椭圆标准方程的求法举例

合集下载

题型求椭圆的标准方程

题型求椭圆的标准方程

题型一、求椭圆的标准方程例1.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(4,0)-、(4,0),椭圆上一点P 到两焦点距离的和等于10;(2)两个焦点的坐标分别是(0,2)-、(0,2),并且椭圆经过点35(,)22-; (3)焦距为6,1a b -=; (4)椭圆经过两点35(,)22-,。

例2、(1)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为______________.(2)已知椭圆的焦点为1F (-1,0)和2F (1,0),P 是椭圆上的一点,且21F F 是1PF 与2PF 的等差中项,则该椭圆的方程为题型二、椭圆的几何性质的应用例3、(1)椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )A.7倍B.5倍C.4倍D.3倍(2)如图,A 、B 、C 分别为椭圆22221x y a b+=(a>b>0)的顶点和焦点,若∠ABC=900,则该椭圆的离心率为例4、已知点P 是椭圆22221x y a b+=(0a b >>)上一点,1F 、2F 是椭圆的两个焦点,且椭圆上存在一点P 使1260F PF ∠=︒.()1求椭圆离心率e 的取值范围;()2求12PF F △的面积 答案:(1))1,21[ (2)233b题型三、直线与椭圆的综合应用例5.设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF例6、已知1F 、2F 分别为椭圆1C :22221(0)y x a b a b+=>>的上、下焦点,其中1F 也是抛物线22:4C x y =的焦点,点M 是1C 与2C 在第二象限的交点,且15||3MF =(1)求椭圆1C 的方程;(2)已知点(1,3)P 和圆O :222x y b +=,过点P 的动 直线l 与圆O 相交于不同的两点,A B ,在线段AB 上取一点Q ,满足:AP PB λ=-,AQ QB λ=,(0λ≠且1λ≠±). 求证:点Q 总在某定直线上.例7、已知动点P 与双曲线x 2-y 2=1的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-31。

椭圆的标准方程

椭圆的标准方程

椭圆的标准方程\(\frac{(x h)^2}{a^2} + \frac{(y k)^2}{b^2} = 1\)。

其中,\(h\)和\(k\)分别是椭圆的中心在x轴和y轴上的坐标,\(a\)和\(b\)分别是椭圆在x轴和y轴上的半轴长。

椭圆的标准方程是通过平移坐标系和缩放轴的长度得到的。

通过标准方程,我们可以轻松地确定椭圆的中心、半轴长和长短轴的方向。

接下来,我们将详细解释椭圆的标准方程及其相关概念。

首先,椭圆的中心坐标为\((h, k)\),其中\(h\)和\(k\)分别代表椭圆中心在x轴和y轴上的坐标。

通过平移坐标系,我们可以将椭圆的中心移动到坐标原点,即\((0, 0)\),这样椭圆的标准方程可以简化为:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。

接下来,我们来解释椭圆的半轴长\(a\)和\(b\)。

在椭圆上任意一点\((x, y)\),其到两个焦点的距离之和等于常数,即\(2a\)。

因此,\(a\)代表椭圆在x轴上的半轴长,而\(b\)代表椭圆在y轴上的半轴长。

通常情况下,\(a > b\),因此椭圆在x轴上的半轴长大于在y轴上的半轴长。

此外,椭圆的标准方程还能告诉我们椭圆的长短轴的方向。

如果\(a > b\),则椭圆的长轴与x轴平行,短轴与y轴平行;如果\(a < b\),则椭圆的长轴与y轴平行,短轴与x轴平行。

最后,我们来看一个例子。

假设椭圆的标准方程为\(\frac{x^2}{16} + \frac{y^2}{9} = 1\),我们可以通过比较标准方程和实际方程的形式,得出椭圆的中心坐标为\((0, 0)\),长轴在x轴上,长轴的长度为\(2 \times 4 = 8\),短轴在y轴上,短轴的长度为\(2 \times 3 = 6\)。

通过以上的解释,我们对椭圆的标准方程及其相关概念有了更深入的理解。

希望本文能够帮助读者更好地掌握椭圆的基本知识,加深对数学的理解和应用。

椭圆的标准方程推导

椭圆的标准方程推导

椭圆的标准方程推导椭圆是平面上一个点到两个固定点的距离之和为常数的点的集合。

在直角坐标系中,椭圆的标准方程可以表示为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中,a和b分别为椭圆在x轴和y轴上的半轴长。

接下来,我们将推导椭圆的标准方程。

首先,考虑椭圆的定义,设椭圆上一点P的坐标为(x, y),两个固定点分别为F1和F2,它们的坐标分别为(-c, 0)和(c, 0)。

根据定义,点P到F1和F2的距离之和为常数2a,即:\[PF_1 + PF_2 = 2a\]根据点到定点的距离公式,可以得到:\[\sqrt{(x + c)^2 + y^2} + \sqrt{(x c)^2 + y^2} = 2a\]整理得到:\[\sqrt{(x + c)^2 + y^2} = 2a \sqrt{(x c)^2 + y^2}\]对上式两边进行平方运算,得到:\[(x + c)^2 + y^2 = (2a \sqrt{(x c)^2 + y^2})^2\]展开并整理得到:\[x^2 + 2cx + c^2 + y^2 = 4a^2 4a\sqrt{(x c)^2 + y^2} + (x^2 2cx + c^2 + y^2)\]化简可得:\[4a\sqrt{(x c)^2 + y^2} = 4a^2 x^2 2cx c^2 y^2\]再次整理得到:\[16a^2((x c)^2 + y^2) = (4a^2 x^2 2cx c^2 y^2)^2\]继续展开并整理,最终可以得到椭圆的标准方程:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中,\[a^2 = c^2 + b^2\],\[b^2 = a^2 c^2\]。

通过以上推导,我们得到了椭圆的标准方程。

这个方程可以帮助我们更好地理解椭圆的几何性质和特点,对于进一步的椭圆相关问题的研究和应用具有重要意义。

核心考点八 求椭圆标准方程的方法

核心考点八 求椭圆标准方程的方法

核心考点八 求椭圆标准方程的方法方法一:定义法解法突破:由题目条件能够确定出所求点的轨迹符合椭圆、双曲线、抛物线的定义,然后由题设求出方程中的系数。

例1、一动圆与圆1)1(:221=+-y x O 外切,与圆9)1(:222=++y x O 内切,求动圆圆心的轨迹的方程。

变式1、已知)0,22(),0,22(B A -为平面内两定点,动点P 满足2||||=+PB PA ,求动点P 的轨迹方程。

变式2、已知动圆P 与圆16)1(:22=++y x M 相切,且经过圆M 内的定点)0,1(N ,求动圆的圆心P 的轨迹方程。

变式3、已知定点)0,2(-A ,动点B 是圆64)2(:22=+-y x F (F 为圆心)上的一点,线段AB 的垂直平分线交BF 于点P ,求动点P 的轨迹方程。

变式4、在平面直角坐标系xOy 中,已知动点)0)(,(≤y y x P 到点)2,0(-F 的距离为1d ,到x 轴的距离为2d ,且221=-d d ,求动点P 的轨迹方程。

方法二:待定系数法解法突破:本类问题是已经确定曲线类型为椭圆或其他图形,只需通过题中条件列方程组解方程组即可。

例2、设椭圆)0(1:2222>>=+b a by a x E ,过点)1,6(),2,2(N M ,O 为坐标原点,求椭圆E 的标准方程。

变式1、已知抛物线y x 42=的焦点是椭圆)0(1:2222>>=+b a b y a x C 的一个顶点,且椭圆C 的离心率为23,求椭圆C 的标准方程。

变式2、已知椭圆)0(1:2222>>=+b a b y a x C 的焦距为4,且与椭圆1222=+y x 有相同的离心率,求椭圆C 的标准方程。

变式3、已知椭圆)2(12:2>=+a a C 的左右焦点分别为21,F F ,点P 在第一象限内且在椭圆上,又2PF 与x 轴垂直,且51=⋅OP P F ,求椭圆C 的标准方程。

椭圆方程的几种常见求法

椭圆方程的几种常见求法

椭圆方程的‎几种常见求‎法河南 陈长松对于求椭圆‎方程的问题‎,通常有以下‎常见方法:一、定义法例1 已知两圆C ‎1:169)4(22=+-y x ,C 2:9)4(22=++y x ,动圆在圆C ‎1内部且和‎圆C 1 相内切,和圆C2相‎外切,求动圆圆心‎的轨迹方程‎.分析:动圆满足的‎条件为:①与圆C1相‎内切;②与圆C2相‎外切.依据两圆相‎切的充要条‎件建立关系‎式.解:设动圆圆心‎M(x ,y ),半径为r ,如图所示,由题意动圆‎M内切于圆‎C 1, ∴r MC -=131,圆M外切于‎圆C 2 , ∴r MC +=32,∴1621=+MC MC ,∴ 动圆圆心M‎的轨迹是以‎C 1、C2为焦点‎的椭圆, 且82,162==c a ,481664222=-=-=c a b , 故所求轨迹‎方程为:1486422=+y x . 评注:利用圆锥曲‎线的定义解‎题,是解决轨迹‎问题的基本‎方法之一.此题先根据‎平面几何知‎识,列出外切的‎条件,内切的条件‎,可发现利用‎动圆的半径‎过度,恰好符合椭‎圆的定义.从而转化问‎题形式,抓住本质,充分利用椭‎圆的定义是‎解题的关键‎.二、待定系数法‎例2已知椭‎圆的中心在‎原点,以坐标轴为‎对称轴,且经过两点‎)2,3(),1,6(21--P P ,求该椭圆的‎方程.分析:已知两点,椭圆标准方‎程的形式不‎确定,我们可以设‎椭圆方程的‎一般形式: 22ny mx +=1()0,0>>n m ,进行求解,避免讨论。

解:设所求的椭‎圆方程为22ny mx +=1()0,0>>n m .∵椭圆经过两‎点)2,3(),1,6(21--P P ,∴⎩⎨⎧=+=+.123,16n m n m 解得⎪⎪⎩⎪⎪⎨⎧==.31,91n m ,故所求的椭‎圆标准方程‎为13922=+y x . 评注:求椭圆标准‎方程,可以根据焦‎点位置设出‎椭圆标准方‎程,用待定系数‎法求出的值‎b a ,:若焦点位置‎不确定,可利用椭圆‎一般形式简‎化解题过程‎.三、直接法例3 设动直线垂‎l 直于x 轴,且交椭圆于‎12422=+y x A、B两点,P是上线段‎l AB 外一点‎,且满足1=∙PB PA ,求点P的轨‎迹方程.分析:如何利用点‎P的坐标与‎椭圆上A,B两点坐标‎的关系,是求点P的‎轨迹的关键‎,因直线垂直‎l 于x 轴,所以P、A、B三点的横‎坐标相同,由A、B在椭圆上‎,所以A、B两点的纵‎坐标互为相‎反数,因此,紧紧抓住等‎式即可求解‎1=∙PB PA .解:设P(x ,y ),A(A x ,A y ),B(B x ,B y ) ,由题意:x =A x =B x ,A y +B y =0∴A y y PA -=,B y y PB -=,∵P在椭圆外‎,∴y -A y 与y -B y 同号, ∴PB PA ∙=(y -A y )(y -B y )=1)(2=++-B A B A y y y y y y∵)41(2)41(2222x x y y y A A B A --=--=-= 1)41(222=--x y ,即)22(13622<<-=+x y x 为所求. 评注:求轨迹方程‎,首先要找出‎动点与已知‎点之间的关‎系,建立一个等‎式,用坐标代换‎.四、相关点法例4 ABC ∆的底边BC ‎=16,AC 和AB ‎两边上的中‎线长之和为‎30,求此三角形‎重心G和定‎点A的轨迹‎方程.分析:由题意可知‎G到B、C两点的距‎离之和为定‎值,故可用定义‎法求解,A点和G点‎的关系式好‎建立,故可用相关‎点法去求.解(1)以BC 边所‎在直线为轴‎x ,BC 边的中‎点为坐标原‎点建立直角‎坐标系,设G(x ,y ),由3032⨯=+GB GC ,知G点的轨‎迹是以B、C为焦点,长轴长为2‎0的椭圆且‎除去轴上的‎x 两顶点,方程为)0(13610022≠=+y y x . (2)设A(x ,y ),G(),00y x ,则由(1)知G的轨迹‎方程是)0(13610002020≠=+y y x ∵ G为的重心‎ABC ∆ ∴⎪⎪⎩⎪⎪⎨⎧==3300y y x x 代入得:)0(132490022≠=+y y x 其轨迹是中‎心为原点,焦点在轴上‎x 的椭圆,除去长轴上‎的两个端点‎.评注:本题的两问‎是分别利用‎定义法和相‎关点法求解‎的,要注意各自‎的特点,另要注意轨‎迹与轨迹方‎程的不同.。

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

椭圆标准方程推导过程

椭圆标准方程推导过程

椭圆标准方程推导过程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

在直角坐标系中,椭圆的标准方程可以表示为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中a和b分别为椭圆在x轴和y轴上的半轴长。

接下来,我们将推导椭圆的标准方程。

首先,设椭圆的两个焦点分别为F1(c,0)和F2(-c,0),其中c为焦距。

设椭圆上任意一点为P(x,y),则根据椭圆的定义,有:\[PF_1 + PF_2 = 2a\]根据点到定点的距离公式,可以得到:\[\sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a\]整理得到:\[(x-c)^2 + y^2 = (2a \sqrt{(x+c)^2 + y^2})^2\]展开并整理得到:\[x^2 2cx + c^2 + y^2 = 4a^2 4a\sqrt{(x+c)^2 + y^2} + (x+c)^2 + y^2\]化简得到:\[x^2 2cx + c^2 + y^2 = 4a^2 4a\sqrt{x^2 + 2cx + c^2 + y^2} + x^2 + 2cx + c^2 + y^2\]消去相同的项并整理得到:\[4a\sqrt{x^2 + 2cx + c^2 + y^2} = 4a^2 2cx\]两边平方得到:\[16a^2(x^2 + 2cx + c^2 + y^2) = (4a^2 2cx)^2\]展开并整理得到:\[16a^2x^2 + 32a^2cx + 16a^2c^2 + 16a^2y^2 = 16a^4 16a^2cx + 4c^2x^2\]化简得到:\[16a^2x^2 + 16a^2y^2 = 16a^4 16a^2c^2 4c^2x^2\]移项并整理得到:\[20a^2x^2 + 16a^2y^2 = 16a^4 16a^2c^2\]将等式两边同时除以16a^4得到:\[\frac{x^2}{a^2} + \frac{y^2}{(a^2 c^2)} = 1\]由于椭圆的半轴长满足a > c,所以可以令b = √(a^2 c^2),代入得到椭圆的标准方程:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]至此,我们成功推导出了椭圆的标准方程。

椭圆方程的几种常见求法

椭圆方程的几种常见求法

椭圆方程的几种常见求法对于求椭圆方程的问题,通常有以下常见方法:一、定义法例1 已知两圆C1:,C2:,动圆在圆C1内部且和圆C1 相内切,和圆C2相外切,求动圆圆心的轨迹方程.分析:动圆满足的条件为:①与圆C1相内切;②与圆C2相外切.依据两圆相切的充要条件建立关系式.解:设动圆圆心M(,),半径为,如图所示,由题意动圆M内切于圆C1,∴,圆M外切于圆C2 ,∴,∴,∴动圆圆心M的轨迹是以C1、C2为焦点的椭圆,且,,故所求轨迹方程为:.评注:利用圆锥曲线的定义解题,是解决轨迹问题的基本方法之一.此题先根据平面几何知识,列出外切的条件,内切的条件,可发现利用动圆的半径过度,恰好符合椭圆的定义.从而转化问题形式,抓住本质,充分利用椭圆的定义是解题的关键.二、待定系数法例2已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求该椭圆的方程.分析:已知两点,椭圆标准方程的形式不确定,我们可以设椭圆方程的一般形式:=1(,进行求解,避免讨论。

解:设所求的椭圆方程为=1(.∵椭圆经过两点,∴解得,故所求的椭圆标准方程为.评注:求椭圆标准方程,可以根据焦点位置设出椭圆标准方程,用待定系数法求出的值:若焦点位置不确定,可利用椭圆一般形式简化解题过程.三、直接法例3设动直线垂直于轴,且交椭圆于A、B两点,P是上线段AB外一点,且满足,求点P的轨迹方程.分析:如何利用点P的坐标与椭圆上A,B两点坐标的关系,是求点P的轨迹的关键,因直线垂直于轴,所以P、A、B三点的横坐标相同,由A、B在椭圆上,所以A、B两点的纵坐标互为相反数,因此,紧紧抓住等式即可求解.解:设P(,),A(,),B(,),由题意:==,+=0∴,,∵P在椭圆外,∴-与-同号,∴=(-)(-)=∵,即为所求.评注:求轨迹方程,首先要找出动点与已知点之间的关系,建立一个等式,用坐标代换.四、相关点法例4的底边BC=16,AC和AB两边上的中线长之和为30,求此三角形重心G和定点A的轨迹方程.分析:由题意可知G到B、C两点的距离之和为定值,故可用定义法求解,A点和G点的关系式好建立,故可用相关点法去求.解(1)以BC边所在直线为轴,BC边的中点为坐标原点建立直角坐标系,设G(,),由,知G点的轨迹是以B、C为焦点,长轴长为20的椭圆且除去轴上的两顶点,方程为.(2)设A(,),G(,则由(1)知G的轨迹方程是∵G为的重心∴代入得:其轨迹是中心为原点,焦点在轴上的椭圆,除去长轴上的两个端点.评注:本题的两问是分别利用定义法和相关点法求解的,要注意各自的特点,另要注意轨迹与轨迹方程的不同.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆标准方程的求法举例
一、定义法
例1.已知圆22
:(1)8C x y ++=,点(10)A ,是圆内一点,AM 的垂直平分线l 交CM 于点N ,当点M 在圆C 上运动时,求点N 的轨迹方程。

解:连结AN ,由NM NA =,得22NC NA NC NM CM +=+==, 而2CA =,因此,点N 的轨迹是以点C A ,为焦点的椭圆, 设为22
221(0)x y a b a b
+=>>,222a =,22c =, 所以2a =,1c =,222
1b a c =-=。

因此,所求轨迹方程为2
212x y +=。

评注:用定义法求椭圆的方程,首先要清楚椭圆的中心是否在原点、对称轴是否为坐标轴;其次,要紧紧的抓住定义,由定义产生椭圆的基本量a 、b 、c .
二、待定系数法
例2.已知椭圆的焦距离为26且过点(32),,求焦点在x 轴上时,它的标准方程.
解析:焦点在x 轴上,设所求方程为22
221x y a b
+=(0)a b >>, 由题意得2222321a b a b ⎧+=⎪⎨⎪-⎩
,,解之得2293.a b ⎧=⎪⎨=⎪⎩,因此,所求方程为22193x y +=. 评注:用待定系数法求椭圆方程的基本步骤是:首先设出含待定系数的椭圆方程;然后根据题目条件再逐步求出待定的系数,从而得到方程.
三、轨迹法
例3.点()P x y ,到定点(01)A -,的距离与定直线14y =-的距离之比为1414
,求动点P 的轨迹方程.
解析:设d 为动点()P x y ,到定直线14y =-的距离,根据题意动点P 的轨迹就是集合 14()14PA M P x y d ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭
,|,由此得22(1)141414x y y ++=+. 将上式两边平方,并化简得2214131413x y +=⨯,即22
11314
x y +=为所求. 评注:用轨迹法求椭圆方程,首先要写出适合条件的点集,然后用坐标代入,再对含x y ,的式子进行化简,最后产生所求方程,这是必须的基本步骤.
四、奇思妙解法
例4.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1
(02)32A B ⎛⎫ ⎪⎝⎭
,,,求
该椭圆的标准方程
分析:根据题设条件,并不知道焦点所在的坐标轴,若分两种情况设出椭圆方程,则解答繁琐,而且还要舍去不符合题意的.但若设为22
1mx ny +=,则包含了焦点在x 轴上和焦点在y 轴上的两种情况,是一个很好的选择.
解:设所求的椭圆方程为221(00)mx ny m n m n +=>>≠,,. ∵椭圆经过两点(02)A ,
和12B ⎛ ⎝,∴0411314m n m n ⨯+⨯=⎧⎪⎨+=⎪⎩,.解得114
m n =⎧⎪⎨=⎪⎩,. 故所求椭圆的标准方程为2
2
14y x +=. 例5.求经过点(32)-,且与椭圆22
194
x y +=有相同焦点的椭圆方程. 分析:椭圆22
194
x y +=
的焦点为(.若设所求方程为22221(0)x y a b a b +=>>,则比较麻烦.但若设为与椭圆22
194
x y +=共焦点的椭圆系方程221(4)94x y λλλ+=>-++就简单得多. 解:设所求椭圆方程为22
1(4)94x y λλλ
+=>-++. ∵椭圆过点(32)-,,∴94194λλ
+=++.解得1266λλ==-,(舍去). 故所求椭圆的方程为22
11510
x y +=. 评注:用待定系数法求椭圆标准方程时,如果求设得当,常可避繁就简,事半功倍.上述两例,就是寻求椭圆方程的两种巧妙解法,故把此法与待定系数法分开列举出来。

相关文档
最新文档