线性代数第14讲线性方程组解的讨论.

合集下载

线性代数方程组的数值解法讨论

线性代数方程组的数值解法讨论

线性代数方程组的数值解法讨论解线性方程组的方法,主要分为直接方法和迭代方法两种。

直接法是在没有舍入误差的假设下能在预定的运算次数内求得精确解。

而实际上,原始数据的误差和运算的舍入误差是不可以避免的,实际上获得的也是近似解。

迭代法是构造一定的递推格式,产生逼近精确解的序列。

对于高阶方程组,如一些偏微分方程数值求解中出现的方程组,采用直接法计算代价比较高,迭代法则简单又实用,因此比较受工程人员青睐。

小组成员本着工程应用,讨论将学习的理论知识转变为matlab 代码。

讨论的成果也以各种代码的形式在下面展现。

1 Jacobi 迭代法使用Jacobi 迭代法,首先必须给定初始值,其计算过程可以用以下步骤描述: 步骤1 输入系数矩阵A ,常熟向量b ,初值(0)x ,误差限ε,正整数N ,令1k =.步骤2 (0)11ni i ij jj ii j i x b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,(0)j x 代表(0)x 的第j 个分量。

步骤3 计算11ni i ij j j ii j i y b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,判断1max i i i n x y ε≤≤-<,如果是,则结束迭代,转入步骤5;否则,转入步骤4。

步骤4 判断k N =?如果是,则输出失败标志;否则,置1k k =+,i i x y ⇐,1,2,,i n =,转入步骤2。

步骤5 输出12,,n y y y 。

雅可比迭代代码function [x,k]=Fjacobi(A,b,x0,tol)% jacobi 迭代法 计算线性方程组% tol 为输入误差容限,x0为迭代初值max1= 300; %默认最多迭代300,超过要300次给出警告 D=diag(diag(A)); L=-tril(A,-1);U=-triu(A,1); B=D\(L+U); f=D\b; x=B*x0+f;k=1; %迭代次数while norm(x-x0)>=tol x0=x;x=B*x0+f; k=k+1;if(k>=max1)disp('迭代超过300次,方程组可能不收敛'); return; end%[k x'] %显示每一步迭代的结果 End2 高斯赛德尔迭代由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量(1)k i x +时,用最新分量11()k x +,12()k x +…(1)1k i x +-代替旧分量)1(k x ', )2(k x …)3(k x 就得到高斯赛德尔迭代格式,其数学表达式为:1(1)(1)()111(1,2,,)i n k k k ii ij j ij j j j i ii xb a x a x i n a -++==+⎛⎫=--= ⎪⎝⎭∑∑具体形式如下:()()()(1)()()()11221331111(1)(1)()()22112332222(1)(1)(1)(1)(1)112233,11111k k k k n n k k k k n n k k k k k n n n n n n n n nnx a x a x a x b a x a x a x a x b a x a x a x a x a x b a ++++++++--=----+=----+⋯⋯⋯⋯⋯⋯=-----+矩阵形式表示为:()(1)1(1)()(0,1,2,,),k k k k n +-+=++=x D Lx Ux b将(1)(1)()(0,1,2,,)k k k k n ++=++=Dx Lx Ux b 移项整理得: (1)1()1()()(0,1,2,,))k k x D L Ux D L b k n +--=-+-=记11(),()--=-=-M D L U g D L b ,则(1)()k k x x +=+M g高斯塞德尔迭代function [x,k]=Fgseid(A,b,x0,tol)%高斯-塞德尔迭代法 计算线性方程组 % tol 为误差容限max1= 300; %默认最高迭代300次D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; x=G*x0+f;k=1; while norm(x-x0)>=tol x0=x;x=G*x0+f; k=k+1;if(k>=max1)disp('迭代次数太多,可能不收敛'); return; end% [k,x'] %显示每一步迭代结果 End3 超松弛迭代法在工程中最常遇到的问题便是线性代数方程组的求解,而线性代数方程组的求解一般可以分为两类,一类是直接法(精确法),包括克莱姆法则方法、LD 分解法等,另一类是迭代法(近似法),包括雅克比迭代法、高斯迭代法、超松弛迭代法等。

线性方程组的解

线性方程组的解

线性方程组的解线性方程组是高中数学中的重要知识点,也是解决实际问题的有力工具。

在此,我将为大家介绍线性方程组的概念和解法,并辅以例题和实际应用,帮助大家更好地理解和运用线性方程组。

一、线性方程组的概念和解法1. 线性方程组的定义线性方程组是由一组线性方程所组成的方程体系,其形式可以表示为:\[\begin{cases}a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_2 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \ldots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m\end{cases}\]其中,\(x_1, x_2, \ldots, x_n\)是未知数,\(a_{ij}\)和\(b_i\)是已知系数。

2. 解的定义解是指满足线性方程组中所有方程同时成立的数的组合。

3. 解的分类根据未知数的个数和方程组的性质,可以将线性方程组的解分为无解、有唯一解和有无穷多解三种情况。

- 无解:当线性方程组中的方程之间存在矛盾时,方程组无解。

- 有唯一解:当线性方程组中的方程数目等于未知数个数,并且方程组没有冗余方程时,方程组有唯一解。

- 有无穷多解:当线性方程组的方程个数小于未知数个数或者方程组中的方程可以通过其他方程表示时,方程组有无穷多解。

二、解线性方程组的方法1. 列主元的高斯消元法列主元的高斯消元法是求解线性方程组的一种常用方法。

步骤如下:(1)将线性方程组写成增广矩阵的形式。

\[\begin{bmatrix}a_{11} & a_{12} & \ldots & a_{1n} & | & b_1 \\a_{21} & a_{22} & \ldots & a_{2n} & | & b_2 \\ \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} & | & b_m \end{bmatrix}\](2)找到第一个主元(即第一行中不为零的元素),如果没有非零主元,则方程组无解。

线性代数方程组求解

线性代数方程组求解

线性代数方程组求解一、实验要求编程求解方程组:方程组1:方程组2:方程组3:要求:用C/C++语言实现如下函数:1.bool lu(double* a, int* pivot, int n);实现矩阵的LU分解。

pivot为输出参数,pivot[0,n) 中存放主元的位置排列。

函数成功时返回false,否则返回true。

2.bool guass(double const* lu, int const* p, double* b, int n);求线代数方程组的解设矩阵Lunxn 为某个矩阵anxn 的LU 分解,在内存中按行优先次序存放。

p[0,n)为LU 分解的主元排列。

b 为方程组Ax=b 的右端向量。

此函数计算方程组Ax=b 的解,并将结果存放在数组b[0,n)中。

函数成功时返回false ,否则返回true 。

3. void qr(double* a, double* d, int n);矩阵的QR 分解假设数组anxn 在内存中按行优先次序存放。

此函数使用HouseHolder 变换将其就地进行QR 分解。

d 为输出参数,d [0,n) 中存放QR 分解的上三角对角线元素。

4. bool hshld(double const*qr, double const*d, double*b, int n); 求线代数方程组的解设矩阵qrnxn 为某个矩阵anxn 的QR 分解,在内存中按行优先次序存放。

d [0,n) 为QR 分解的上三角对角线元素。

b 为方程组Ax=b 的右端向量。

函数计算方程组Ax=b 的解,并将结果存放在数组b[0,n)中。

函数成功时返回false ,否则返回true 。

二、问题分析求解线性方程组Ax=b ,其实质就是把它的系数矩阵A 通过各种变换成一个下三角或上三角矩阵,从而简化方程组的求解。

因此,在求解线性方程组的过程中,把系数矩阵A 变换成上三角或下三角矩阵显得尤为重要,然而矩阵A 的变换通常有两种分解方法:LU 分解法和QR 分解法。

线性方程组的解与解集

线性方程组的解与解集

线性方程组的解与解集线性方程组是高中数学中的重要内容,也是线性代数的基础知识之一。

解线性方程组的过程涉及到求解单个方程的解以及确定整个方程组的解集。

在本文中,我们将介绍线性方程组的解的概念、求解方法以及解集的表示方式。

一、线性方程组的解线性方程组由多个线性方程构成,其一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b其中,a₁、a₂、...、aₙ是系数,x₁、x₂、...、xₙ是未知数,b是常数。

对于一个线性方程组,解是指使得每个方程都成立的未知数的取值。

如果一个线性方程组存在解,则称其为可解的;反之,则称其为不可解的。

二、线性方程组的求解方法求解线性方程组的基本思路是通过变换和运算,将其转化为简化形式,从而得到解。

1. 列主元法列主元法是一种常用的求解线性方程组的方法。

其基本步骤如下:(1)将线性方程组写成增广矩阵的形式;(2)通过初等行变换将增广矩阵化为阶梯形矩阵;(3)从最后一行开始,倒序回代求解出每个未知数的值;(4)得到线性方程组的解。

2. 克拉默法则克拉默法则是一种求解线性方程组的方法,适用于系数矩阵可逆的情况。

其基本思想是通过计算系数矩阵的行列式和各个未知数对应的代数余子式的乘积来求解线性方程组。

3. 矩阵法矩阵法是一种求解线性方程组的高效方法。

将线性方程组转化为矩阵方程,通过行列式、逆矩阵或者矩阵的秩等性质来求解方程组的解。

三、线性方程组的解集表示线性方程组的解集是使得方程组中的所有方程都成立的解的集合。

1. 单个方程的解对于单个线性方程a₁x₁ + a₂x₂ + ... + aₙxₙ = b,如果存在唯一解,则解集可以用一个有序数对表示。

2. 齐次线性方程组的解齐次线性方程组是指常数项为零的线性方程组。

对于齐次线性方程组的解集,可以用零解和非零解来表示。

(1)零解指的是使得方程组中的每个方程都成立的解,它一定是方程组的解,任何线性方程组都有零解。

(2)非零解指的是大于零解的其他解,非零解的存在要求方程组的系数矩阵的秩小于未知数的个数。

线性代数—线性方程组解的结构

线性代数—线性方程组解的结构

r ( A) = r ( A ) = 2 < n = 4 ,
为自由未知量, 所以有无穷多解。 所以有无穷多解。 选 x3 , x4 为自由未知量,
16
0 1 4 − 3 5 − 2 → 0 − 7 5 − 9 0 , 选 x3 , 5 0 0 0 0 0 0
为自由未知量, x4 为自由未知量,
第五节
1
回顾: 回顾:
线性方程组 Ax = b 有解的充分必要条件是
r(A = r(A) . )
其中 A = ( A, b) 为增广矩阵。 为增广矩阵。 在有解的情况下, 在有解的情况下,
当 r ( A) = n 时有唯一解; 时有唯一解;
时有无穷多解; 当 r ( A) < n 时有无穷多解;自由未知量个数为 n − r (A) .
1 2 1 −1 1 1 4 −3 5 −2 解 A = 3 − 2 1 − 3 4 → 0 −7 5 −9 5 1 4 − 3 5 − 2 0 −14 10 −18 10
1 4 − 3 5 − 2 →0 − 7 5 − 9 5 , 0 0 0 0 0
1 1 5 −9 导出组的基础解系: 导出组的基础解系: ξ 1 = , ξ 2 = , 7 0 0 7 6 7 −5 7 所以全部解为 x = ξ 0 + k 1ξ 1 + k 2ξ 2 , ξ 特解: 特解: 0 = , 0 k1 ,k2 任意。 任意。 0
1 3 A= 0 5
1 1 1
1 1 1 1 1 1 2 1 1 − 3 0 − 1 − 2 − 2 − 6 → 0 1 2 2 6 1 2 2 6 0 − 1 − 2 − 2 − 6 4 3 3 − 1

线性代数方程组的解

线性代数方程组的解
若 r(A) = r(A, b) = n(未知数个数),则有唯一解, 若 r(A) = r(A, b) < n(未知数个数),则有无穷多解,
其通解式中含有 n − r(A) 个独立的任意常数; (2) 当 r(A) < r(A, b) 时,方程组不相容(即无解).
m n 非齐次方程组 Ax = b 的求解步骤
4.2 线性代数方程组的解
回顾:线性方程组的四种等价形式
1. 一般的形式
3
x1 x1

4x2 x3 x2 2x3

5 1
2. 增广矩阵的形式
3 4 1 5

1
1
2 1
3. 向量方程的形式
4. 向量组线性组合的形式
3

1
4 1
1 2

1
<
2
系数矩阵 A 系数矩阵 A增广矩阵 (A, b) 的秩 r(A) 的秩=r(A) 的秩 r(A, b)
<
未知数 的个数
3
=
无解 无穷多解 唯一解
特别地,当 b = 0 时,
情形1:
情形2:
情形3:


A

0b

r
~

0
0
0
0
情况另作讨论.
齐次线性方程组的解的性质(补充)
性质:若 x = x1,x = x2是齐次线性方程组 Ax = 0 的解, 则 x = x1 x2 还是 Ax = 0 的解.
证明: A(x1 x2 =Ax1+ Ax2= 0 + 0 = 0 . 性质:若 x = x是齐次线性方程组 Ax = 0 的解,k 为实数,

线性代数-线性方程组的解

线性代数-线性方程组的解
1 1 1 1 B ~ 0 0 0 0
0 0 0 0
R(A) = R(B) < 3,方程组有无穷多解 .
其通解为
x1 x2
=1− = x2
x2

x3
x3 = x3
(x2 , x3为任意实数 ).
(2) 当λ ≠ 1时,
1 1 λ
λ2
B ~ 0 1 −1 −λ
0
0
2+λ
(1
+
λ
)2
=
−2
x3

4 3
x4
,
( x3 , x4 可任意取值).
令 x3 = c1, x4 = c2,把它写成通常的参数 形式
x1
x2 x3
=
= =
2c2
+
5 3
c2
,
−2c2

4 3
c2
c1 ,
,
x4 = c2,

x1 x2 x3 x4
=
c1
2 −2 1 0
+
c2
由于原方程组等价于方程组
x2 x3
− −
x3 x4
= a2 = a3
由此得通解:
x4 − x5 = a4
x1 = a1 + a2 + a3 + a4 + x5
x2 = a2 + a3 + a4 + x5 x3 = a3 + a4 + x5
x4 = a4 + x5
(x5为任意实数 ).
例5 设有线性方程组
1 1 2 3 1 1 1 2 3 1
B
~
0 0 0

线性方程组解情况判定PPT课件

线性方程组解情况判定PPT课件

解空间的性质
解空间是一个向量空间, 具有加法和数乘封闭性。
02
线性方程组解的判定定理
唯一解的判定定理
总结词
当线性方程组的系数矩阵的行列式不为0时,方程组有唯一解。
详细描述
当系数矩阵的行列式不为0时,说明方程组中的方程是线性独立的,即方程组中 的每一个方程都能独立决定一个未知数的值,因此方程组有唯一解。
未知数
需要求解的变量。
线性方程组的解
01
02
03
解的定义
满足所有方程未知数的值 称为解。
解的存在性
对于给定的线性方程组, 可能存在多个解、无解或 无穷多个解。
解的唯一性
如果一个线性方程组有唯 一解,则该解是唯一的。
线性方程组的解空间
解空间的定义
所有解构成的空间称为解 空间。
解空间的维度
解空间的维度等于未知数 的数量。
物理问题中的线性方程组通常比较复杂,需要运用数学工具 和物理知识进行求解。通过求解这些线性方程组,可以深入 理解物理现象的本质和规律。
经济问题中的线性方程组
在经济学中,线性方程组也被广泛应用于各种问题的分析 和求解。例如,在市场分析、生产计划、财政预算等领域 ,线性方程组被用来描述经济关系和规律。
实际应用
在实际问题中,线性方程组广泛应 用于物理、工程、经济等领域,解 的判定对于解决实际问题具有指导 意义。
算法设计与优化
解的判定问题涉及到算法设计与优 化,对于提高计算效率和精度具有 重要意义。
未来研究方向
高维空间
计算复杂性
目前对于高维空间中线性方程组的解 判定研究尚不充分,未来可以加强这 方面的研究。
详细描述
矩阵的逆和行列式在判断线性方程组解的情 况中具有重要作用。通过计算系数矩阵的行 列式和逆,可以判断方程组的解的情况。当 系数行列式不为0时,方程组有唯一解;当 系数行列式为0时,需要进一步分析以确定 解的情况。此外,利用行列式的性质可以简
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档