文科圆锥曲线测试题
高中数学文科圆锥曲线试题及解答

高中数学文科圆锥曲线试题及解答一.基础题组1. 【2013课标全国,文5】设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A.13 C .12 D【答案】:D2. 【2012全国新课标,文4】设F 1,F 2是椭圆E :22221x y a b+=(a >b >0)的左、右焦点,P 为直线32a x =上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【答案】C 【解析】设直线32a x =与x 轴交于点M ,则∠PF 2M =60°,在Rt △PF 2M 中,PF 2=F 1F 2=2c ,232aF M c =-,故22312cos6022a cF M PF c -︒===,解得34c a =,故离心率34e =. 3. 【2010全国新课标,文5】中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(【答案】:D4. 【2006全国,文5】已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( )(A )23 (B )6 (C )43 (D )12答案】C5. 【2005全国,文5】抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )(A) 2(B) 3(C) 4(D) 5【答案】D6. 【2005全国,文6】双曲线22149x y -=的渐近线方程是( )(A) 23y x =±(B) 49y x =±(C) 32y x =±(D) 94y x =±【答案】C【解析】由题意知:2,3a b ==,∴双曲线22149x y -=的渐近线方程是32y x =±.7. 【2014全国,文20】(本小题满分12分)设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .8. 【2013课标全国,文20】(本小题满分12分)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为2,求圆P 的方程. 【解析】:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1.9. 【2010全国新课标,文20】设F 1、F 2分别是椭圆E :x 2+22y b=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列. (1)求|AB|;(2)若直线l 的斜率为1,求b 的值.即43x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=224222224(1)4(12)8(1)1(1)b b b b b b =+++---,解得b =2 10. 【2005全国,文22】 (本小题满分14分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线, (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当3,121-==x x 时,求直线l 的方程.即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F …………………………9分 (Ⅱ)当121,3x x ==-时,二.能力题组1. 【2014全国,文10】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A (B )6 (C )12 (D )C2. 【2013课标全国,文10】设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ).A .y =x -1或y =-x +1B .y 1)x -或y =1)x -C .y 1)x -或y =1)x -D .y 1)x -或y =1)x -【答案】:C3. 【2012全国新课标,文10】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,||AB =C 的实轴长为( )A B . C .4 D .8【答案】 C【解析】设双曲线的方程为22221x y a a-=,抛物线的准线为x =-4,且||AB =A (-4,,B (-4,-),将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.4. 【2006全国,文9】已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )32【答案】A5. 【2005全国,文9】已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A .43B .53C .23D .3【答案】C6. 【2012全国新课标,文20】设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py ,得x 2-33px -2pb =0.由于n 与C 只有一个公共点,故∆=43p 2+8pb =0,解得6p b =-. 因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3. 当m的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3. 三.拔高题组1. 【2010全国,文12】已知椭圆C :22x a +22y b =1(a >b >0),过右焦点F 且斜率为k (k>0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k 等于( ) A ..2【答案】:B2. 【2007全国,文11】已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( )(A) 13(B)33 (C)21 (D)23【答案】:D 【解析】∵椭圆的长轴长是短轴长的2倍,∴2a b =,∴224a b =,又∵222b ac =-,∴222244()a b a c ==-,∴2234a c =,∴2234c a =,∴c e a ==3. 【2007全国,文12】设F 1,F 2分别是双曲线1922=-y x 的左右焦点,若点P 在双曲线上,且120PF PF ∙=,则12||PF PF +=( )(A)10(B)102(C)5 (D) 52【答案】:B4. 【2006全国,文11】过点(-1,0)作抛物线21y x x =++的切线,则其中一条切线为( ) (A )220x y ++= (B )330x y -+= (C )10x y ++= (D )10x y -+=【答案】D 【解析】5. 【2005全国,文10】设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A .2D 1【答案】D【解析】22221x y a b +=,2(,0)F c ,则垂线x c =,22221c y a b +=,∴2224222222(1)()c a c b y b b a a a-=-==, ∴2||b y a =,22b PF a =,122F F c =,所以22b c a=,即a²-c²=2ac,即c²+2ac -a²=0,∴c a ==-,∴1c a =-±0<e<1,所以1c e a ==-6. 【2010全国,文15】已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)l 相交于点A ,与C 的一个交点为B ,若AM =MB ,则p =________.【答案】:27. )【2010全国,文22】已知斜率为1的直线l 与双曲线C :22x a-22y b =1(a >0,b >0)相交于B 、D 两点,且BD 的中点为M (1,3). (1)求C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,|DF |·|BF |=17,证明过A 、B 、D 三点的圆与x 轴相切. 【解析】:(1)由题设知,l 的方程为y =x +2.代入C 的方程,并化简,得 (b 2-a 2)x 2-4a 2x -4a 2-a 2b 2=0,设B (x 1,y 1)、D (x 2,y 2),则x 1+x 2=2224a b a -,x 1x 2=-222224a a b b a +-, ①由M (1,3)为BD 的中点知122x x +=1,故 12×2224a b a-=1,即b 2=3a 2, ②故c 2a ,所以C 的离心率e =ca=2.故|BD |x 1-x 2|=6.连结MA ,则由A (1,0),M (1,3)知|MA |=3,从而MA =MB =MD ,且MA ⊥x 轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切.所以过A 、B 、D 三点的圆与x 轴相切.8. 【2006全国,文22】(本小题满分12分)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且(0).AF FB λλ=>过A 、B 两点分别作抛物线的切线,设其交点为M 。
高二文科数学圆锥曲线基础训练(含答案)

高二文科数学圆锥曲线基础训练1.k 为何值时,直线y=kx+2和椭圆632x 22=+y 有两个交点 ( )A .—36<k<36B .k>36或k< —36C .—36≤k ≤36D .k ≥36或k ≤ —36 【答案】B【解析】 试题分析:由⎩⎨⎧=++=632222y x kx y 可得 :(2+3k 2)x 2+12kx+6=0,由△=144k 2-24(2+3k 2)>0得k>36或k< —36,此时直线和椭圆有两个公共点。
2.抛物线4x y 2=上一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A. 0B. 1516C. 78D. 1716【答案】A 试题分析:设M ()00,y x ,因为M 到焦点的距离为1,所以110=+x ,所以00=x ,代入抛物线方程4xy 2=得00=y 。
3.过点(0,1)与双曲线221x y -=仅有一个公共点的直线共有 ( )A.1条B.2条C.3条D.4条 【答案】D4.椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为( ) A.21B.23C.22D.33【答案】C5.若椭圆)0(122>>=+n m ny m x 和双曲线)0(122>>=-b a b y a x 有相同的焦点1F 、2F ,P 是两曲线的一个公共点,则||||21PF PF ⋅的值是( )A .m-aB .)(21a m - C .22a m - D .a m -【答案】A【解析】设P是第一象限的交点,由定义可知1212PF PF PF PF ⎧+=⎪⎨-=⎪⎩ 12PF PF m a ∴=-6.已知点)0,4(1-F 和)0,4(2F ,曲线上的动点P 到1F 、2F 的距离之差为6,则曲线方程为()A.17922=-y x B .)0(17922>=-y x y C .17922=-y x 或17922=-x y D .)0(17922>=-x y x 【答案】D7.已知k <4,则曲线14922=+y x 和14922=-+-ky k x 有 ( ) A. 相同的准线 B. 相同的焦点C. 相同的离心率D. 相同的长轴【答案】B8.抛物线)0(2<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛0,21a B.⎪⎭⎫ ⎝⎛a 21,0 C.⎪⎭⎫⎝⎛a 41,0 D.⎪⎭⎫ ⎝⎛-a 41,0 【答案】C9.抛物线212y x =的准线与双曲线22193x y -=的两条渐近线所围成的三角形面积等于( )A. B. C.2 【答案】A10.已知椭圆)0(12222>>=+b a by a x 的左、右两焦点分别为21,F F ,点A 在椭圆上,0211=⋅F F ,4521=∠AF F ,则椭圆的离心率e 等于 ( )A.33B.12-C.13-D. 215- 【答案】B 由0211=⋅F F AF 得112AF F F ⊥,又4521=∠AF F ,112AF F F ∴=即22b c a=,整理的2220c ac a +-=2210,1e e e ∴+-==11.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的标准方程为___________【答案】1728122=+y x 【解析】试题分析:椭圆长轴的长为18,即2a=18,得a=9,因为两个焦点恰好将长轴三等分,∴2c=31•2a=6,得c=3,因此,b 2=a 2-c 2=81-9=72,再结合椭圆焦点在y 轴上,可得此椭圆方程为1817222=+y x . 12.过椭52x +42y =1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,求弦AB 的长_______【答案】35513.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 .14.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是 .【答案】2k <<3k <<-【解析】2222150x y kx y k ++++-=表示圆需要满足22224(15)0k k +-->,解得33k -<<,又因为过圆外一点可以作两条直线与圆相切,所以点(1,2)在圆外,所以2221222150k k +++⨯+->,所以3k <-或2k >,综上所述,实数k 的取值范围是2k <<3k <<-15.已知抛物线2:2(0)C x py p =>上一点(,4)A m 到其焦点的距离为5,则m = .【答案】4±. 16.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为22。
圆锥曲线测试(文科)

圆锥曲线测试题班级: 姓名:一.选择题1. F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( )A. 椭圆B. 直线C. 线段D. 圆2. 设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( )A .B .C .D .3.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 ( ) A .4 B .3 C .2 D .14.双曲线2228x y -=的实轴长是 ( )A.2B.5. 如果抛物线2y ax =的准线是直线1x =-,那么它的焦点坐标为 ( )A .(1, 0)B .(2, 0)C .(3,0)D .(-1,0)6. 已知椭圆2215x y m+=的离心率5e =,则m 的值为( ) A.3 B.253或7. 若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程 为( ) A. 221916x y += B. 2212516x y += C. 2212516x y +=或2212516y x += D.以上都不对 8. 以椭圆2212516x y +=的顶点为顶点,离心率为2的双曲线方程为( ) A. 2211648x y -= B. 221927x y -= C. 2211648x y -=或221927x y -= D.以上都不对 9.已知椭圆的方程是2221(5)25x y a a -=>,它的两个焦点坐标分别为F 1,F 2,且|F 1F 2|=8,28y x =-28y x =24y x =-24y x =弦AB 过F 1,则△ABF 2的周长为( ) A. 10 B. 20 C. 241 D. 441 10.以x 轴为对称轴,通径长为8,顶点在坐标原点的抛物线方程是( ) A.28y x = B.28y x =- C.28y x =或28y x =- D.28x y =或28x y =-11.直线1y x =+被椭圆2224x y +=所截得的弦的中点坐标是( )A .(13,23-)B .(23-,13)C .(12,13-)D .(13-,12) 12.若抛物线22(p 0)y px =>的焦点与双曲线22162x y k k +=--的右焦点重合,则P 的值为( )A.4B.2C.-4D.-2二.填空题13.若曲线22141x y k k +=+-表示双曲线,则k 的取值范围是 . 14. 双曲线224640x y -+=上一点P 到它的一个焦点的距离等于1,则点P 到另一个焦点的距离等于 .15. 斜率为1的直线经过抛物线24y x =的焦点,且与抛物线相交于A,B 两点,则|AB|= .16. 在直角坐标系xOy 中,有一定点A (2,1),若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .三.解答题17.求经过两点M (13,13),N (0,12-)的椭圆的标准方程.18.已知双曲线与椭圆1362722=+y x 有相同焦点,且经过点(15,4),求该双曲线方程,并求出其离心率、渐近线方程。
文科圆锥曲线练习题

文科圆锥曲线练习题一、椭圆篇椭圆是圆锥曲线的一种,它有许多特性和应用。
接下来,我将给你一些文科椭圆曲线的练习题,以巩固你对椭圆的理解和应用能力。
1. 某电视综艺节目组要在椭圆形的舞台上设置一个主舞台和多个辅助舞台,要求辅助舞台的位置满足以下条件:离主舞台的中点的距离为5米,并且离椭圆的焦点之一的距离为4米。
根据以上条件,请计算辅助舞台的位置坐标。
2. 一家工程公司要在一个狭长的场地上修建一个椭圆形的运动场地。
已知该运动场地的长轴长度为50米,短轴长度为30米。
请计算该椭圆的离心率,并根据离心率判断该运动场地是一个扁平的椭圆还是一个细长的椭圆。
3. 在一个平面直角坐标系中,有一个椭圆方程为x^2/16 + y^2/9 = 1。
已知此椭圆通过点A(4, 0)和点B(-4, 0),求椭圆的焦点坐标和顶点坐标。
二、双曲线篇双曲线也是圆锥曲线的一种,它也有多种特性和应用。
下面是一些文科双曲线曲线的练习题,帮助你深入理解双曲线的性质和用法。
1. 某银行为吸引存款,发起了一项存款优惠活动。
该活动采用一种双曲线形的存款奖励方式,根据存款时间和存款金额,给予不同等级的奖励。
已知存款奖励规则如下:存款时间t(月)和存款金额x(万元)之间的关系满足双曲线方程t^2/9 - x^2/16 = 1。
请根据该方程,计算存款金额为10万元时,对应的存款时间。
2. 某学生为了提高自己的英语成绩,购买了一套英语学习软件。
该软件采用一种双曲线形的学习模式,根据学习时间和学习进度,给予不同的学习效果。
已知学习效果y和学习时间x之间的关系满足双曲线方程y^2/36 - x^2/25 = 1。
请根据该方程,计算学习效果为60%时,对应的学习时间。
三、抛物线篇抛物线也是圆锥曲线的一种,它有许多实际应用。
以下是一些文科抛物线曲线的练习题,以加深你对抛物线的了解和应用能力。
1. 一家玩具公司制作了一种抛物线形的跳跃道具。
已知该跳跃道具的抛物线方程为y = 4x^2 + 2x + 1。
文科圆锥曲线测试题(带详细答案)

高二数学测试题 2013.3.1一.选择题1. 设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( B)A .28y x =- B .28y x = C .24y x =- D .24y x =2.设双曲线2221(0)9x ya a -=>的渐近线方程为320x y ±=,则a 的值为 (C)A .4B .3C .2D .13.双曲线2228x y -=的实轴长是 (C)(A )2 (B)(C ) 4 (D )424.设双曲线以椭圆92522y x +=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( C )A .±2B .±34 C .±21 D .±435.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F l PF 2为等腰直角三角形,则椭圆的离心率是 ( D ) 12.22.212.22.---D C B A6. 已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,C 的离心率为( B)(A(B(C ) 2 (D ) 3 7. 已知F 1,F 2为双曲线2222by ax -=1(a>0,b>0)的两个焦点,过F 2作垂直x 轴的直线,它与双曲线的一个交点为P ,且∠12PF F =30°,则双 曲线的渐近线方程为 (D ) A.2yx =±B.y = C.y x = D.y = 8.从集合{1,2,3…,11}中任选两个元素作为椭圆方程2222n y m x +=1中的m 和n ,则能组成落在矩形区域B={(x ,y)‖x|<11,且|y|<9}内的椭圆个数为 ( B ) A .43 B .72 C .86 D .90 9. 已知F 是抛物线2yx =的焦点,A ,B 是该抛物线上的两点,+3AF BF =,则线段AB 的中点到y 轴的距离为( C ) A.34 B . 1 C.54 (D )7410.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于(A ) A .1322或 B .23或2 C .12或2 D .2332或二.填空题11表示双曲线,则k 的取值范围是___(,4)(1,)-∞-+∞_________. 12. 在直角坐标系xOy 中,有一定点A (2,1)。
高考文科数学圆锥曲线专题训练

高考文科数学圆锥曲线专题训练用时:60分钟一、选择题1. θ是任意实数,则方程4sin 22=+θy x 所表示的曲线不可能是 A. 椭圆 B. 双曲线 C. 抛物线 D. 圆2. 已知椭121)(1222=-+t y x 的一条准线方程是8=y ,则实数t 的值是 A. 7或-7B. 4或12C. 1或15D. 03. 双曲线1422=+ky x 的离心率)2,1(∈e ,则k 的取值范围为 A. )0,(-∞ B. (-12,0) C. (-3,0) D. (-60,-12)4. 以112422=-y x 的焦点为顶点,顶点为焦点的椭圆方程为 A.1121622=+y xB.1161222=+y x C.141622=+y xD.116422=+y x 5. 抛物线28mx y =的焦点坐标为 A. )0,81(mB. )321,0(mC. )321,0(m±D. )0,321(m±6. 已知点A (-2,1),x y 42-=的焦点为F ,P 是x y 42-=的点,为使PF PA +取得最小值,P 点的坐标是 A. )1,41(-B. )22,2(-C. )1,41(-- D. )22,2(-- 7. 已知双曲线的渐近线方程为043=±y x ,一条准线方程为095=-y ,则双曲线方程为A.116922=-x yB.116922=-y x C.125922=-x yD.125922=-y x8. 抛物线2x y =到直线42=-y x 距离最近的点的坐标为 A. )45,23(B. )1,1(C. )49,23(D. )4,2(9. 动圆的圆心在抛物线x y 82=上,且动圆与直线02=+x 相切,则动圆必过定点 A. (4,0) B. (2,0) C. (0,2) D. (0,-2)10.中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 12575D. 17525C.1252752B. 1752252A.22222222=+=+=+=+y x y x y x y x二、填空题11. 到定点(2,0)的距离与到定直线8=x 的距离之比为22的动点的轨迹方程为_______. 12.双曲线2222=-my mx 的一条准线是1=y ,则=m ___________.13. 已知点(-2,3)与抛物线)0(22>=p px y 的焦点距离是5,=p ____________. 14.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_______________. 三、解答题15. 已知双曲线的中心在原点,过右焦点F (2,0)作斜率为53的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程。
文科圆锥曲线测试题

圆锥曲线单元复习题一、选择题:在每小题的4个选项中,只有一项是符合题目要求的. 1、F 1、F 1是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( )A 椭圆B 直线C 线段D 圆2、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( )A 、双曲线B 、双曲线左支C 、一条射线D 、双曲线右支3、已知抛物线C :y 2=4x 的焦点F ,x=1及x 轴的交点K ,点A 在C 上且|AK|=2|AF|,则△AFK 的面积为( ) A 8 B 4 C 2 D 14、抛物线y=x 2上到直线2x —y=4距离最近的点的坐标是( )A )45,23( B (1,1) C )49,23( D (2,4)5、设12F F ,分别是双曲线2219y x -=的左、右焦点.若点P 在双曲线上,且120PF PF •=,则12PF PF +=(A B . C D .6.已知椭圆的焦点)1,0(),1,0(21F F -,P 为椭圆上一点,且2121PF PF F F 2+=,则椭圆的方程为( ) A.13422=+y x B.14322=+y x C.1322=+y xD.1322=+y x7.过椭圆22ax +22b y =1(0<b<a )中心的直线及椭圆交于A 、B 两点,右焦点为F 2(c,0),则△ABF 2的最大面积是( )A .abB .acC .bcD .b 28、过定点P(0,2)作直线l ,使l 及曲线y 2=4x 有且仅有1个公共点,这样的直线l 共有( )A .1条B .2条C .3条D .4条9. 正方体ABCD —A 1B 1C 1D 1的侧面ABB 1A 1内有一动点P 到直线AA 1和BC 的距离相等,则动点P 的轨迹是 ( )A.线段B.抛物线的一部分C.双曲线的一部分D.椭圆的一部分10,. 若抛物线22y px =的焦点及双曲线22162x y k k+=--的右焦点重合,则p 的值为( ) A.2- B.2 C.4- D.411、 已知椭圆)0,0(1)0(122222222>>=->>=+n m ny m x b a b y a x 与双曲线有相同的焦点(-c ,0)和(c ,0),若c 是a 、m 的等比中项,n 2是2m 2及c 2的等差中项,则椭圆的离心率是( ) A.33 B.22 C.41 D.21 12. θ是任意实数,则方程x 2+y 2sin θ=4的曲线不可能是( ) A.椭圆B.双曲线 C.抛物线D.圆13、 的取值范围是则有两个不同的交点与曲线若直线 ,112k y x kx y +=+=( ) 15、某圆锥曲线C 是椭圆或双曲线,若其中心为坐标原点,对称轴为坐标轴,且过点A )32,2(-,B )5,23(-,则( )A.曲线C 可为椭圆也可为双曲线B.曲线C 一定是双曲线有C.曲线C 一定是椭圆D.这样的曲线C 不存在16、设椭圆12622=+y x 和双曲线1322=-y x 的公共焦点为21,F F ,P 是两曲线的一个公共点,则cos 21PF F ∠的值等于( ) A.41 B.31 C.91 D.53 17、 1cos sin ,21cos sin ,22=-=+αααα∆αy x ABC 则方程且的一个内角是已知表示的曲线方程是( )A.焦点在x 轴上的双曲线B.焦点在x 轴上的椭圆C.焦点在y 轴上的双曲线D.焦点在y 轴上的椭圆. 18、.则的离心率和分别为圆锥曲线已知, 1x 1,,02222222221=-=+>>by a b y a x e e b a lge 1+lge 2的值( )A.一定是正数B.一定是零C.一定是负数D.以上答案均不对19、 设动点P 在直线x =1上,O 为坐标原点,以OP 为直角边、点O 为直角顶点作等腰直角OPQ ∆,则动点Q 的轨迹是( )A.两条直线B.圆C.抛物线D.双曲线的一支20、 已知点A(t 2,2t )(t ∈R)、B(3,0),则|AB |的最小值为 ( )A.2 22.B C.3 D.821、 已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是 ( )A.21 B.23 C.27 D.522、 关于方程x 2sinα+y 2cosα=tanα(α是常数且α≠kπ2,k ∈Z ),以下结论中不正确的是( )A .可以表示双曲线B .可以表示椭圆C .可以表示圆D .可以表示直线23、 抛物线x y 42-=上有一点P ,P 到椭圆1151622=+y x 的左顶点的距离的最小值为( )A.32B.2+3C.3D.32-25、 设21,e e 分别为具有公共焦点F 1及F 2的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为( )A.1B.21C.2D.不确定26、 二次曲线1422=+my x ,当m ∈[-2,-1]时,该曲线的离心率e 的取值范围是( )A.[2,2] B.[2,2] C.[2,2] D.[2,227、直线2y k =及曲线2222918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( )A.1B.2C.3D.428、 若关于x 、y 的二次方程1||2522=-+-k y k x 的轨迹存在,则它一定表示( )A. 椭圆及圆B. 椭圆或双曲线C. 抛物线D. 双曲线30、 函数()a f x ax x=+(0a >)的图像具有的特征:①原点是它的对称中心;②最低点是(1,2)a ;③y 轴是它的一条渐近线。
文科圆锥曲线测试题(带详细答案)

高二数学测试题 2013.3.1一.选择题1. 设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( B)A .28y x =- B .28y x = C .24y x =-D .24y x =2.设双曲线2221(0)9x ya a -=>的渐近线方程为320x y ±=,则a 的值为 (C)A .4B .3C .2D .13.双曲线2228x y -=的实轴长是 (C)(A ) 2 (B )22(C ) 4 (D )424.设双曲线以椭圆92522y x +=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( C )A .±2B .±34 C .±21 D .±435.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F l PF 2为等腰直角三角形,则椭圆的离心率是 ( D ) 12.22.212.22.---D C B A6. 已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,C 的离心率为( B)(A )2 (B )3 (C ) 2 (D ) 3 7. 已知F 1,F 2为双曲线2222by ax -=1(a>0,b>0)的两个焦点,过F 2作垂直x 轴的直线,它与双曲线的一个交点为P ,且∠12PF F =30°,则双 曲线的渐近线方程为 (D ) A .22yx =±B .3y x =±C .33y x =± D .2y x =± 8.从集合{1,2,3…,11}中任选两个元素作为椭圆方程2222n y m x +=1中的m 和n ,则能组成落在矩形区域B={(x ,y)‖x|<11,且|y|<9}内的椭圆个数为 ( B ) A .43 B .72 C .86 D .90 9. 已知F 是抛物线2yx =的焦点,A ,B 是该抛物线上的两点,+3AF BF =,则线段AB 的中点到y 轴的距离为( C ) A.34 B . 1 C.54 (D )7410.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于(A ) A .1322或 B .23或2 C .12或2 D .2332或二.填空题11.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是___(,4)(1,)-∞-+∞_________. 12. 在直角坐标系xOy 中,有一定点A (2,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线单元复习题
一、选择题:在每小题的4个选项中,只有一项是符合题目要求的.
1、F1、F1是定点,1F26,动点M满足126,则点M的轨迹是()
A 椭圆
B 直线
C 线段
D 圆
2、已知M(-2,0),N(2,0),-4,则动点P的轨迹是:()
A、双曲线
B、双曲线左支
C、一条射线
D、双曲线右支
3、已知抛物线C:y2=4x的焦点F,1与x轴的交点K,点A在C 上且,则△的面积为()
A 8
B 4
C 2
D 1
4、抛物线2上到直线2x—4距离最近的点的坐标是()
A B (1,1) C D (2,
4)
5、设分别是双曲线的左、右焦点.若点在双曲线上,且,则(
A.B.C.D.
6.已知椭圆的焦点,为椭圆上一点,且
,则椭圆的方程为()
A. B. C.
D.
7.过椭圆1(0<b<a)中心的直线与椭圆交于A、B两点,右焦点为F2(c,0),则△2的最大面积是()
A.B.C.D.b2
8、过定点P(0,2)作直线l,使l与曲线y2=4x有且仅有1个公共点,这样的直线l共有()
A.1条B.2条C.3条
D.4条
9. 正方体—A1B1C1D1的侧面1A1内有一动点P到直线1和的距离相等,则动点P的轨迹是()
A.线段
B.抛物线的一部分
C.双曲线的一部分
D.椭圆的一部分
10,. 若抛物线的焦点与双曲线的右焦点重合,则的值为() A. B.
C. D.
11、已知椭圆有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2
是2m2与c2的等差中项,则椭圆的离心率是()
A. B. C. D.
12.θ是任意实数,则方程x22=4的曲线不可能是()
A.椭圆B.双曲线C.抛物线D.圆
13、()
15、某圆锥曲线C是椭圆或双曲线,若其中心为坐标原点,对称轴为坐标轴,且过点,则()
A.曲线C可为椭圆也可为双曲线
B.曲线C一定是双曲线有
C.曲线C一定是椭圆
D.这样的曲线C不存在
16、设椭圆和双曲线的公共焦点为,是两曲线的一个公共点,则的值等于()
A. B. C. D.
17、表示的曲线方程是()
A.焦点在x轴上的双曲线
B.焦点在x轴上的椭圆
C.焦点在y轴上的双曲线
D.焦点在y轴上的椭圆.
18、. 12的
值()
A.一定是正数
B.一定是零
C.一定是负数
D.以上答案均不对
19、设动点P在直线1上,O为坐标原点,以为直角边、点O
为直角顶点作等腰直角,则动点Q的轨迹是()
A.两条直线
B.圆
C.抛物线
D.双曲线的一支
20、已知点A(t2,2t)(t∈R)、B(3,0),则||的最小值为
()
A.2 C.3 D.8
21、已知定点A、B且4,动点P满足-3,则的最小值是()
A. B. C. D.5
22、关于方程=α(α是常数且α≠,k∈Z),以下结论中不正
确的是()
A.可以表示双曲线
B.可以表示椭圆
C.可以表示圆
D.可以表示直线
23、抛物线上有一点P,P到椭圆的左顶点的
距离的最小值为()
A. B.2+ C. D.
25、设分别为具有公共焦点F1与F2的椭圆和双曲线的离心
率,P为两曲线的一个公共点,且满足,则的值
为()
A.1
B.
C.2
D.不确定
26、二次曲线,当m∈[-2,-1]时,该曲线的离心率e的取值范围是()
A.[,]
B.[,]
C.[,]
D.[,
]
27、直线与曲线的公共点的个数为()
A.1
B.2
C.3
D.4
28、若关于x、y的二次方程的轨迹存在,则它
一定表示()
A. 椭圆与圆
B. 椭圆或双曲线
C. 抛物线
D. 双曲线
30、函数()的图像具有的特征:①原点是它的
对称中心;②最低点是;③轴是它的一条渐近线。
其中正确的是()
A. ①②
B. ①③
C. ②③
D.
①②③
二、解答题:解答应写出文字说明、证明过程或演算步骤
1、.在抛物线上求一点,使这点到直线的距离最短。
2、.双曲线与椭圆有共同的焦点,点是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。
3、.若动点在曲线上变化,则的最大值为多少?
4、(1)求中心在原点,焦点在x轴上,焦距等于4,且经过点P (3,-2)的椭圆方程;
(2)求,并且过点(3,0)的椭圆的标准方程.
4、已知顶点在原点,对称轴为轴的抛物线,焦点F在直线
上。
(1)求抛物线的方程;
(2)过焦点F的直线交抛物线于A、B两点,求弦的中点M的轨迹方程。
5、已知双曲线与椭圆有共同焦点,实轴长为。
(1)求双曲线方程;
(2)直线与双曲线交于A、B两点,求长
6、已知椭圆的离心率,的直线到原点的距离是.
(1)求椭圆的方程;
(2)已知直线交椭圆于不同的两点且都在以为圆心的圆上 ,求的值.
7、求F1、F2分别是椭圆的左、右焦点.
(Ⅰ)若r是第一象限内该数轴上的一点,,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠为锐角(其中O为作标原点),求直线的斜率的取值范围.
8、如图所示,F1、F2分别为椭圆C:的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)过椭圆C的焦点F2作的平行线交椭圆于P、
Q两点,求△F1的面积.。