专题七-全等三角形的探究题

合集下载

全等三角形的判定中考题

全等三角形的判定中考题

全等三角形的判定中考题一、已知两个三角形两边及夹角分别相等,根据哪种全等判定定理可以确定这两个三角形全等?A. SSS(三边相等)B. SAS(两边及夹角相等)C. ASA(两角及夹边相等)D. AAS(两角及非夹边相等)(答案:B)二、在△ABC与△DEF中,若∠A=∠D,∠C=∠F,且AC=DF,则依据哪个判定定理可证明两三角形全等?A. SSSB. SASC. ASAD. AAS(答案:C)三、若△PQR与△STU中,PQ=ST,QR=TU,且∠Q=∠T,但∠Q并非PQ与QR的夹角,则根据哪个判定不能直接证明两三角形全等?A. SSSB. SASC. ASAD. 以上均不可(答案:D)四、两个三角形中,如果两个角和一条边分别相等,且这条边是这两个角的夹边,应使用哪个全等判定定理?A. SSSB. SASC. ASAD. AAS(答案:C)五、在△ABC与△MNP中,若AB=MN,BC=NP,且∠B=∠N,但∠B不是AB和BC的夹角,则不能直接通过哪个判定证明两三角形全等?A. SSSB. SASC. AASD. 以上都不是直接证明的依据(答案:B)六、若两个三角形的两个角及非夹边分别相等,应依据哪个全等判定定理来确定它们全等?A. SSSB. SASC. ASAD. AAS(答案:D)七、在△XYZ与△LMN中,若XY=LM,YZ=MN,且∠YZX=∠LMN,但∠YZX并非XY与YZ的夹角,则不能直接应用哪个全等判定?A. SSSB. SAS(答案)C. 这种情况无法判定三角形全等D. AAS八、已知△ABC与△DEF中,∠A=∠D,∠B=∠E,若要证明两三角形全等,还需满足以下条件中的哪一个?A. AB=DEB. AC=EF(非夹角对应的边)C. BC=DF(夹角对应的边,即SAS情况)(答案)D. ∠C=∠F(已有两角相等,再加一角无法判定全等)。

三角形全等的判定专题训练题

三角形全等的判定专题训练题

三角形全等的判定专题训练题(1)1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。

求证:△ABD ≌△ACD 。

2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。

求证:△ABC ≌△EDF 。

3、 如图(3):DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。

求证:(1)∠B=∠C ,(2)BD=CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。

求证:AC ⊥CE 。

6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF=EG ,(2)BF ∥DG 。

7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。

求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。

8、如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。

求证:AB=AC 。

11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC上任一点。

求证:PA=PD 。

12、如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。

求证:EB ∥CF 。

13、如图(13)△ABC ≌△EDC 。

求证:BE=AD 。

14、如图(14)在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 的中线,过点C 作CF ⊥AE 于F ,过B 作BD ⊥CB 交CF 的延长线于点D 。

全等三角形经典题型50题带问题详解

全等三角形经典题型50题带问题详解

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB从D 做辅助线3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

因为 BC=ED,CF=DF,∠BCF=∠EDF 。

所以 三角形BCF 全等于三角形EDF(边角边)。

所以 BF=EF,∠CBF=∠DEF 。

连接BE 。

在三角形BEF 中,BF=EF 。

所以 ∠EBF=∠BEF 。

又因为 ∠ABC=∠AED 。

所以 ∠ABE=∠AEB 。

所以 AB=AE 。

在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。

所以 三角形ABF 和三角形AEF 全等。

所以 ∠BAF=∠EAF (∠1=∠2)。

ADBC4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

初二物理:全等三角形经典模型及例题详解

初二物理:全等三角形经典模型及例题详解

初二物理:全等三角形经典模型及例题详解全等三角形是初中物理中重要的概念之一,它涉及到三角形的形状和属性。

全等三角形意味着两个三角形在形状和大小上完全相同。

在本文档中,我们将详细讨论全等三角形的经典模型以及解决例题的方法。

1. 全等三角形的定义全等三角形的定义是指两个三角形的对应边长和对应角度完全相等。

当两个三角形的全部对应边长和对应角度分别相等时,我们可以说它们是全等三角形。

2. 全等三角形的经典模型在初二物理中,有一些经典的全等三角形模型,它们是我们解决问题时的基础。

- SSS模型:当两个三角形的三边对应相等时,它们是全等三角形。

我们可以根据给定的三边长,推导出全等三角形的其他属性。

- SAS模型:当两个三角形的一边和两个对应角相等时,它们是全等三角形。

我们可以根据给定的一个边和两个对应角,推导出全等三角形的其他属性。

- ASA模型:当两个三角形的两个对应角和一边相等时,它们是全等三角形。

我们可以根据给定的两个角和一边,推导出全等三角形的其他属性。

3. 全等三角形的例题详解通过解决一些例题,我们可以更好地理解全等三角形的概念和应用。

例题1:已知三角形ABC和三角形DEF,它们满足AB = DE,BC = EF,∠ABC = ∠DEF。

问:是否可以得出三角形ABC和三角形DEF是全等三角形?解析:根据SSS模型,当两个三角形的三边对应相等时,它们是全等三角形。

根据题目条件,AB = DE,BC = EF,∠ABC =∠DEF,我们可以得出三角形ABC和三角形DEF是全等三角形。

例题2:已知三角形ABC和三角形DEF,它们满足AB = DE,∠ABC = ∠DEF,∠ACB = ∠DFE。

问:是否可以得出三角形ABC和三角形DEF是全等三角形?解析:根据ASA模型,当两个三角形的两个对应角和一边相等时,它们是全等三角形。

根据题目条件,AB = DE,∠ABC =∠DEF,∠ACB = ∠DFE,我们可以得出三角形ABC和三角形DEF是全等三角形。

(江西人教)数学中考专题突破【专题7】数学活动型问题(24页)

(江西人教)数学中考专题突破【专题7】数学活动型问题(24页)

6 .在图①与图②中,△ MED 是等腰直角三角形.图③中
△MED的形状也是等腰直角三角形.
考点探究
专题七
数学活动型问题
【解题思路】
考点探究
专题七
数学活动型问题
例 1 [2013·江西] 某数学活动小组在作三角形的拓展图形研 究其性质时,经历了如下过程: ●操作发现:在等腰三角形 ABC 中,AB=AC,分别以 AB 和 AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图 T7-1①所示, 其中 DF⊥AB 于点 F, EG⊥AC 于点 G, M 是 BC 的中点, 连接 MD, ME, 则下列结论正确的是__________(填序号即可). 1 ①AF=AG= AB;②MD=ME;③整个图形是轴对称图形;④∠ 2 DAB=∠DMB.
考点探究
专题七
数学活动型问题
又∵EG 是等腰直角三角形 AEC 斜边上的中线, 1 ∴EG⊥AC 且 EG= AC,∴MF=EG. 2 同理可证 DF=MG. ∵MF∥AC,∴∠MFA+∠BAC=180°. 同理可得∠MGA+∠BAC=180°, ∴∠MFA=∠MGA. 又∵EG⊥AC,∴∠EGA=90°. 同理可得∠DFA=90°,
根据题意可判定Rt△ADE≌Rt△CDF,且△BEF是等腰直角三角形 .
考点探究
专题七
数学活动型问题
3.设EF=DE=x,解Rt△BEF可用含x的代数式表示BE的长
,进而表示出AE的长,在Rt△ADE中利用勾股定理建立关于x的 方程可求得x的值. 4.根据题意画出变换后的图形,可知四边形EFGH是正方形 ,所以四条边相等,且∠EFG=90°,通过证明
△BDF≌△CEG,△BDF≌△AEG,△AEG≌△CEG,△DBM≌△ECM.

七年级数学全等三角形型动点问题专题训练

七年级数学全等三角形型动点问题专题训练

七年级数学全等三角形型动点问题专题训练1.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP;(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的1;4(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1.42.如图,在长方形ABCD中,AB=8cm,BC=12cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒.=_________ .(用t的代数式表示)(1)如图1,S△DCP(2)如图1,当t=3时,试说明:△ABP≌△DCP.(3)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.3.如图(1),AB=7cm,AC⊥AB,BD⊥AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t(s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,△ACP与△BPQ全等,此时PC⊥PQ吗?请说明理由.(2)将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s,当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=______.(直接写出结果)4.如图,在△ABC中,AB=AC,∠BAC=90°,BC=12cm.过点C作直线l⊥BC,动点P从点C开始沿射线CB方向以2cm/s的速度运动,动点Q也同时从点C出发在直线l上以1cm/s的速度向上或向下运动.连接AP、AQ,设运动时间为ts.(1)请写出CP、CQ的长度(用含t的代数式表示):CP=______cm,CQ=______cm;(2)当点P在边BC上时,若△ABP的面积为24cm2,求t的值;(3)当t为多少时,△ABP与△ACQ全等?5.如图①,在ΔABC中,AB=12cm,BC=20cm,过点C作射线CD//AB.点M从点B出发,以3cm/s速度沿BC匀速移动;点N从点C出发,以acm/s的速度沿CD 匀速移动.点M、N同时出发,当点M到达点C时,点M、N同时停止移动.连接AM、MN,设移动时间为t(s).(1)点M、N从移动开始到停止,所用时间为_____s;(2)当ΔABM与ΔMCN全等时,①若点M、N的移动速度相同,求t的值;②若点M、N的移动速度不同,求a的值;(3)如图②,当点M、N开始移动时,点P同时从点A出发,以2cm/s的速度沿AB向点B匀速移动,到达点B后立刻以原速度沿BA返回.当点M到达点C时,点M、N、P同时停止移动.在移动的过程中,是否存在ΔPBM与ΔMCN全等的情形?若存在,求出t的值;若不存在,说明理由.。

七年级数学下册期中期末专题07 全等三角形(真题测试)(解析版)

七年级数学下册期中期末专题07 全等三角形(真题测试)(解析版)

专题07 全等三角形【真题测试】 一、选择题1.(长宁2019期末18)下列所叙述的图形中,全等的两个三角形是( ) A. 含60︒角的两个直角三角形; B.腰对应相等的两个等腰三角形; C.边长均为5厘米的两个等边三角形; D.一个钝角对应相等的两个等腰三角形. 【答案】C ;【解析】含60度角的两个直角三角形的对应边不一定相等,因此不一定全等,A 错误;腰对应相等的两个等腰三角形的顶角不一定相等,故B 错误;边长为5厘米的两个等边三角形全等,因此C 正确;一个钝角对应相等的两个等腰三角形的对应边不一定相等,因此D 错误;故此题选C.2.(长宁2018期末18)在ABC ∆中,已知点D 、E 分别在AB 、AC 上,BE 与CD 相交于点O ,依据下列各个选项中所列举的条件,不能说明AB=AC 的是( ) A. BE=CD ,EBC DCB ∠=∠; B. AD=AE ,BE=CD ; C. OD=OE ,ABE ACD ∠=∠; D. BE=CD ,BD =CE .O D C BA E【答案】B ;【解析】 A 、因为EBC DCB ∠=∠,所以OB=OC ,又BE=CD ,故OD=OE ,可证DOB EOC ∆∆≌,得ABE ACD ∠=∠,可得ABC ACB ∠=∠,即得AB=AC ;B 、已知两边及一边的对角对应相等,不一定能得出ABE ACD ∆∆≌,故不一定能得AB=AC ;C 、由OD=OE ,ABE ACD ∠=∠及DOB EOC ∠=∠得DOB EOC ∆∆≌,所以OB=OC ,所以OBC OCB ∠=∠,因此ABC ACB ∠=∠,所以AB=AC ; D 、由BE=CD ,BD =CE 胶BC=CB 得出DBC ECB ∆∆≌,所以ABC ACB ∠=∠即AB=AC ;故此题选B.二、填空题3.(普陀2018期末14)如图,四边形ABCD 的对角线AC 、DB 交于点E ,AB=CD ,AC=DB ,图中全等的三角形共有 对.DC BAE【答案】3;【解析】解:∵AB=CD ,AC=DB ,BC=BC ,∴△ABC ≌△DBC ,∴∠BAC=∠BDC ,∵∠AEB=∠DEC ,AB=DC ,∴△ABE ≌△DEC ,∴BE=CE ,AE=DE ,∵AB=DC , BD=AC ,AD=AD ,∴△ABD ≌△ADC ,∴图中全等的三角形共有3对,故答案为:34.(松江2018期末16)如图,已知ABC ∆与DEF ∆全等,且724563A B E ∠=︒∠=︒∠=︒、、、BC=10、EF=10,那么D ∠= 度.1045°72°C BA【答案】72;【解析】因为7245A B ∠=︒∠=︒、,所以180724563C ∠=︒-︒-︒=︒,又63E ∠=︒,故E C ∠=∠,又BC=EF=10,依题得ABC DFE ∆∆≌,故72D A ∠=∠=︒.5.(浦东四署2019期末16)如图,ABC DCB ∆∆≌,A 、B 的对应顶点分别为点D 、C ,如果AB=6cm ,BC=12cm ,AC=10cm ,DO=3cm ,那么OC 的长是 cm.OD CBA【答案】7;【解析】因为ABC DCB ∆∆≌,所以AC=BD ,ACB DBC ∠=∠,所以OB=BC ,所以AO=DO=3cm ,所以OC=AC-AO=10-3=7cm. 三、解答题6.(闵行2018期末24)如图,在△ABC 中,已知点D 、E 、F 分别在边BC 、AC 、AB 上,且FD =ED ,BF =CD ,∠FDE =∠B ,那么∠B 和∠C 的大小关系如何?为什么? 解:因为∠FDC =∠B +∠DFB ,即∠FDE +∠EDC =∠B +∠DFB . 又因为∠FDE =∠B (已知), 所以∠=∠ . 在△DFB 和△EDC 中,所以△DFB ≌△EDC . 因此∠B =∠C .DFBA E【答案与解析】解:因为∠FDC =∠B +∠DFB (三角形的一个外角等于与它不相邻的两个内角的和), 即∠FDE +∠EDC =∠B +∠DFB .又因为∠FDE =∠B (已知),所以∠DFB =∠EDC . 在△DFB 和△EDC 中,()(FB ED DFB EDC BF CD =⎧⎪∠=∠⎨⎪=⎩已知已知),所以△DFB ≌△EDC (SAS ).因此∠B =∠C .7.(黄浦2018期末26)如图,在ABC V 中,点D 在AC 边上,AE//BC ,联接ED 并延长交BC 于点F. 若AD=CD ,请说明ED=FD 的理由.DFCB AE【答案与解析】解:如图所示,Q AE//BC ,1,2C E ∴∠=∠∠=∠,在AED CFD ∆∆和中,12C E AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,AED CFD ∴∆∆≌(AAS ),ED FD ∴=.21DF CBA E8.(宝山2018期末27)如图,已知点D、E、F分别在AB、BC、CA上,DEF∆是等边三角形,且123∠=∠=∠,ABC∆是等边三角形吗?试说明理由.【答案与解析】解:ABC∆是等边三角形.因为DEF∆是等边三角形,可知60DEF∠=︒(等边三角形每个内角是60︒),因为31DEC DEF B∠=∠+∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角之和),又13∠=∠,所以60B DEF∠=∠=︒(等式性质),同理可证:60,60A C∠=︒∠=︒,所以A B C∠=∠=∠,所以ABC∆是等边三角形(三个内角都相等的三角形是等边三角形).9.(松江2018期末27)如图,在ABC∆中,已知AB=AC,点D、E、F分别在BC、AC、AB上,且BD=CE,BF=CD. (1)说明BDF CED∆∆≌的理由;(2)说明FDE=B∠∠的理由.DFCBAE【答案与解析】(1)因为在ABC∆中,已知AB=AC,所以B C∠=∠,在BDF CED∆∆与中,BF CDB CBD CE=⎧⎪∠=∠⎨⎪=⎩,所以BDF CED∆∆≌(SAS);(2)因为BDF CED∆∆≌,所以BFD CDE∠=∠,又FDC B BFD∠=∠+∠,所以FDE CDE B BFD∠+∠=∠+∠,所以FDE B∠=∠.10.(浦东2018期末25)如图,在ABC∆中,已知点D、E、F分别在边BC、AC、AB上,且FD=DE,BF=CD,FDE=B∠∠,那么B C∠∠与的大小关系如何?为什么?【答案与解析】因为FDC B BFD ∠=∠+∠即FDE CDE B BFD ∠+∠=∠+∠,又因为FDE=B ∠∠,所以CDE BFD ∠=∠,在BFD CDE ∆∆与中,BF CD BFD CDE FD DE =⎧⎪∠=∠⎨⎪=⎩,所以BFD CDE ∆∆≌(SAS ),所以B=C ∠∠.11.(普陀2018期末25)如图,在△ABC 中,∠B=∠C ,D 、E 、F 分别在AB 、BC 、AC 上,且BD=CE ,∠DEF=∠B ,问:DE 和EF 是否相等?并说明理由.【答案与解析】解:∵∠B=∠C ,∵∠DEF=∠B ,∵∠DEC=∠B +∠BDE (三角形的外角定理), ∴∠BDE=∠FEC ,在△BDE 与△CEF 中,∵,∴△BDE ≌△CEF (ASA ),得DE=EF .12.(普陀2018期末26)如图,∠1=∠2,AD=AE ,∠B=∠ACE ,且B 、C 、D 三点在一条直线上. (1)试说明△ABD 与△ACE 全等的理由.(2)如果∠B=60°,试说明线段AC 、CE 、CD 之间的数量关系,并说明理由.【答案与解析】解:(1)理由:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD ,即∠BAD=∠CAE , 在△ABD 与△ACE 中,,∴△ABD ≌△ACE (AAS );(2)由(1)△ABD ≌△ACE 可得:BD=CE ,AB=AC ,∵∠B=60°,∴△ABC 是等边三角形,∴AB=BC=AC ,∴BD=CE=BC +CD=AC +CD ,即CE=AC +CD .13.(杨浦2018期末25)如图,已知90,B C AE ED ∠=∠=︒⊥,AB=EC ,点F 是AD 的中点,说明EF AD ⊥的理由.解:AE ED ⊥Q (已知),90AED ∴∠=︒(垂直的意义), 又90B ∠=︒Q (已知),B AED ∴∠=∠(等量代换).AEC B BAE ∠=∠+∠Q()即AED DEC B BAE ∠+∠=∠+∠Q ,DEC BAE ∴∠=∠(等式性质)在ABE ECD ∆∆与中,B CAB EC DEC BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ECD ∴∆∆≌( )AE ED ∴=( )Q (已知)EF AD ∴⊥( )【答案与解析】解:三角形的一个外角等于与它不相邻的两个内角之和);ASA ;全等三角形对应边相等;点F 是AD 的中点;等腰三角形的三线合一.14.(松江2018期末26)阅读并补充完成下列解题过程:如图:用尺规作线段中点的方法,作出了线段AB 的中点C ,请说明这种方法正确的理由. 解:联结AE 、BE 、AF 、BF.在AEF BEF ∆∆与中,(______________)(________EF EF AE BE =⎧⎪=⎨⎪=⎩画弧时所取的半径相等)(画弧时所取的半径相等),所以AEF BEF ∆∆≌( ). 所以AEF=BEF ∠∠( ).又因为AE=BE ,所以AC=BC ( ).即点C 是线段AB 的中点.【答案与解析】公共边; AF=BF ;SSS ;全等三角形对应角相等; 等腰三角形的三线合一. 15.(闵行2018期末26)已知∠AOB =120°,OC 平分∠AOB ,点P 是射线OC 上一点. (1)如图1,过点P 作PD ⊥OA ,PE ⊥OB ,说明PD 与PE 相等的理由;(2)如图2,如果点F 、G 分别在射线OA 、OB 上,且∠FPG =60°,那么线段PF 与PG 相等吗?请说明理由;(3)在(2)的条件下,联结FG ,△PFG 是什么形状的三角形,请说明理由.【答案与解析】解:(1)∵OC 是∠AOB 的平分线,∴∠AOC =∠BOC ,∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90°,在△POD 和△POE 中,90PDO PEO POD POE OP OP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△POD ≌△POE ,∴PD =PE ;(2)相等,理由:如图2,过点P 作PM ⊥OA 于M ,PN ⊥OB 于N ,∴∠PMO =∠PNO =90°, 同(1)的方法得,PM =PN ,在四边形PMON 中,∠MPN =360°﹣90°﹣90°﹣120°=60°,∵∠FPG =60°,∴∠FPG =∠MPN ,∴∠MPF =∠NPG ,在△PMF 和△PNG 中,90FPM NPG PM PN PMF PNG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△PMF ≌△PNG ,∴PF =PG ;(3)△PFG 是等边三角形,理由:如图2,连接FG ,由(2)知,PF =PG ,∵∠FPG =60°, ∴△PFG 是等边三角形.16.(杨浦2019期末30)在ABC ∆中,90,60C BAC ∠=︒∠=︒,ABC ∆绕点C 顺时针旋转,旋转角为(0180)αα︒<<︒,点A 、B 的对应点分别是点D 、E.(1)如图1,当点D 恰好落在边AB 上时,试判断DE 与AC 的位置关系,并说明理由.(2)如图2,当点B 、D 、E 三点恰好在一直线上时,旋转角α=︒,此时直线CE 与AB 的位置关系是 .(3)在(2)的条件下,联结AE ,设BDC ∆的面积为1S ,AEC ∆的面积为2S ,则12S S 与的数量关系是 .(4)如图3,当点B 、D 、E 三点不在一直线上时,(3)中的12S S 与的数量关系仍然成立吗?试说明理由.【答案与解析】解:(1)DE//AC. 理由:ABC ∆Q 旋转后与DCE ∆全等,,A CDE AC DC ∴∠=∠=,60,BAC AC DC ∠=︒=Q ,DAC ∴∆是等边三角形. 60DCA ∴∠=︒. 又60CDE BAC ∠=∠=︒Q ,60DCA CDE ∴∠=∠=︒,DE AC ∴∥.(2)如图4所示:延长EC 交AB 于点F. 由旋转的性质可知:CB=CE ,30CBE E ∴∠=∠=︒.120BCE ∴∠=︒,即旋转角120α=︒,30,30ABC CBE ∠=︒∠=︒Q ,60FBE ∴∠=︒,306090E FBE ∴∠+∠=︒+︒=︒,90BFE EC AB ∴∠=︒∴⊥. 故旋转角120α=︒,EC AB ⊥(3)如图5所示,延长EC 交AB 于点F ,过点D 作DG BC ⊥于G . Q 由(2)可知CE AB ⊥,120BCE ∠=︒,9030CFA BCD ∴∠=︒∠=︒,6030FAC FCA ∠=︒∴∠=︒Q ,30FCA DCG ∴∠=∠=︒. 由旋转的性质可知:AC=CD ,在FCA GCD ∆∆和中,90FCA DCG CFA DGC AC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,FCA GCD ∆∴∆≌,AF GD ∴=,又因BC=CE , 1122EC AF CB DG ∴=g g 即12S S =. (4)12S S =仍然成立;理由:如图6所示:过D 作DH BC ⊥于H ,过A 作AG EC ⊥交EC 的延长线于G.,DH BC AG EC ⊥⊥Q ,90AGC DHC ∴∠=∠=︒,ABC ∆Q 旋转后与DCE ∆全等,90ACB DCE ∴∠=∠=︒,AC=DC ,BC=CE. 180,ACE BCD ∠+∠=︒Q180,GCA ECA ∠+∠=︒Q ACG DCH ∴∠=∠.在AGC DHC ∆∆和中,AGC DHCACG DCHAC DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, AGC DHC ∴∆∆≌,AG DH ∴=,1122EC AF CB DG ∴=g g ,即12S S =.。

难点探究专题:全等三角形中的动态问题(原卷版)八年级数学上册重难点专题提优训练(人教版)

难点探究专题:全等三角形中的动态问题(原卷版)八年级数学上册重难点专题提优训练(人教版)

专题07 难点探究专题:全等三角形中的动态问题考点一 利用全等三角形中的动点求时间问题(利用分类讨论思想)考点二 利用全等三角形中的动点求线段长问题考点三 利用全等三角形中的动点求线段长最小值问题考点四 利用全等三角形中的动点综合问题考点一 利用全等三角形中的动点求时间问题(利用分类讨论思想)例题:(2021·山东临沂·八年级期中)如图,CA AB ⊥,垂足为点A ,射线BM AB ⊥,垂足为点B ,12cm AB =,6cm AC =.动点E 从A 点出发以3cm /s 的速度沿射线AN 运动,动点D 在射线BM 上,随着 E 点运动而运动,始终保持ED CB =.若点E 的运动时间为(0)t t >,则当 t =________ 个秒时,DEB 与BCA 全等.【变式训练】(2021·全国·七年级专题练习)已知:如图,在长方形ABCD 中,6,10AB AD ==延长BC 到点E ,使4CE =,连接DE ,动点F 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为_______时,ABF 和DCE 全等.考点二 利用全等三角形中的动点求线段长问题例题:(2019·江苏·宜兴市周铁中学八年级阶段练习)已知:如图,∠B =90°AB ∥DF ,AB =3cm ,BD =8cm ,点C 是线段BD 上一动点,点E 是直线DF 上一动点,且始终保持AC ⊥CE ,若AC =CE ,则DE 的长为______.【变式训练】(2020·江苏·泰州中学附属初中八年级阶段练习)如图,△ABC 中,点D 在边BC 上,DE ⊥AB 于E ,DH ⊥AC 于H ,且满足DE =DH ,F 为AE 的中点,G 为直线AC 上一动点,满足DG =DF ,若AE =4cm ,则AG = _____cm .考点三 利用全等三角形中的动点求线段长最小值问题例题:(2021·重庆八中八年级开学考试)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为________.【变式训练】(2019·湖北·武汉大学附属外语学校八年级阶段练习)△ABC 是边长为2的等边三角形,点P 为直线BC 上的动点,把线段AP 绕A 点逆时针旋转60°至AE ,O 为AB 边上一动点,则OE 的最小值为____.考点四 利用全等三角形中的动点综合问题例题:(2022·辽宁葫芦岛·八年级期末)如图,在ABC 中,90,BAC AB AC ∠=︒=.点D 是直线BC 上一动点(点D 不与点B ,C 重合),90,DAE AD AE ∠=︒=,连接CE .(1)如图1,当点D 在线段BC 上时,直接写出,BC CD 与CE 之间的数量关系;(2)如图2,当点D 在边BC 的延长线上时,请探究线段,BC CD 与CE 之间存在怎样的数量关系?并说明理由;(3)如图3,若点D 在边CB 的延长线上,且点A ,E 分别在直线的两侧,其他条件不变,若10,6CD BC ==,直接写出CE 的长度.【变式训练】(2022·辽宁葫芦岛·八年级期末)如图①,点C 在线段AB 上(点C 不与A ,B 重合),分别以AC ,BC 为边在AB 同侧作等边△ACD 和等边△BCE ,连接AE ,BD 交于点P .(1)观察猜想:1.AE 与BD 的数量关系为______;2.∠APD 的度数为______;(2)数学思考:如图②,当点C 在线段AB 外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.一、选择题1.(2022·福建漳州·八年级期末)已知点A 为线段BC 上方的一动点,且满足AC -AB =3,BC =8,若AD 平分∠BAC ,且CD ⊥AD 于点D ,则S △BDC 的最大值为( )A .24B .12C .6D .32.(2020·山东·鲁村中学八年级阶段练习)如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,D 为AC 中点,P 为AB 上的动点,将P 绕点D 逆时针旋转90°得到P ′,连CP′的最小值为( )A.1.6 B .2.4 C .2 D .3.(2022·全国·八年级课时练习)如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .52B .152C .3D .125二、填空题4.(2022·全国·八年级)如图,AB ⊥BC 于B ,DC ⊥BC 于C ,AB =6,BC =8,CD =2,点P 为BC 边上一动点,当BP =________时,形成的Rt △ABP 与Rt △PCD 全等.5.(2022·河南漯河·八年级期末)如图,在正方形ABCD 中,3cm AB =,延长BC 到点E ,使1cm CE =,连接DE ,动点P 从点A 出发,以每秒1cm 的速度沿AB BC CD DA →→→向终点A 运动.设点P 的运动时间为t 秒,当PBC ∆和DCE ∆全等时,t 的值为 __.6.(2020·浙江宁波·八年级专题练习)如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BD CD=_______.三、解答题7.(2022·河北·平泉市教育局教研室八年级期末)如图1,E ,F 为线段BC 上的两个动点,AE DF ∥,且AE DF CF BE AD ==,,交EF 于点O .(1)现有甲、乙、丙、丁四个结论:甲:点O 是AD 的中点;乙:点O 是BC 的中点;丙:点O 是EF 的中点;丁:AB CD ∥正确的结论是____________;请选择一个你认为正确的结论进行证明;(2)当点E ,F 移动至如图2所示的位置时,其余条件不变,(1)中四个结论正确的是__________.8.(2021·河北·石家庄市藁城区第一中学八年级阶段练习)在Rt △ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点D 在AC 上,且AD =6cm ,过点A 作射线AE ⊥AC (AE 与BC 在AC 同侧),若动点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm /s ,设点P 运动时间为t 秒.连接PD 、BD .(1)如图①,当PD ⊥BD 时,求证:△PDA ≌△DBC ;(2)如图②,当PD ⊥AB 于点F 时,求此时t 的值.9.(2021·贵州·兴义市万峰林民族学校八年级期中)如图,在长方形ABCD 中,AB =6cm ,BC =8cm .动点P 从点B 出发,沿BC 方向以2cm /s 的速度向点C 匀速运动;同时动点Q 从点C 出发,沿CD 方向以2cm /s 的速度向点D 匀速运动,当一个点停止运动时,另一个点也停止运动.设运动时间为t (s )(0<t <3).解答下列问题:(1)当点C 在线段PQ 的垂直平分线上时,求t 的值;(2)是否存在某一时刻t ,使ABP PCQ ∆∆≌若存在,求出t 的值,并判断此时AP 和PQ 的位置关系;若不存在,请说明理由.10.(2022·全国·八年级课时练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD ⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA =∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F 为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题七 全等三角形的综合探究题
1.(2011盐城)情境观察
将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C ′D ,如图1所示.将△A′C ′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A (A′)、B 在同一条直线上,如图2所示. 观察图2可知:与BC 相等的线段是 ,∠CAC ′= .
问题探究
如图3,△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q . 试探究EP 与FQ 之间的数量关系,并证明你的结论.
[
拓展延伸
如图4,△ABC 中,AG ⊥BC 于点G ,分别以AB 、AC 为一边向△ABC 外作矩形ABME 和矩形ACNF ,射线GA 交EF 于点H .若AB =k AE ,AC =k AF ,试探究HE 与HF 之间的数量关系,并说明理由.
图1 图2
C'A'B A D
C
A
B
C
D
B
C
D A (A')C'
图4
M
N
G
F
E
C
B
A
H
图3
A
B C
E
F
G
P
Q
A
!
E A
B
C
E
A
B
2、(11·辽阜新)如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PE=EB,连接PD,O为AC中点.
*
(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;
(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗请说明理由;
(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立若成立,请直接写出结论;若不成立,请说明理由.。

3、(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A 重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.
(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立若成立,请给予证明:若不成立.请说明理由:

4、如图2,AB=AD,BC=CD,AC和BD相交于E。

由这些条件可以得出若干结
论,请你写出其中3个正确结论。

(不要添加字母和辅助线,不要求证明)
结论1:
结论2:
结论3:
5、如图,在AFD
∆和BEC
∆中,点A、E、F、C在同一直线上,有下列四个论断:
①AD=CB,②AE=CF,③D
B∠
=
∠,④AD如图, 已知AB∥DE, AB=DE, AF=DC, 请问图中有哪几对全等三角形并任选其中一对给予证明.
^
7. 如图(1),已知AB⊥BD,ED⊥BD,AB=CD,BC=DE,求证:AC⊥CE.若将CD沿CB方向平移得到图(2)(3)(4)(5)的情形,其余条件不变,结论AC1⊥C2E还成立吗请说明理由.

8. 已知如图(1),△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:(1)BD=DE+CE;(2)若直线AE绕A点旋转到(2)位置时(BD<CE),其余条件
D
A C
B
E
A D
E
F
B C
不变,问BD与DE、CE的关系如何请予证明.(3)若直线AE绕A点旋转到图(3)位置时,(BD>CE),其余条件不变,问BD与DE、CE的关系如何请直接写出结果,不须证明.(4)归纳(1)、(2)、(3),请用简捷语言表述BD、DE、CE的关系.
9、如图所示,在66
⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形.
(1)请你在图①中画一条直线将格点三角形
分割成两部分,将这两部分重新拼成两个不
同的格点四边形,并将这两个格点四边形分
别画在图②,图③中;
(2)直接写出这两个格点四边形的周长.
10.如图为人民公园中的荷花池,现要测量此荷花池两旁A、B两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺和测角仪为测量工具设计一种测量方案.
要求:(1)画出你设计的测量平面图;
(2)简述测量方法,并写出测量的数据(长度用,
,
,c
b
a…表示;角度用
,
,

β
α…表示);(3)根据你测量的数据,计算A、B两棵树间的距离.
图①,图③

%


••B。

相关文档
最新文档