+y y -2 =0,所以点E 的轨迹方程为x 2+(y -1)2=1,即E 的轨迹是以0,1 为圆心,1为半径的圆,设直线l 为3x +4y +16=0,则E 到l 的最小距离为4+165-1=3,过P 、E 、Q 分别作直线l 的垂线,垂足分别为M ,R ,N ,则四边形MNQP 是直角梯形,且R 是MN 的中点,则ER 是直角梯形的中位线,所以MP +NQ =2ER ,即3x 1+4y 1+165+3x 2+4y 2+165=2ER ,即3x 1+4y 1+6 +3x 2+4y 2+6 =10ER ≥30,所以3x 1+4y 1+16 +3x 2+4y 2+16 的最小值为30.故选:D .10(2024·吉林延边·统考一模)已知A x 1,y 1 ,B x 2,y 2 是圆O :x 2+y 2=4上的两点,则下列结论中正确的是()A.若点O 到直线AB 的距离为2,则AB =22B.若AB =23,则∠AOB =π3C.若∠AOB =π2,则x 1+y 1-1 +x 2+y 2-1 的最大值为6D.x 1x 2+y 1y 2的最小值为-4【答案】ACD【详解】依题意,圆O :x 2+y 2=4的圆心O 0,0 ,半径为r =2如图所示:对于A 选项:因为点O 到直线AB 的距离为2,所以AB =2r 2-d 2=22,故选项A 正确;对于B 选项:因为AB =23,且OA =OB =r =2,所以在△ABC 中,由余弦定理可得:cos ∠AOB =OA2+OB 2-AB 22OA OB=4+4-122×2×2=-12,所以∠AOB =2π3,故选项B 错误;对于C 选项:由x 1+y 1-1 +x 2+y 2-1 =2x 1+y 1-12+x 2+y 2-12,其几何意义为A x 1,y 1 ,B x 2,y 2 到直线x +y -1=0的距离之和的2倍设A ,B 的中点为C x 0,y 0 ,结合梯形的中位线可知:则有x 1+y 1-1 +x 2+y 2-1 =22x 0+y 0-12,因为∠AOB =π2,所以AB =4+4=22,在直角三角形△OAB 中,OC =12AB =2,所以点C 的轨迹为以原点0,0 为圆心,2为半径的圆.因为0,0 到x +y -1=0的距离为d =0+0-12=22,所以x 0+y 0-12max=22+2=322,所以x 1+y 1-1 +x 2+y 2-1 max =22x 0+y 0-12max=6,故选项C 正确;对于D 选项:因为x 1x 2+y 1y 2=OA ⋅OB =2×2×cos OA ,OB,所以当OA ,OB所成的角为π时,x 1x 2+y 1y 2 min =2×2×cosπ=-4.故选项D 正确;故选:ACD .题型02椭圆11(2024·安徽合肥·合肥一六八中学校考一模)如果椭圆x 2k +8+y 29=1(k >-8)的离心率为e =12,则k =()A.4B.4或-54C.-45D.4或-45【答案】B【详解】解:因为椭圆x 2k +8+y 29=1(k >-8)的离心率为e =12,当k +8>9时,椭圆焦点在x 轴上,可得:a =k +8,b =3,∴c =a 2-b 2=k -1,∴e =k -1k +8=12,解得k =4,当0<k +8<9时,椭圆焦点在y 轴上,可得:a =3,b =k +8,∴c =a 2-b 2=1-k ,∴e =c a=1-k 3=12,解得k =-54.∴k =4或k =-54.故选:B .12(2024·福建厦门·统考一模)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 交于A ,B 两点,若F 1F 2 =2,且△ABF 2的周长为8,则()A.a =2B.C 的离心率为14C.|AB |可以为πD.∠BAF 2可以为直角【答案】AC【详解】由F 1F 2 =2c =2⇒c =1,如下图△ABF 2周长为4a =8⇒a =2,故b 2=a 2-c 2=3,所以,椭圆离心率为e =12,A 对,B 错;当AB ⊥x 轴,即AB 为通径时|AB |min =2b 2a =3,且|AB |<2a =4,所以3≤|AB |<4,故|AB |可以为π,C 对;由椭圆性质知:当A 为椭圆上下顶点时∠BAF 2最大,此时cos ∠BAF 2=a 2+a 2-4c 22a2=12,且∠BAF 2∈(0,π),故(∠BAF 2)max =π3,即∠BAF 2不可能为直角,D 错.故选:AC13(2024·云南曲靖·统考一模)已知P 为椭圆C :x 2a 2+y 2b2=1a >b >0 上一点,F 1,F 2分别为C 的左、右焦点,且PF 1⊥PF 2,若△PF 1F 2外接圆半径与其内切圆半径之比为52,则C 的离心率为.【答案】57【详解】由题意,在Rt △PF 1F 2中|F 1F 2|=2c ,|PF 1|+|PF 2|=2a ,∠F 1PF 2=90°,所以其外接圆半径R =|F 1F 2|2=c ,内切圆的半径为|PF 1|+|PF 2|-|F 1F 2|2=a -c ,故c a -c =52⇒e =c a =57.故答案为:5714(2024·重庆·统考一模)已知点F 为椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,过坐标原点作一条倾斜角为π3的直线交椭圆于P ,Q 两点,FP +FQ =FP -FQ ,则该椭圆的离心率为.【答案】3-1/-1+3【详解】令椭圆的左焦点为F ,半焦距为c ,分别连接F P ,F Q ,由FP +FQ =FP -FQ ,得四边形FPF Q 为矩形,而∠FOP =π3,则△OFP 为正三角形,所以|FP |=c ,FP =3c ,∴2a =PF +|PF ∣=(3+1)c ,则椭圆离心率为e =ca =3-1,故答案为:3-1.15(2024·黑龙江齐齐哈尔·统考一模)已知P 为椭圆C :x 29+y 23=1上的一个动点,过P 作圆M :(x -1)2+y 2=2的两条切线,切点分别为A ,B ,则AB 的最小值为.【答案】2105/2510【详解】设P x ,y ,∠MAB =θ,由已知MA ⊥AP ,由对称性可得AB ⊥PM ,所以∠PAB +∠MAB =π2,∠MPA +∠PAB =π2,且sin θ=2PM,因为PM =(x -1)2+y 2=(x -1)2+3-x 23=23x -322+52,因为-3≤x ≤3,所以PM ≥102,当且仅当x =32时等号成立,所以sin θ=2PM≤25,又θ∈0,π2 ,所以cos θ=1-sin 2θ≥15=55,所以AB =22cos θ≥22×55=2105.所以AB 的最小值为2105.故答案为:2105.16(2024·山东济南·山东省实验中学校考一模)若椭圆C 1和C 2的方程分别为x 2a 2+y 2b 2=1(a >b >0)和x 2a 2+y 2b2=λ(a >b >0,λ>0且λ≠1)则称C 1和C 2为相似椭圆.己知椭圆C 1:x 24+y 23=1,C 2:x 24+y 23=λ(0<λ<1),过C 2上任意一点P 作直线交C 1于M ,N 两点,且PM +PN=0,则△MON 的面积最大时,λ的值为()A.13B.12C.34D.32【答案】B【详解】当直线MN 的斜率不存在时,设直线MN 的方程为x =x 0,-2λ≤x 0≤2λ,联立x 24+y 23=1x =x,可得x =x 0y =±3×1-x 24 ,所以MN =23×1-x 204,所以△MON 的面积为S △MON =3x 01-x 204,由PM +PN =0 ,可得P 为MN 的中点,所以P x 0,0 ,因为点P 在椭圆C 2上,所以x 0=±2λ,所以S △MON =23×λ1-λ ,当直线MN 的斜率存在时,设直线MN 的方程为y =sx +t ,联立x 24+y 23=1y =sx +t ,消去y 得,4s 2+3 x 2+8stx +4t 2-12=0,∴Δ=64s 2t 2-44s 2+3 4t 2-12 =484s 2-t 2+3 >0,设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8st 4s 2+3,x 1x 2=4t 2-124s 2+3,∴y 1+y 22=s x 1+x 2 +2t 2=-4s 2t 4s 2+3+t =3t4s 2+3,所以P 点坐标为-4st 4s 2+3,3t4s 2+3,因为点P 在椭圆C 2上,所以t 2=λ4s 2+3 ,因为原点O 到直线MN 的距离为t1+s 2,MN =1+s 2x 2-x 1 =1+s 2×x 1+x 2 2-4x 1x 2,所以△MON 的面积为S △MON =12t x 1-x 2 =23t 4s 2-t 2+34s 2+3=23×λ4s 2+3 ×1-λ 4s2+34s 2+3=23×λ1-λ ,综上,S △MON =23×λ1-λ ,又0<λ<1,又S △MON =23×λ1-λ =23×-λ-122+14,所以当λ=12时,△MON 的面积最大.故选:B .【点睛】关键点点睛:由PM +PN =0可得P 为MN 的中点,由此得到t 2=λ4s 2+3 ,将此关系代入S △MON 并化简可将S △MON 表示为一个变量的函数,从而利用二次函数求最值.17(2024·新疆乌鲁木齐·统考一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,点P 0,2 在椭圆C 上,过点P 的两条直线PA ,PB 分别与椭圆C 交于另一点A ,B ,且直线PA ,PB ,AB 的斜率满足k PA +k PB =4k AB k AB ≠0 .(1)求椭圆C 的方程;(2)证明直线AB 过定点;(3)椭圆C 的焦点分别为F 1,F 2,求凸四边形F 1AF 2B 面积的取值范围.【答案】(1)x 212+y 24=1(2)证明见解析(3)24611,82 【详解】(1)由题设得b =2ca =63a 2=b 2+c 2,解得a 2=12,所以C 的方程为x 212+y 24=1;(2)由题意可设l AB :y =kx +m (m ≠2),设A x 1,y 1 ,B x 2,y 2 ,由y =kx +mx 212+y 24=1,整理得1+3k 2 x 2+6kmx +3m 2-12=0,Δ=36k 2m 2-41+3k 2 3m 2-12 =1212k 2-m 2+4 >0.由韦达定理得x 1x 2=3m 2-121+3k 2,x 1+x 2=-6mk1+3k 2,由k PA +k PB =4k AB 得y 1-2x 1+y 2-2x 2=4k ,即kx 1+m -2x 1+kx 2+m -2x 2=4k ,整理得2mk (m -2)=24-m 2 k ,因为k ≠0,得m 2-m -2=0,解得m =2或m =-1,m =2时,直线AB 过定点P (0,2),不合题意,舍去;m =-1时,满足Δ=364k 2+1 >0,所以直线AB 过定点(0,-1).(3))由(2)得直线l AB :y =kx -1,所以x =1k(y +1),由x =1k (y +1)x 212+y 24=1,整理得1k 2+3y 2+2k 2y +1k 2-12=0,Δ=361k2+4>0,由题意得S F 1AF 2B =12F 1F 2 y1-y 2=22y 1-y 2 =1221k 2+41k 2+3,因为k AF 2=122,所以k 2>18,所以0<1k2<8,令t =1k 2+4,t ∈(2,23),所以S F 1AF 2B =122t t 2-1=1221t -1t,在t ∈(2,23)上单调递减,所以S F 1AF 2B 的范围是24611,82.18(2024·江西吉安·吉安一中校考一模)如图,D 为圆O :x 2+y 2=1上一动点,过点D 分别作x 轴,y 轴的垂线,垂足分别为A ,B ,连接BA 并延长至点W ,使得WA =1,点W 的轨迹记为曲线C .(1)求曲线C 的方程;(2)若过点K -2,0 的两条直线l 1,l 2分别交曲线C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点;于P ,Q 两点.请探究:y 轴上是否存在点R ,使得∠ORP +∠ORQ =π2?若存在,求出点R 坐标;若不存在,请说明理由.【答案】(1)x 24+y 2=1(2)证明见解析,-65,0 (3)存在,R (0,±2)【详解】(1)设W x ,y ,D (x 0,y 0),则A (x 0,0),B (0,y 0),由题意知AB =1,所以WA =AB ,得(x 0-x ,-y )=(-x 0,y 0),所以x 0=x2y 0=-y,因为x 2+y 20=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1.(2)由题意可知,直线l 1,l 2不平行坐标轴,则可设l 1的方程为:x =my -2,此时直线l 2的方程为x =-1my -2.由x =my -2x 24+y 2=1,消去x 得:(m 2+4)y 2-4my =0,解得:y =4m m 2+4或y =0(舍去),所以x =m ⋅4m m 2+4-2=2m 2-8m 2+4,所以M 2m 2-8m 2+4,4m m 2+4 ,同理可得:N 2-8m 24m 2+1,-4m4m 2+1.当m ≠±1时,直线MN 的斜率存在,k MN =4mm 2+4+4m 4m 2+12m 2-8m 2+4-2-8m 24m 2+1=4m (5m 2+5)16m 4-16=5m 4m 2-4,则直线MN 的方程为y =5m 4m 2-4x +65,所以直线MN 过定点-65,0 .当m =±1时,直线MN 斜率不存在,此时直线MN 方程为:x =-65,也过定点-65,0 ,综上所述:直线MN 过定点-65,0 .(3)假设存在点R 使得∠ORP +∠ORQ =π2,设R 0,t ,因为∠ORP +∠ORQ =π2,所以∠ORQ =∠OPR ,即tan ∠ORQ =tan ∠OPR ,所以|OQ ||OR |=|OR ||OP |,所以|OR |2=|OP |⋅|OQ |,直线x =x 0与曲线C 交于不同的两点G 、H ,易知G 、H 关于x 轴对称,设G (x 0,y 0),H (x 0,-y 0)(y 0≠±1,y 0≠0),易知点S 0,1,直线SG 方程是y =y 0-1x 0x +1,令y =0得点P 横坐标x P =-x 0y 0-1,直线SH 方程是y =y 0+1-x 0x +1,令y =0得点Q 横坐标x Q =x 0y 0+1,由|OR |2=|OP |⋅|OQ |,得t 2=x 20|y 20-1|,又G (x 0,y 0)在椭圆上,所以x 204+y 20=1,所以t 2=4,解得t =±2,所以存在点R (0,±2),使得∠ORP +∠ORQ =π2成立.19(2024·湖南长沙·雅礼中学校考一模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12,且点1,-32在椭圆上.(1)求椭圆C 的标准方程;(2)如图,若一条斜率不为0的直线过点(-1,0)与椭圆交于M ,N 两点,椭圆C 的左、右顶点分别为A ,B ,直线BN 的斜率为k 1,直线AM 的斜率为k 2,求证:k 21+k 22k 1⋅k 2为定值.【答案】(1)x 24+y 23=1(2)证明见解析【详解】(1)由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点1,-32 在椭圆上,可得c a =12,所以b 2a 2=1-c 2a 2=1-12 2=34,又点1,-32 在该椭圆上,所以1a 2+94b 2=1,所以a 2=4,b 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)证明:设M x 1,y 1 ,N x 2,y 2 ,由于该直线斜率不为0,可设L MN :x =my -1,联立方程x =my -1和x 24+y 23=1,得(3m 2+4)y 2-6my -9=0,Δ>0恒成立,根据韦达定理可知,y 1+y 2=6m 3m 2+4,y 1·y 2=-93m 2+4,my 1·y 2=-32y 1+y 2 ,k 1=y 2x -2,k 2=y 1x +2,k 2k 1=y 1(x 2-2)(x 1+2)y 2=y 1(my 2-3)(my 1+1)y 2=my 1y 2-3y 1my 1y 2+y 2,∴k 2k 1=-32(y 1+y 2)-3y 1-32(y 1+y 2)+y 2=3,∴k 21+k 22k 1∙k 2=k 1k 2+k 2k 1=103.20(2024·吉林延边·统考一模)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的右焦点为F 2,上顶点为H ,O 为坐标原点,∠OHF 2=30°,点1,32在椭圆E 上.(1)求椭圆E 的方程;(2)设经过点F 2且斜率不为0的直线l 与椭圆E 相交于A ,B 两点,点P -2,0 ,Q 2,0 .若M ,N 分别为直线AP ,BQ 与y 轴的交点,记△MPQ ,△NPQ 的面积分别为S △MPQ ,S △NPQ ,求S △MPQS △NPQ的值.【答案】(1)x 24+y 23=1(2)13【详解】(1)由∠OHF 2=30°,得b =3c (c 为半焦距),∵点1,32 在椭圆E 上,则1a 2+94b2=1.又a 2=b 2+c 2,解得a =2,b =3,c =1.∴椭圆E 的方程为x 24+y 23=1.(2)由(1)知F 21,0 .设直线l :x =my +1,A x 1,y 1 ,B x 2,y 2 .由x =my +1x 24+y 23=1消去x ,得3m 2+4 y 2+6my -9=0.显然Δ=144m 2+1 >0.则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.∴my 1y 2=32y 1+y 2 .由P -2,0 ,Q 2,0 ,得直线AP 的斜率k 1=y 1x 1+2,直线BQ 的斜率k 2=y 2x 2-2.又k 1 =OM OP ,k 2 =ON OQ,OP =OQ =2,∴OMON =k 1k 2 .∴S △MPQ S △NPQ =12PQ⋅OM 12PQ⋅ON =OM ON =k 1 k 2 .∵k 1k 2=y 1x 2-2 x 1+2 y 2=y 1my 2-1 my 1+3 y 2=my 1y 2-y 1my 1y 2+3y 2=32y 1+y 2 -y 132y 1+y 2 +3y 2=12y 1+32y 232y 1+92y 2=13.∴S △MPQ S△NPQ=13.21(2024·山东济南·山东省实验中学校考一模)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的右焦点为F 2,0 ,点2,3 在椭圆C 上.(1)求椭圆C 的方程;(2)过F 的两条互相垂直的直线分别交椭圆C 于A ,B 两点和P ,Q 两点,设AB ,PQ 的中点分别为M ,N ,求△FMN 面积的最大值.【答案】(1)x 28+y 24=1(2)49【详解】(1)由题意知c =2.又a 2=b 2+c 2,所以a 2=b 2+4.把点2,3 代入椭圆方程,得2b 2+4+3b2=1,解得b 2=4.故椭圆C 的方程为x 28+y 24=1.(2)由题意知直线AB ,PQ 的斜率均存在且不为零.设直线AB 的方程为y =k x -2 k ≠0 ,且A x 1,y 1 ,B x 2,y 2 .由y =k x -2x 28+y 24=1消去y ,得1+2k 2 x 2-8k 2x +8k 2-8=0.所以x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-81+2k 2.而y 1+y 2=k x 1-2 +k x 2-2 =k x 1+x 2 -4k =-4k1+2k 2,所以M 4k 21+2k 2,-2k 1+2k 2 .同理得N 42+k 2,2k 2+k 2.若4k 21+2k 2=42+k 2,则k =±1,此时直线MN 的斜率不存在,可得直线MN :x =43.此时MN =43,所以S △FMN =12×43×23=49;若k ≠±1,则直线MN 的斜率为-2k1+2k 2-2k 2+k 24k 21+2k 2-42+k 2=3k21-k 2,可得直线MN :y +2k 1+2k 2=3k 21-k 2 x -4k 21+2k 2.化简,得y =3k 21-k 2x -43 .所以直线MN 过定点T 43,0 .所以S △FMN =S △FTM +S △FTN =12×23×-2k 1+2k 2 +12×23×2k2+k 2=13×2k 1+2k 2+13×2k 2+k 2=13×2k 3+3k 21+2k 2 2+k 2 =2k 1+k 22k 4+5k 2+2=2k +1k 2k 2+1k2 +5.令t =k +1k∈2,+∞ ,则S △FMN =f t =2t 2t 2-2 +5=2t2t 2+1.因为f t =21-2t22t2+12<0,所以f t 在t∈2,+∞上单调递减.所以f t <f2 =49,即S△FMN<49.综上,S△FMN≤4 9 .所以当k=±1时,△FMN的面积取得最大值4 9.【点睛】关键点睛:本题考查了椭圆方程,定点问题,最值问题;意在考查学生的计算能力,转化能力和综合应用能力,其中利用设而不求的思想,分类讨论的思想,根据韦达定理得到根与系数的关系,是解题的关键,此方法是考查的重点,需要熟练掌握.22(2024·山西晋城·统考一模)已知椭圆P:x26+y22=1的焦点是椭圆E的顶点,椭圆Q:x26+y29=1的焦点也是E的顶点.(1)求E的方程;(2)若F x0,y0,C,D三点均在E上,且CF⊥DF,直线CF,DF,CD的斜率均存在,证明:直线CD过定点(用x0,y0表示).【答案】(1)x24+y23=1(2)过定点x07,-y07,证明见解析.【详解】(1)因为6-2=2,所以P的焦点为(-2,0),(2,0),因为9-6=3,所以Q的焦点为(0,-3),(0,3),所以可设E的方程为x2a2+y2b2=1(a>b>0),则a=2,b=3,故E的方程为x24+y23=1.(2)证明:设C x1,y1,D x2,y2,直线CD:y=kx+m.k FC=y1-y0x1-x0,k FD=y2-y0x2-x0.因为CF⊥DF,所以k CF⋅k FD=-1,即x1-x0x2-x0+y1-y0y2-y0=0,即x1x2-x0x1+x2+x20+y1y2-y0y1+y2+y20=0①,将y=kx+m代入E的方程,得(3+4k2)x2+8kmx+4m2-12=0,则Δ=483+4k2-m2>0,x1+x2=-8km3+4k2,x1x2=4m2-123+4k2,y1+y2=k x1+x2+2m=6m3+4k2,y1y2=kx1+mkx2+m=k2x1x2+km x1+x2+m2=-12k2+3m23+4k2,将以上4个式子代入①,得x20-x0⋅-8km3+4k2+4m2-123+4k2+y20-y0⋅6m3+4k2+-12k2+3m23+4k2=0,即4kx0+m2+34x20-3+3y0-m2+4k2y203-4k2=0②,34y20代入②得4kx 0+m +y 0 kx 0+m -y 0 =3kx 0+m -y 0 kx 0-m +y 0 ,即kx 0+m -y 0 kx 0+7m +y 0 =0,因为CF ⊥DF ,所以F 不在直线CD 上,则kx 0+m -y 0≠0,则m =-y 0+kx 07,所以直线CD :y =k x -x 07 -y 07过定点x 07,-y 07 .【点睛】关键点点睛:本题考查直线与椭圆的位置关系,将韦达定理代入表达式化简为4kx 0+m 2+34x 20-3 +3y 0-m 2+4k 2y 203-4k 2 =0并利用点在椭圆上进一步化简是本题关键.23(2024·浙江·校联考一模)已知椭圆C :x 24+y 23=1的左右焦点分别为F 1,F 2,点P x 0,y 0 为椭圆C 上异于顶点的一动点,∠F 1PF 2的角平分线分别交x 轴、y 轴于点M 、N .(1)若x 0=12,求PF 1 ;(2)求证:PM PN为定值;(3)当△F 1PN 面积取到最大值时,求点P 的横坐标x 0.【答案】(1)PF 1 =94(2)证明见解析(3)x 0=3-1【详解】(1)由已知得F 1-1,0 ,x 204+y 203=1⇒y 20=3-3x 204则PF 1 =x 0+1 2+y 20=2+12x 0.所以当x 0=12时,PF 1 =94;(2)设M m ,0 ,在△F 1PF 2中,PM 是∠F 1PF 2的角平分线,所以PF 1 PF 2=MF 1 MF 2,由(1)知PF 1 =2+12x 0,同理PF 2 =x 0-1 2+y 20=2-12x 0,即2+12x 02-1x =m +11-m ,解得m =14x 0,所以M 14x 0,0 ,过P 作PH ⊥x 轴于H .所以PM PN=MH OH=34.(3)记△F 1PN 面积的面积为S ,由(1)可得,S =12F 1M ⋅y 0+13y 0 =16x 0+4 344-x 20 =312x 0+4 4-x 20,其中x 0∈-2,0 ∪0,2 ,则S =-364-x 2x 20+2x 0-2 ,当x 0∈-2,0 ∪0,3-1 时,S >0,S 单调递增;当x 0∈3-1,2 时,S <0,S 单调递减.所以当x 0=3-1时,S 最大.【点睛】关键点点睛:本题第三问的关键是利用导函数求解面积表达式的最值,注意函数的定义域.24(2024·辽宁沈阳·统考一模)已知如图,点B 1,B 2为椭圆C 的短轴的两个端点,且B 2的坐标为0,1 ,椭圆C 的离心率为22.(1)求椭圆C 的标准方程;(2)若直线l 不经过椭圆C 的中心,且分别交椭圆C 与直线y =-1于不同的三点D ,E ,P (点E 在线段DP 上),直线PO 分别交直线DB 2,EB 2于点M ,N .求证:四边形B 1MB 2N 为平行四边形.【答案】(1)x 22+y 2=1(2)证明见解析【详解】(1)由题知b =1,c a =22,a 2=b 2+c 2. 解得a 2=2,b 2=1.故椭圆C 的方程为x 22+y 2=1.(2)方法一:显然直线l 不能水平,故设直线l 方程为x =k y +t t ≠0 ,设D x 1,y 1 ,E x 2,y 2 ,N x N ,y N ,M x M ,y M ,由x =k y +t ,x 22+y 2=1得k 2+2 y 2+2k t y +t 2-2=0,令Δ>0得,k 2-t 2+2>0.所以y 1+y 2=-2k t k 2+2,y 1y 2=t 2-2k 2+2,令y =-1,得P t -k ,-1 .故直线PO 方程为y =1k-tx ,直线DB 方程为y =y 1-1x +1.由y =1k -txy =y 1-1x 1x +1 得x M =k -tx 1x 1+k -t 1-y 1=k -tx 1k +t y 1,将x M 中x 1,y 1换成x 2,y 2得x N =k-tx 2k +t y 2.∴x M +x N =k-tx 1k +t y 1+k-tx 2k +t y 2=k-tx 1k +t y 2 +x 2k +t y 1k +t y 1 k +ty 2,∵x 1k +t y 2 +x 2k +t y 1 =k x 1+x 2 +t x 1y 2+x 2y 1 =k k y 1+t +k y 2+t +t k y 1+t y 2+k y 2+t y 1 =k 2+t 2y 1+y 2 +2k ty 1y 2+1 =-2k t k 2+t 2 +2k t k 2+t 2k 2+2=0,∴O 为线段MN 中点,又O 为B 1B 1中点,∴四边形B 1MB 2N 为平行四边形.方法二:设D x 1,y 1 ,E x 2,y 2 ,M x M ,y M ,N x N ,y N .直线B 2D 方程为y =y 1-1x 1x +1,当直线l 的斜率不存在时,设l 方程为x =x 0x 0≠0 ,此时P x 0,-1 ,直线PO 方程的为y =-1x 0x ,由y =-1x 0xy =y 1-1x 0x +1得x M=-x 0y 1,同理x N =-x 0y 2,∵y 1=-y 2∴x M +x N =0,当直线l 斜率存在时,设l 方程为y =kx +t t ≠0 ,由y =kx +t ,x22+y 2=1 得1+2k 2 x 2+4ktx +2t 2-2=0.令Δ>0得,1+2k 2-t 2>0.由韦达定理得x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.将y =-1代入y =kx +t 得P -1-tk,-1 ∴直线PO 的方程为y =kt +1x 由y =y 1-1x 1x +1y =k t +1x得x M=-x 11+t y 1-1 1+t -kx 1=-x 11+t ktx 1+t 2-1同理可得x N =-x 21+tktx 2+t 2-1.∴x M +x N =-t +1 x 1ktx 1+t 2-1+x 2ktx 2+t 2-1=-t +12ktx 1x 2+t 2-1 x 1+x 2ktx 1+t 2-1 ktx 2+t 2-1∵2ktx 1x 2+t 2-1 x 1+x 2 =2kt 2t 2-2 +t 2-1 -4kt=0,∴x M +x N =0,综上所述,x M +x N =0,∴O 为线段MN 中点,又O 为B 1B 1中点,∴四边形B 1MB 2N 为平行四边形.【点睛】关键点点睛:证明四边形B 1MB 2N 为平行四边形的方法用对角线相互平分得到.25(2024·河北·校联考一模)已知椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,离心率为12,经过点F 1且倾斜角为θ0<θ<π2的直线l 与椭圆交于A 、B 两点(其中点A 在x 轴上方),△ABF 2的周长为8.(1)求椭圆C 的标准方程;(2)如图,将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AF 1F 2)与y 轴负半轴和x 轴所确定的半平面(平面BF 1F 2)互相垂直.①若θ=π3,求异面直线AF 1和BF 2所成角的余弦值;②是否存在θ0<θ<π2 ,使得折叠后△ABF 2的周长为152?若存在,求tan θ的值;若不存在,请说明理由.【答案】(1)x 24+y 23=1;(2)①1328;②存在;tan θ=33514.【详解】解:(1)由椭圆的定义知:AF 1 +AF 2 =2a ,BF 1 +BF 2 =2a ,所以△ABF 2的周长L =4a =8,所以a =2,又椭圆离心率为12,所以c a =12,所以c =1,b 2=a 2-c 2=3,由题意,椭圆的焦点在x 轴上,所以椭圆的标准方程为x 24+y 23=1;(2)①由直线l :y -0=3x +1 与x 24+y 23=1,联立求得A 0,3 ,(因为点A 在x 轴上方)以及B -85,-353 ,再以O 为坐标原点,折叠后原y 轴负半轴,原x 轴,原y 轴正半轴所在直线为x ,y ,z 轴建立空间直角坐标系,则F 10,-1,0 ,A 0,0,3 ,B 353,-85,0,F 20,1,0 ,F 1A =0,1,3 ,BF 2 =-353,135,0 .记异面直线AF 1和BF 2所成角为φ,则cos φ=cos <F 1A ,BF 2 > =F 1A ⋅BF2 F 1A BF 2=1328;②设折叠前A x 1,y 1 ,B x 2,y 2 ,折叠后A ,B 在新图形中对应点记为A ′,B ′,A ′x 1,y 1,0 ,B ′x 2,0,-y 2 ,由A ′F 2 +B ′F 2 +A ′B ′ =152,AF 2 +BF 2 +|AB |=8,故AB -A ′B ′ =12,将直线l 方程与椭圆方程联立my =x +1x 24+y 23=1,得3m 2+4 y 2-6my -9=0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,在折叠后的图形中建立如图所示的空间直角坐标系(原x 轴仍然为x 轴,原y 轴正半轴为y 轴,原y 轴负半轴为z 轴);A ′B ′ =x 1-x 22+y 12+y 22,AB =x 1-x 22+y 1-y 2 2,所以AB -A ′B ′ =x 1-x 22+y 1-y 2 2-x 1-x 22+y 21+y 22=12,(i )又-2y 1y 2x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=12,所以x 1-x 1 2+y 1-y 2 2+x 1-x 2 2+y 21+y 21=-4y 1y 2,(ii )由(i )(ii )可得x 1-x 22+y 1-y 2 2=14-2y 1y 2,因为x 1-x 2 2+y 1-y 2 2=1+m 2 y 1-y 2 2=14-2y 1y 2 2,所以1+m 26m 3m 2+42+363m 2+4=14+183m 2+42,即1441+m3m 2+42=14+183m 2+42,所以12+12m 23m 2+4=14+183m 2+4,解得m 2=2845,因为0<θ<π2,所以tan θ=1m =33514.【点睛】关键点点睛:本题的解题关键是根据折叠前、后三角形△ABF 2周长的变化,得到AB -A ′B ′ =12,进而根据两点间的距离公式及韦达定理进行求解.题型03 双曲线26(2024·辽宁沈阳·统考一模)已知双曲线C 的两个焦点分别为F 1-22,0 ,F 222,0 ,且满足条件p ,可以解得双曲线C 的方程为x 2-y 2=4,则条件p 可以是()A.实轴长为4B.双曲线C 为等轴双曲线C.离心率为22D.渐近线方程为y =±x【答案】ABD【详解】设该双曲线标准方程为x 2a 2-y 2b2=1,则c =2 2.对于A 选项,若实轴长为4,则a =2,∴b 2=c 2-a 2=4,符合题意;对于B 选项,若该双曲线为等轴双曲线,则a =b ,又c =22,a 2+b 2=c 2=8,可解得a 2=b 2=4,符合题意;对于C 选项,由双曲线的离心率大于1知,不合题意;对于D 选项,若渐近线方程为y =±x ,则a =b ,结合a 2+b 2=c 2=8,可解得a 2=b 2=4,符合题意,故选:ABD .27(2024·黑龙江齐齐哈尔·统考一模)已知A 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右顶点,O 为坐标原点,B ,C 为双曲线E 上两点,且AB +AC =2AO ,直线AB ,AC 的斜率分别为2和14,则双曲线E 的离心率为()A.2B.52C.62D.2【答案】C【详解】A a ,0 ,设B x 0,y 0 ,C -x 0,-y 0 ,则x 20a 2-y 20b2=1,则k AB =y 0x 0-a =2,k AC =y 0x 0+a =14,k AB ⋅k AC =y 20x 20-a 2=b 2x 20a2-1 x 20-a 2=b 2a 2=14×2=12,∴e =c a =c 2a 2=a 2+b 2a 2=1+b a 2=1+12=62.故选:C【点睛】求解双曲线离心率有关的问题,可以利用直接法来进行求解,也即通过已知条件求得a 和c ,从而求得双曲线的离心率.也可以利用构造齐次式的方法来进行求解,也即通过已知条件求得a 2,c 2或a 2,b 2的等量关系式,由此来求得离心率.28(2024·云南曲靖·统考一模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 ,过其右焦点F 作一条直线分别交两条渐近线于A ,B 两点,若A 为线段BF 的中点,且OA ⊥BF ,则双曲线C 的渐近线方程为()A.y =±2xB.y =±3xC.y =±5xD.y =±12x【答案】B【详解】由题设作出图形,双曲线渐近线为y =±b a x ,F (c ,0),则直线BF :y =-ab (x -c ),故y =-a b(x -c )y =-b a x,可得x =a 2c a 2-b 2,故y =-abc a 2-b 2,即B a 2c a 2-b 2,-abca 2-b2,又三角形BOF 为等腰三角形,所以|OB |2=a 2ca 2-b22+abc a 2-b22=c 2,则a 4+a 2b 2=(a 2-b 2)2,整理得b 2a 2=3⇒ba =3,即双曲线C 的渐近线方程为y =±3x .故选:B29(2024·河南郑州·郑州市宇华实验学校校考一模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右顶点分别为A 1,A 2,F 为C 的右焦点,C 的离心率为2,若P 为C 右支上一点,PF ⊥FA 2,记∠A 1PA 2=θ0<θ<π2,则tan θ=()【答案】A【详解】设C 的焦距为2c ,点P x 0,y 0 ,由C 的离心率为2可知c =2a ,b =3a ,因为PF ⊥FA 2,所以x 0=c ,将P c ,y 0 代入C 的方程得c 2a 2-y 20b 2=1,即y 0 =3b ,所以tan ∠PA 2F =3b c -a =3,tan ∠PA 1F =3bc --a=1,故tan θ=tan ∠PA 2F -∠PA 1F =3-11+3×1=12.故选:A .30(2024·新疆乌鲁木齐·统考一模)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,A 是右支上一点,满足AF 1⊥AF 2,直线AF 2交双曲线于另一点B ,且BF 1 -AF 1 =2a ,则双曲线的离心率为.【答案】102【详解】AF 2 =x ,则AF 1 =2a +x ,又BF 1 -AF 1 =2a ,所以BF 2 =AF 1 =2a +x ,则AB =AF 2 +BF 2 =2a +2x ,BF 1 =2a +AF 1 =4a +x ,又AF 1⊥AF 2,所以三角形AF 1B 为直角三角形,则AF 1 2+AB 2=BF 1 2,即2a +x 2+2a +2x 2=4a +x 2,化为x 2+ax -2a 2=0,解得x =a 或者x =-2a (舍),此时AF 1 =3a ,在直角三角形AF 1F 2中,AF 1 2+AF 2 2=F 1F 2 2,即9a 2+a 2=4c 2,所以c 2a2=e 2=52,所以e =102.故答案为:102.31(2024·浙江·校联考一模)已知A ,B 分别是双曲线C :x 24-y 2=1的左,右顶点,P 是双曲线C 上的一动点,直线PA ,PB 与x =1交于M ,N 两点,△PMN ,△PAB 的外接圆面积分别为S 1,S 2,则S1S 2的最小值为()【答案】A【详解】由已知得,A -2,0 ,B 2,0 ,由双曲线的对称性,不妨设P x ,y 在第一象限,所以k PA =y x +2,k PB =yx -2,所以k PA ⋅k PB =y x +2⋅y x -2=y 2x 2-4=x 24-1x 2-4=14,设直线PA 的方程为:y =k x +2 ,k >0,则直线PB 的方程为:y =14kx -2 ,同时令x =1,则y M =3k ,y N =-14k,所以MN =3k +14k,k >0,设△PMN ,△PAB 的外接圆的半径分别为r 1,r 2,由正弦定理得,2r 1=MNsin ∠MPN=MNsin ∠APB,2r 2=ABsin ∠APB,所以r 1r 2=MN AB =3k +14k 4≥23k ⋅14k 4=34,当且仅当3k =14k,即k =36时取等号,所以S 1S 2=πr 21πr 22=r 1r 22=316.故选:A【点睛】结论点睛:若A 、B 分别为双曲线的左、右顶点,P 为双曲线上一动点,则直线PA 与直线PB 的斜率之积为定值.32(2024·湖南长沙·雅礼中学校考一模)已知O 为坐标原点,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,离心率为62,点P x 1,y 1 是C 的右支上异于顶点的一点,过F 2作∠F 1PF 2的平分线的垂线,垂足是M ,|MO |=2,若双曲线C 上一点T 满足F 1T ⋅F 2T=5,则点T 到双曲线C 的两条渐近线距离之和为()A.22B.23C.25D.26【答案】A【详解】设半焦距为c ,延长F 2M 交PF 1于点N ,由于PM 是∠F 1PF 2的平分线,F 2M ⊥PM ,所以△NPF 2是等腰三角形,所以PN =PF 2 ,且M 是NF 2的中点.根据双曲线的定义可知PF 1 -PF 2 =2a ,即NF 1 =2a ,由于O 是F 1F 2的中点,所以MO 是△NF 1F 2的中位线,所以MO =12NF 1 =a =2,又双曲线的离心率为62,所以c =3,b =1,所以双曲线C 的方程为x 22-y 2=1.所以F 1(-3,0),F 2(3,0),双曲线C 的渐近线方程为x ±2y =0,设T (u ,v ),T 到两渐近线的距离之和为S ,则S =|u +2v |3+|u -2v |3,由F 1T ⋅F 2T=(u -3)(u +3)+v 2=u 2+v 2-3=5,即u 2+v 2=8,又T 在x 22-y 2=1上,则u 22-v 2=1,即u 2-2v 2=2,解得u 2=6,v 2=2,由|u |>2|v |,故S =2u3=22,即距离之和为2 2.故选:A .【点睛】由平面几何知识,PN =PF 2 ,依据双曲线的定义,可将|MO |=2转化为用a 表示,进而的双曲线的标准方程.33(2024·安徽合肥·合肥一六八中学校考一模)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB =3F 2A,BF 2平分∠F 1BC ,则双曲线Γ的离心率为()A.7B.5C.3D.2【答案】A【详解】因为CB =3F 2A ,所以△F 1AF 2∽△F 1BC ,设F 1F 2 =2c ,则F 2C =4c ,设AF 1 =t ,则BF 1 =3t ,AB =2t .因为BF 2平分∠F 1BC ,由角平分线定理可知,BF 1 BC=F 1F 2 F 2C=2c 4c =12,所以BC =2BF 1 =6t ,所以AF 2 =13BC =2t ,由双曲线定义知AF 2 -AF 1 =2a ,即2t -t =2a ,t =2a ,①又由BF 1 -BF 2 =2a 得BF 2 =3t -2a =2t ,所以BF 2 =AB =AF 2 =2t ,即△ABF 2是等边三角形,所以∠F 2BC =∠ABF 2=60°.在△F 1BF 2中,由余弦定理知cos ∠F 1BF 2=BF 12+BF 2 2-F 1F 2 22⋅BF 1 ⋅BF 2,即12=4t 2+9t 2-4c 22⋅2t ⋅3t,化简得7t 2=4c 2,把①代入上式得e =ca =7,所以离心率为7.故选:A .34(2024·山西晋城·统考一模)双曲线C :x 2-y 2=m 2(m >0)的左、右焦点分别为F 1,F 2,P (t ,s )(s ≠0)为C 的右支上一点,分别以线段PF 1,PF 2为直径作圆O 1,圆O 2,线段OO 2与圆O 2相交于点M ,其中O 为坐标原点,则()A.O 1O 2 =3mB.OM =mC.点(t ,0)为圆O 1和圆O 2的另一个交点D.圆O 1与圆O 2有一条公切线的倾斜角为π4【答案】BCD【详解】C 的方程可化为x 2m 2-y 2m2=1,可得a =m ,b =m ,c =2m .由O 1为PF 1的中点,O 2为PF 2的中点,得O 1O 2 =12F 1F 2 =2m ,A 错误.由O 2为PF 2的中点,O 为F 1F 2的中点,得OO 2 =12PF 1 ,则OM =OO 2 -MO 2 =12PF 1 -PO 2 =12PF 1 -12PF 2 =a =m ,B 正确.设点Q 为圆O 1和圆O 2的另一个交点,连接PQ ,由O 1O 2⎳x 轴,可得O 1O 2⊥PQ ,O 1O 2为△PF 1F 2的中位线,则直线O 1O 2平分线段PQ ,则点Q 必在x 轴上,可得点Q 的坐标为(t ,0),C 正确.如图,若BD 为圆O 1与圆O 2的一条公切线,B ,D 为切点,连接O 1B ,O 2D ,过点O 2作O 2A ⊥O 1B ,垂足为A .由O 1O 2 =2m ,O 1A =O 1B -O 2D =12PF 1 -12PF 2 =a =m ,得sin ∠AO 2O 1=AO 1 O 1O 2=m 2m=22,。

直线和圆、圆锥曲线综合测试卷(新高考专用)(解析版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷(新高考专用)(解析版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷专练(考试时间:120分钟;满分:150分)注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

则由椭圆的中心对称性可知可知AF1BF2为平行四边形,则可得△ABF2的周长为|AF当AB位于短轴的端点时,当围成的等腰三角形底边在x轴上时,当围成的等腰三角形底边在直线l因为tanα=2tanα21―tan2α2=2,且tanα2>所以k=tanθ=tanα2=5―12,或故选:B.5.(5分)(2024·西藏拉萨的最小值为()A.1453【解题思路】先设点的坐标,结合轨迹方程求参,再根据距离和最小值为两点间距离求解即可6.(5分)(2024·湖南邵阳点B在C上且位于第一象限,B.8 A.453【解题思路】由点A―1,8由点A―1,8在抛物线y23所以抛物线C的方程为y2设B(x0,y0),则x0>0,y0>由题意知F p2,0,又OP 显然直线AB的斜率不为由y2=2pxx=ty+p2,得y2―2pty显然直线BD的斜率不为由y2=2pxλp,得y2故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

如图,因为K OA=∠PDA=∠ODB,所以×|PA|⋅S△PAB=12故选:ABD.11.(6分)(2024·福建龙岩|AB|=8.过焦点F的直线C的准线与坐标轴的交点,则(A.若MF=3FN,则直线C.∠MON为钝角设M(x1,y1),N(x2,y 得y2―8my―16=所以y1y2=―16,x1∴x1x2+y1y2=4⟨⟩三、填空题:本题共3小题,每小题5分,共15分。

直线与圆锥曲线 高三数学解析几何专项训练(含例题答案) 高三数学解析几何专

直线与圆锥曲线 高三数学解析几何专项训练(含例题答案) 高三数学解析几何专

心尺引州丑巴孔市中潭学校 直线与圆锥曲线【例题精选】: 例 1 直线y ax b a x y =+≠+=()0122与圆〔1〕 问a,b 满足什么条件,直线与圆有两个公共点?〔2〕 设这两个公共点为M 、N ,且OM 、ON 〔O 为原点〕与x 轴正方向所成角为αβα、,求证:cos(+β)=-+a a 2211分析:第〔1〕问是求直线与圆什么时候有两个公共点,因直线与圆有两个公共点的充要条件是圆心到直线的距离小于圆的半径,或者直线方程与圆的方程联立的方程组有两个实数解,这里我们用后面的条件求解。

第〔2〕问〔如图〕中角αβ、可以看成是OM 、ON 的倾斜角,直接找αβ+较麻烦,但是由圆的性质,取MN 中点P ,连结OP ,可以知道Lxop =+αβ2,只需求出OP 的斜率,也就可以得到tgαβ+2的值,再根据三角公式,就可以计算出cos()αβ+与a 的关系了。

解 : (1) 由方程组y ax b x y y =++=221消去得,(2)、如图,取MN 中点P , 连结OP ,那么<2βα+=xop例 2椭圆中心为原点O, 焦在坐标轴上,y=x+1与该椭圆相交于Q p 、,434=PQ ,求椭圆方程。

分析: 这个问题中椭圆的焦点在x 轴上还是在y 轴上没有给定,因此在设此椭圆方程时,可以设为Ax By 221+=, 又这个问题中涉及弦PQ 的长,因为P 、Q 在直线 y x =+1上,因此坐标满足方程y x =+1, 所以假设P 、Q 坐标分别为〔x, y), (x 2, y 2) 的话,可推得PQ x x =+-1112,〔我们称它为弦长公式,一般地为1212+-k x x ).由OP ⊥OQ 我们一方面可以知道OP 与OQ 的斜率乘积为-1(斜率存在的情况下),一方面也可以知道PQ中点到原点O 的距离等于PQ 的一半,因此此题可以得到以下两种一般解法.解法一: 设椭圆方程为Ax By A B 22100+=>>(,)设P (),(,),x y Q x y 1122由Ax By y x y A B x Bx B 22211210+==+⎧⎨⎩+++-=消去得,()解法二: 同解法一, 得()A B x Bx B +++-=2210,以下同解法一.例 3 求过点A(3,-1)被A 平分的双曲线x y 2244-=的弦所在直线的方程.解法一: 设过A 点的直线方程为y k x +=-13()代入x y 2244-=消去y , 得解法二 : 设直线与双曲线的两交点坐标分别为p x y Q x y (,),(,)1122那么⎪⎩⎪⎨⎧=-=-444422222121y x y x 两式相减, 得 ()()()()x x x x y y y y 1212121240-+--+=说明: 此题解法二过程简单, 在解题中是一种常用的方法,但是此法实际上是在成认了直线与双曲线存在两个交点的情况下去求解的,题中点A 坐标假设改成'''A A (,)或(,),213212用此法可以得出相应的斜率'=''=-=--=K K x y x y 1234206850或,从而得出直线或它们与双曲线都是设有交点的,因此也是不合题意的。

高二文科数学圆锥曲线基础训练(含答案)

高二文科数学圆锥曲线基础训练(含答案)

高二文科数学圆锥曲线基础训练1.k 为何值时,直线y=kx+2和椭圆632x 22=+y 有两个交点 ( )A .—36<k<36B .k>36或k< —36C .—36≤k ≤36D .k ≥36或k ≤ —36 【答案】B【解析】 试题分析:由⎩⎨⎧=++=632222y x kx y 可得 :(2+3k 2)x 2+12kx+6=0,由△=144k 2-24(2+3k 2)>0得k>36或k< —36,此时直线和椭圆有两个公共点。

2.抛物线4x y 2=上一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A. 0B. 1516C. 78D. 1716【答案】A 试题分析:设M ()00,y x ,因为M 到焦点的距离为1,所以110=+x ,所以00=x ,代入抛物线方程4xy 2=得00=y 。

3.过点(0,1)与双曲线221x y -=仅有一个公共点的直线共有 ( )A.1条B.2条C.3条D.4条 【答案】D4.椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为( ) A.21B.23C.22D.33【答案】C5.若椭圆)0(122>>=+n m ny m x 和双曲线)0(122>>=-b a b y a x 有相同的焦点1F 、2F ,P 是两曲线的一个公共点,则||||21PF PF ⋅的值是( )A .m-aB .)(21a m - C .22a m - D .a m -【答案】A【解析】设P是第一象限的交点,由定义可知1212PF PF PF PF ⎧+=⎪⎨-=⎪⎩ 12PF PF m a ∴=-6.已知点)0,4(1-F 和)0,4(2F ,曲线上的动点P 到1F 、2F 的距离之差为6,则曲线方程为()A.17922=-y x B .)0(17922>=-y x y C .17922=-y x 或17922=-x y D .)0(17922>=-x y x 【答案】D7.已知k <4,则曲线14922=+y x 和14922=-+-ky k x 有 ( ) A. 相同的准线 B. 相同的焦点C. 相同的离心率D. 相同的长轴【答案】B8.抛物线)0(2<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛0,21a B.⎪⎭⎫ ⎝⎛a 21,0 C.⎪⎭⎫⎝⎛a 41,0 D.⎪⎭⎫ ⎝⎛-a 41,0 【答案】C9.抛物线212y x =的准线与双曲线22193x y -=的两条渐近线所围成的三角形面积等于( )A. B. C.2 【答案】A10.已知椭圆)0(12222>>=+b a by a x 的左、右两焦点分别为21,F F ,点A 在椭圆上,0211=⋅F F ,4521=∠AF F ,则椭圆的离心率e 等于 ( )A.33B.12-C.13-D. 215- 【答案】B 由0211=⋅F F AF 得112AF F F ⊥,又4521=∠AF F ,112AF F F ∴=即22b c a=,整理的2220c ac a +-=2210,1e e e ∴+-==11.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的标准方程为___________【答案】1728122=+y x 【解析】试题分析:椭圆长轴的长为18,即2a=18,得a=9,因为两个焦点恰好将长轴三等分,∴2c=31•2a=6,得c=3,因此,b 2=a 2-c 2=81-9=72,再结合椭圆焦点在y 轴上,可得此椭圆方程为1817222=+y x . 12.过椭52x +42y =1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,求弦AB 的长_______【答案】35513.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 .14.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是 .【答案】2k <<3k <<-【解析】2222150x y kx y k ++++-=表示圆需要满足22224(15)0k k +-->,解得33k -<<,又因为过圆外一点可以作两条直线与圆相切,所以点(1,2)在圆外,所以2221222150k k +++⨯+->,所以3k <-或2k >,综上所述,实数k 的取值范围是2k <<3k <<-15.已知抛物线2:2(0)C x py p =>上一点(,4)A m 到其焦点的距离为5,则m = .【答案】4±. 16.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为22。

文科圆锥曲线测试题(带详细答案)

文科圆锥曲线测试题(带详细答案)

高二数学测试题 2013.3.1一.选择题1. 设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( B)A .28y x =- B .28y x = C .24y x =- D .24y x =2.设双曲线2221(0)9x ya a -=>的渐近线方程为320x y ±=,则a 的值为 (C)A .4B .3C .2D .13.双曲线2228x y -=的实轴长是 (C)(A )2 (B)(C ) 4 (D )424.设双曲线以椭圆92522y x +=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( C )A .±2B .±34 C .±21 D .±435.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F l PF 2为等腰直角三角形,则椭圆的离心率是 ( D ) 12.22.212.22.---D C B A6. 已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,C 的离心率为( B)(A(B(C ) 2 (D ) 3 7. 已知F 1,F 2为双曲线2222by ax -=1(a>0,b>0)的两个焦点,过F 2作垂直x 轴的直线,它与双曲线的一个交点为P ,且∠12PF F =30°,则双 曲线的渐近线方程为 (D ) A.2yx =±B.y = C.y x = D.y = 8.从集合{1,2,3…,11}中任选两个元素作为椭圆方程2222n y m x +=1中的m 和n ,则能组成落在矩形区域B={(x ,y)‖x|<11,且|y|<9}内的椭圆个数为 ( B ) A .43 B .72 C .86 D .90 9. 已知F 是抛物线2yx =的焦点,A ,B 是该抛物线上的两点,+3AF BF =,则线段AB 的中点到y 轴的距离为( C ) A.34 B . 1 C.54 (D )7410.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于(A ) A .1322或 B .23或2 C .12或2 D .2332或二.填空题11表示双曲线,则k 的取值范围是___(,4)(1,)-∞-+∞_________. 12. 在直角坐标系xOy 中,有一定点A (2,1)。

专题三 直线、圆、圆锥曲线测试题(文科)

专题三 直线、圆、圆锥曲线测试题(文科)

专题三 直线、圆、圆锥曲线测试题(文科)一、选择题:本大题共12小题,每小题5分,共60分.1.已知圆O 的方程是x 2+y 2-8x -2y +10=0,过点M (3,0)的最短弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=02.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=03.曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722 B.922 C.1122 D.910104.若曲线x 2+y 2+2x -6y +1=0上相异两点P 、Q 关于直线kx +2y -4=0对称,则k 的值为( )A .1B .-1 C.12 D .25.直线ax -y +2a =0(a ≥0)与圆x 2+y 2=9的位置关系是( )A .相离B .相交C .相切D .不确定6.设A 为圆(x +1)2+y 2=4上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .(x +1)2+y 2=25B .(x +1)2+y 2=5C .x 2+(y +1)2=25D .(x -1)2+y 2=57.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .-14B .-4C .4 D.148.点P 是双曲线x 24-y 2=1的右支上一点,M 、N 分别是(x +5)2+y 2=1和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值是() A.2 B.4 C.6 D.89.已知F1、F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的一个交点,并且PF1⊥PF2,e1和e2分别是上述椭圆和双曲线的离心率,则()A.1e21+1e22=4 B.e21+e22=4 C.1e21+1e22=2 D.e21+e22=210.已知双曲线x2a2-y2b2=1的两条渐近线互相垂直,则双曲线的离心率为()A. 3B.2C.52 D.2211.若双曲线x2a2-y2b2=1(a>0,b>0)的焦点到渐近线的距离等于实轴长,则双曲线的离心率为()A. 2B.3C. 5 D.212.已知点F1、F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,过点F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是()A.(1,3) B.(3,22) C.(1+2,+∞) D.(1,1+2) 二、填空题:本大题共4小题,每小题5分,共20分.13.)设F1、F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为________.14.已知双曲线的中心在坐标原点,焦点在x轴上,且一条渐近线为直线3x+y=0,则该双曲线的离心率等于________.15.双曲线x 23-y 26=1的右焦点到渐近线的距离是________.16.设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.三、解答题:本大题共6小题,共70分.17.(本小题满分10分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.18.(本小题满分12分)如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.19.(本小题满分12分)设λ>0,点A 的坐标为(1,1),点B 在抛物线y=x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.20.(本小题满分12分)在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1、F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形.(1)求椭圆的离心率e .(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.21.(本小题满分12分)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两不同点,且△OPQ 的面积S △OPQ =62,其中O 为坐标原点.(1)证明x 21+x 22和y 21+y 22均为定值;(2)设线段PQ 的中点为M ,求|OM |·|PQ |的最大值;(3)椭圆C 上是否存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG=62?若存在,判断△DEG 的形状;若不存在,请说明理由.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),已知点(1,e )和⎝⎛⎭⎪⎫e ,32都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线AF 1与直线BF 2平行,AF 2与BF 1交于点P .(i)若AF 1-BF 2=62,求直线AF 1的斜率;(ii)求证:PF 1+PF 2是定值.。

2020高考数学大二轮专题突破文科通用直线与圆圆锥曲线精选试题及答案解析(10页)

2020高考数学大二轮专题突破文科通用直线与圆圆锥曲线精选试题及答案解析(10页)

2020高考数学大二轮专题突破文科通用直线与圆圆锥曲线精选试题1.(节选)已知圆M:x2+y2=r2(r>0)与直线l1:x-y+4=0相切,设点A为圆上一动点,AB⊥x轴于B,且动点N满足=2,设动点N的轨迹为曲线C.(1)求曲线C的方程;(2)略.2.(2019甘肃武威第十八中学高三上学期期末考试)已知圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.(1)求证:圆C1和圆C2相交;(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.3.已知圆O:x2+y2=4,点A(,0),以线段AB为直径的圆内切于圆O,记点B的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB的方程.4.(2019全国卷1,理19)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.5.(2019天津河北区高三二模)已知椭圆C:=1(a>b>0)过点P(2,1),且短轴长为2.(1)求椭圆C的方程;(2)过点P作x轴的垂线l,设点A为第四象限内一点且在椭圆C上(点A不在直线l上),点A关于l的对称点为A',直线A'P与椭圆C交于另一点B.设O为坐标原点,判断直线AB与直线OP的位置关系,并说明理由.6.(2019天津第一中学高三下学期第五次月考)已知椭圆C1:=1(a>b>0)的左、右焦点为F1,F2,F2的坐标满足圆Q方程(x-)2+(y-1)2=1,且圆心Q满足|QF1|+|QF2|=2a.(1)求椭圆C1的方程;(2)过点P(0,1)的直线l1:y=kx+1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆Q于C,D两点,M为线段CD中点,若△MAB的面积为,求k的值.参考答案专题突破练24直线与圆及圆锥曲线1.解(1)设动点N(x,y),A(x0,y0),因为AB⊥x轴于B,所以B(x0,0).已知圆M的方程为x2+y2=r2,由题意得r==2,所以圆M的方程为x2+y2=4.由题意,=2,所以(0,-y0)=2(x0-x,-y),即将A(x,2y)代入圆M:x2+y2=4,得动点N的轨迹方程为+y2=1.(2)略.2.(1)证明圆C1的圆心C1(1,3),半径r1=,圆C2的圆心C2(5,6),半径r2=4, 两圆圆心距d=|C1C2|=5,r1+r2=+4,|r1-r2|=4-,所以|r1-r2|<d<r1+r2.所以圆C1和C2相交.(2)解将圆C1和圆C2的方程相减,得4x+3y-23=0,所以两圆的公共弦所在直线的方程为4x+3y-23=0.因为圆心C2(5,6)到直线4x+3y-23=0的距离为d==3,故两圆的公共弦长为2-=2.3.解(1)设AB的中点为M,切点为N,连接OM,MN,则|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+|AB|,即|AB|+2|OM|=4.取A关于y轴的对称点A',连接A'B,则|A'B|=2|OM|,故|AB|+2|OM|=|AB|+|A'B|=4.所以点B的轨迹是以A',A为焦点,长轴长为4的椭圆.其中a=2,c=,b=1,则曲线Γ的方程为+y2=1.(2)因为B为CD的中点,所以OB⊥CD,则.设B(x0,y0),则x0(x0-)+=0.又=1,解得x0=,y0=±.则k OB=±,k AB=∓,则直线AB的方程为y=±(x-),即x-y-=0或x+y-=0.4.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,则x1+x2=--.从而--,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2.由可得y2-2y+2t=0.所以y1+y2=2.从而-3y2+y2=2,故y2=-1,y1=3.代入C的方程得x1=3,x2=.故|AB|=.5.解(1)由题意得解得∴椭圆C的方程为=1.(2)直线AB与直线OP平行,证明如下:由题意知,直线PA的斜率存在且不为零.PA,PA'关于l:x=2对称,则直线PA与PA'斜率互为相反数.设直线PA:y-1=k(x-2),PB:y-1=-k(x-2).设A(x1,y1),B(x2,y2).由消去y得(4k2+1)x2-(16k2-8k)x+16k2-16k-4=0, -∴2x1=--.∴x1=--.同理,x2=-.∴x1-x2=-.∵y1=k(x1-2)+1,y2=-k(x2-2)+1,∴y1-y2=k(x1+x2)-4k=-.∵A在第四象限,∴k≠0 且A不在直线OP上,∴k AB=-.-又k OP=,∴k AB=k OP.故直线AB与直线OP平行.6.解(1)因为F2的坐标满足圆Q方程(x-)2+(y-1)2=1,故当y=0时,x=,即F2(,0),故c=.因为圆心Q满足|QF1|+|QF2|=2a,所以点Q(在椭圆上,故有=1.联立方程组解得所以椭圆方程为=1.(2)因为直线l2交圆Q于C,D两点,M为线段CD的中点,所以QM与直线l2垂直.又因为直线l1与直线l2垂直,所以QM与直线l1平行.所以点M到直线AB的距离即为点Q到直线AB的距离.即点M到直线AB的距离为d=.设点A(x1,y1),B(x2,y2).联立方程组解得(1+2k2)x2+4kx-2=0,Δ=b2-4ac=16k2+8(2k2+1)=32k2+8>0,由韦达定理可得--则|x1-x2|=----.所以AB=|x1-x2|=.所以△MAB的面积为.所以.即·|k|=,两边同时平方,化简得,28k4-47k2-18=0,解得k2=2或k2=-(舍).故k=±.此时l2:y=±x+1.圆心Q到l2的距离h=-<1成立.综上所述,k=±.。

文科圆锥曲线测试题(带详细答案)

文科圆锥曲线测试题(带详细答案)

高二数学测试题 2013.3.1一.选择题1. 设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( B)A .28y x =- B .28y x = C .24y x =-D .24y x =2.设双曲线2221(0)9x ya a -=>的渐近线方程为320x y ±=,则a 的值为 (C)A .4B .3C .2D .13.双曲线2228x y -=的实轴长是 (C)(A ) 2 (B )22(C ) 4 (D )424.设双曲线以椭圆92522y x +=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( C )A .±2B .±34 C .±21 D .±435.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F l PF 2为等腰直角三角形,则椭圆的离心率是 ( D ) 12.22.212.22.---D C B A6. 已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,C 的离心率为( B)(A )2 (B )3 (C ) 2 (D ) 3 7. 已知F 1,F 2为双曲线2222by ax -=1(a>0,b>0)的两个焦点,过F 2作垂直x 轴的直线,它与双曲线的一个交点为P ,且∠12PF F =30°,则双 曲线的渐近线方程为 (D ) A .22yx =±B .3y x =±C .33y x =± D .2y x =± 8.从集合{1,2,3…,11}中任选两个元素作为椭圆方程2222n y m x +=1中的m 和n ,则能组成落在矩形区域B={(x ,y)‖x|<11,且|y|<9}内的椭圆个数为 ( B ) A .43 B .72 C .86 D .90 9. 已知F 是抛物线2yx =的焦点,A ,B 是该抛物线上的两点,+3AF BF =,则线段AB 的中点到y 轴的距离为( C ) A.34 B . 1 C.54 (D )7410.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于(A ) A .1322或 B .23或2 C .12或2 D .2332或二.填空题11.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是___(,4)(1,)-∞-+∞_________. 12. 在直角坐标系xOy 中,有一定点A (2,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三 直线、圆、圆锥曲线测试题(文科)解析一、选择题:1.已知圆O 的方程是x 2+y 2-8x -2y +10=0,过点M (3,0)的最短弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=0 解析 x 2+y 2-8x -2y +10=0,即(x -4)2+(y -1)2=7,圆心O (4,1),设过点M (3,0)的直线为l ,则k OM =1,故k l =-1,∴y =-1×(x -3),即x +y -3=0.2.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=0解析 因为直线x -2y +3=0的斜率是12,故所求直线的方程为y -3=12(x +1),即x -2y +7=0. A3.曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722 B.922 C.1122 D.91010解析 曲线y =2x -x 3在横坐标为-1的点处的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0,由点到直线的距离公式得点P (3,2)到直线l 的距离为|3+2+2|12+12=722.A4.若曲线x2+y2+2x-6y+1=0上相异两点P、Q关于直线kx+2y-4=0对称,则k的值为()A.1 B.-1 C.12D.2解析曲线方程可化为(x+1)2+(y-3)2=9,由题设知直线过圆心,即k×(-1)+2×3-4=0,∴k=2.故选D.5.直线ax-y+2a=0(a≥0)与圆x2+y2=9的位置关系是() A.相离B.相交C.相切D.不确定解析圆x2+y2=9的圆心为(0,0),半径为3.由点到直线的距离公式d=|Ax0+By0+C|A2+B2得该圆圆心(0,0)到直线ax-y+2a=0的距离d=2aa2+(-1)2=2aa2+12,由基本不等式可以知道2a≤a2+12,从而d=2aa2+12≤1<r=3,故直线ax-y+2a=0与圆x2+y2=9的位置关系是相交.B6.设A为圆(x+1)2+y2=4上的动点,P A是圆的切线,且|P A|=1,则P点的轨迹方程为()A.(x+1)2+y2=25 B.(x+1)2+y2=5C.x2+(y+1)2=25 D.(x-1)2+y2=5解析设圆心为O,则O(-1,0),在Rt△AOP中,|OP|=|OA|2+|AP|2=4+1= 5. B7.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m等于()A .-14B .-4C .4 D.14解析双曲线标准方程为:y 2-x 2-1m=1,由题意得-1m =4,∴m =-14. 8.点P 是双曲线x 24-y 2=1的右支上一点,M 、N 分别是(x +5)2+y 2=1和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值是( )A .2B .4C .6D .8解析如图,当点P 、M 、N 在如图所示的位置时,|PM |-|PN |可取得最大值,注意到两圆圆心分别为双曲线两焦点,故|PM |-|PN |=(|PF 1|+|F 1M |)-(|PF 2|-|F 2N |)=|PF 1|-|PF 2|+|F 1M |+|F 2N |=2a +2R =6.C9.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是上述椭圆和双曲线的离心率,则( )A.1e 21+1e 22=4 B .e 21+e 22=4C.1e 21+1e 22=2 D .e 21+e 22=2解析 设椭圆的长半轴长为a ,双曲线的实半轴长为m ,则⎩⎪⎨⎪⎧ |PF 1|+|PF 2|=2a ①||PF 1|-|PF 2||=2m ②).①2+②2得2(|PF 1|2+|PF 2|2)=4a 2+4m 2,又|PF 1|2+|PF 2|2=4c 2,代入上式得4c 2=2a 2+2m 2,两边同除以2c 2,得2=1e 21+1e 22,故选C. 10.已知双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则双曲线的离心率为( ) A. 3 B.2 C.52 D.22解析 两条渐近线y =±b a x 互相垂直,则-b 2a2=-1,则b 2=a 2,双曲线的离心率为e =c a =2a 2a =2,选B.11.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )A. 2B.3C. 5 D .2解析 焦点到渐近线的距离等于实轴长,可得b =2a ,e 2=c 2a 2=1+b 2a 2=5,所以e = 5.C12.已知点F 1、F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)解析 依题意得,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e <2,e 2-2e -1<0,(e -1)2<2,所以1<e <1+2,选D.二、填空题:13.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________. 解析 由椭圆定义|PM |+|PF 1|=|PM |+2×5-|PF 2|,而|PM |-|PF 2|≤|MF 2|=5,所以|PM |+|PF 1|≤2×5+5=15.14.已知双曲线的中心在坐标原点,焦点在x 轴上,且一条渐近线为直线3x +y =0,则该双曲线的离心率等于________.解析 设双曲线方程为x 2a 2-y 2b 2=1,则b a =3,b 2a 2=3,c 2-a 2a 2=3,∴e =c a =2.15.双曲线x 23-y 26=1的右焦点到渐近线的距离是________.解析 双曲线右焦点为(3,0),渐近线方程为:y =±2x ,则由点到直线的距离公式可得距离为 6.16.设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________. 解析 ∵x 2=4y ,∴p =2.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=8.∵|AF →|=y 1+p 2,|BF →|=y 2+p 2,∴|AF →|+|BF →|=y 1+y 2+p =8+2=10.三、解答题:17.(本小题满分12分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率;(2)若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.解 (1)设点P 的坐标为(x 0,y 0),由题意,有x 20a 2+y 20b 2=1.①由A (-a,0),B (a,0),得k AP =y 0x 0+a ,k BP =y 0x 0-a.由k AP ·k BP =-12,可得x 20=a 2-2y 20,代入①并整理得(a 2-2b 2)y 20=0.由于y 0≠0,故a 2=2b 2.于是e 2=a 2-b 2a 2=12,所以椭圆的离心率e =22. (2)(方法一)依题意,直线OP 的方程为y=kx ,设点P 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧ y 0=kx 0,x 20a 2+y 20b 2=1.消去y 0并整理得x 20=a 2b 2ka 2+b 2.②由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a1+k 2,代入②,整理得(1+k 2)2=4k 2⎝ ⎛⎭⎪⎫a b 2+4.由a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3. (方法二)依题意,直线OP 的方程为y =kx ,可设点P的坐标为(x 0,kx 0).由点P 在椭圆上,有x 20a 2+k 2x 20b 2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.③由|AP |=|OA |,A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a1+k 2.代入③, 得(1+k 2)4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3. 18.(本小题满分12分)如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.解 (1)设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A的方程为y =y 1x 1+a (x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ),②由①②相乘得 y 2=-y 21x 21-a (x 2-a 2).③ 由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝⎛⎭⎪⎫1-x 22a 2.由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2.从而y 21+y 22=b 2,因此t 21+t 22=a 2+b 2为定值.19.(本小题满分12分)设λ>0,点A 的坐标为(1,1),点B 在抛物线y=x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.解 由QM →=λMP →知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2),则x 2-y 0=λ(y -x 2),即y 0=(1+λ)x 2-λy .①再设B (x 1,y 1),由BQ →=λQA →,即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎨⎧ x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.②将①式代入②式,消去y 0,得⎩⎨⎧ x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③又点B 在抛物线y =x 2上,所以y 1=x 21,再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2.(1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2.2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0. 因λ>0,两边同除以λ(1+λ),得2x -y -1=0.故所求点P 的轨迹方程为y =2x -1.20.(本小题满分12分)在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1、F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e .(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解 (1)设F 1(-c,0),F 2(c,0)(c >0),由题意,可得|PF 2|=|F 1F 2|, 即(a -c )2+b 2=2c ,整理得2⎝ ⎛⎭⎪⎫c a 2+c a -1=0,得c a =-1(舍)或c a =12,所以e =12.(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2.直线PF 2方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0,解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧ x 1=0,y 1=-3c ,⎩⎨⎧ x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85c ,335c , B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝ ⎛⎭⎪⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y ,于是AM →=⎝ ⎛⎭⎪⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2,即⎝ ⎛⎭⎪⎫8315y -35x ·x +⎝ ⎛⎭⎪⎫85y -335x ·3x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0).21.(本小题满分12分)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两不同点,且△OPQ 的面积S △OPQ =62,其中O 为坐标原点.(1)证明x 21+x 22和y 21+y 22均为定值;(2)设线段PQ 的中点为M ,求|OM |·|PQ |的最大值;(3)椭圆C 上是否存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG=62?若存在,判断△DEG 的形状;若不存在,请说明理由. 解 (1)证明:1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称.所以x 2=x 1,y 2=-y 1,因为P (x 1,y 1)在椭圆上,因此x 213+y 212=1.① 又因为S △OPQ =62.所以|x 1|·|y 1|=62.②由①②得|x 1|=62,|y 1|=1,此时x 21+x 22=3,y 21+y 22=2.2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m .由题意知m ≠0,将其代入x 23+y 22=1得(2+3k 2)x 2+6kmx +3(m 2-2)=0.其中Δ=36k 2m 2-12(2+3k 2)(m 2-2)>0. 即3k 2+2>m 2.(*)又x 1+x 2=-6km2+3k 2,x 1x 2=3(m 2-2)2+3k 2.所以|PQ |=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·263k 2+2-m 22+3k2.因为点O 到直线l 的距离为d =|m |1+k2.所以S△OPQ=12|PQ |·d =121+k 2·263k 2+2-m 22+3k 2·|m |1+k 2=6|m |3k 2+2-m 22+3k 2又S △OPQ=62. 整理得3k 2+2=2m 2,且符合(*)式.此时,x 21+x 22=(x 1+x 2)2-2x 1x 2=⎝ ⎛⎭⎪⎪⎫-6km 2+3k 22-2×3(m 2-2)2+3k 2=3.y 21+y 22=23(3-x 21)+23(3-x 22)=4-23(x 21+x 22)=2.综上所述,x 21+x 22=3;y 21+y 22=2,结论成立.(2)解法一: 1)当直线l 的斜率不存在时.由(1)知|OM |=|x 1|=62.|PQ |=2|y 1|=2.因此|OM |·|PQ |=62×2= 6. 2)当直线l 的斜率存在时,由(1)知:x 1+x 22=-3k 2m .y 1+y 22=k ⎝ ⎛⎭⎪⎪⎫x 1+x 22+m =-3k 22m +m =-3k 2+2m 22m =1m . |OM |2=⎝ ⎛⎭⎪⎪⎫x 1+x 222+⎝ ⎛⎭⎪⎪⎫y 1+y 222=9k 24m 2+1m 2=6m 2-24m 2=12⎝ ⎛⎭⎪⎫3-1m 2. |PQ |2=(1+k 2)24(3k 2+2-m 2)(2+3k 2)2=2(2m 2+1)m 2=2⎝ ⎛⎭⎪⎫2+1m 2. 所以|OM |2·|PQ |2=12×⎝ ⎛⎭⎪⎫3-1m 2×2×⎝ ⎛⎭⎪⎫2+1m 2=⎝ ⎛⎭⎪⎫3-1m 2⎝ ⎛⎭⎪⎫2+1m 2≤⎝ ⎛⎭⎪⎫3-1m 2+2+1m 222=254.所以|OM |·|PQ |≤52,当且仅当3-1m 2=2+1m 2,即m =±2时,等号成立.综合1)2)得|OM |·|PQ |的最大值为52.解法二:因为4|OM |2+|PQ |2=(x 1+x 2)2+(y 1+y 2)2+(x 2-x 1)2+(y 2-y 1)2=2[(x 21+x 22)-(y 21+y 22)]=10.所以2|OM |·|PQ |≤4|OM |2+|PQ |22=102=5.即|OM |·|PQ |≤52,当且仅当2|OM |=|PQ |=5时等号成立.因此|OM |·|PQ |的最大值为52.(3)椭圆C 上不存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62.证明:假设存在D (u ,v ),E (x 1,y 1),O (x 2,y 2)满足S △ODE =S △ODG =S △OEG =62,由(1)得u 2+x 21=3,u 2+x 22=3,x 21+x 22=3,v2+y 21=2,v 2+y 22=2,y 21+y 22=2,解得:u 2=x 21=x 22=32,v 2=y 21=y 22=1.因此,u ,x 1,x 2只能从±62中选取,v ,y 1,y 2只能从±1中选取,因此D 、E 、G 只能在⎝ ⎛⎭⎪⎫±62,±1这四点中选取三个不同点,而这三点的两两连线中必有一条过原点.与S △ODE =S △ODG =S △OEG =62矛盾.所以椭圆C 上不存在满足条件的三点D ,E ,G .22.(本小题满分12分)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),已知点(1,e )和⎝⎛⎭⎪⎫e ,32都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线AF 1与直线BF 2平行,AF 2与BF 1交于点P .(i)若AF 1-BF 2=62,求直线AF 1的斜率; (ii)求证:PF 1+PF 2是定值. 解(1)由题设知a 2=b 2+c 2,e =ca .由点(1,e )在椭圆上,得1a 2+c 2a 2b 2=1,解得b 2=1,于是c 2=a 2-1,又点⎝⎛⎭⎪⎫e ,32在椭圆上,所以e 2a 2+34b 2=1,即a 2-1a 4+34=1,解得a 2=2.因此,所求椭圆的方程是x 22+y 2=1. (2)由(1)知F 1(-1,0),F 2(1,0),又直线AF 1与BF 2平行,所以可设直线AF 1的方程为x +1=my ,直线BF 2的方程为x -1=my .设A (x 1,y 1),B (x 2,y 2),y 1>0,y 2>0.由⎩⎪⎨⎪⎧x 212+y 21=1x 1+1=my 1得(m 2+2)y 21-2my 1-1=0,解得y 1=m +2m 2+2m 2+2,故AF 1=(x 1+1)2+(y 1-0)2=(my 1)2+y 21=2(m 2+1)+mm 2+1m 2+2.①同理,BF 2=2(m 2+1)-m m 2+1m 2+2.② (i)由①②得AF 1-BF 2=2m m 2+1m 2+2,解2m m 2+1m 2+2=62得m 2=2,注意到m >0,故m = 2.所以直线AF 1的斜率为1m =22.(ii)因为直线AF 1与BF 2平行,所以PB PF 1=BF 2AF 1,于是PB +PF 1PF 1=BF 2+AF 1AF 1,故PF 1=AF 1AF 1+BF 2BF 1.由B 点在椭圆上知BF 1+BF 2=22,从而PF 1=AF 1AF 1+BF 2(22-BF 2).同理PF 2=BF 2AF 1+BF 2(22-AF 1).因此,PF 1+PF 2=AF 1AF 1+BF 2(22-BF 2)+BF 2AF 1+BF 2(22-AF 1)=22-2AF 1·BF 2AF 1+BF 2.又由①②知AF 1+BF 2=22(m 2+1)m 2+2,AF 1·BF 2=m 2+1m 2+2. 所以PF 1+PF 2=22-22=322.因此,PF 1+PF 2是定值.。

相关文档
最新文档