线性空间
合集下载
线性空间的定义与性质

s1(x) = A1sin(x+B1)= (A1)sin(x+B1) S[x],
所以, S[x]是一个线性空间.
例5: 在区间[a, b]上全体实连续函数构成的集合 记为C[a, b], 对函数的加法和数与函数的数量乘法, 构 成实数域上的线性空间. (2) 一个集合, 如果定义的加法和乘数运算不是通 常的实数间的加, 乘运算, 则必需检验是否满足八条线 性运算规律. 例6: 正实数的全体记作R+, 在其中定义加法及乘 数运算为: ab = ab, a = a, (R, a, bR+) 验证R+对上述加法与乘数运算构成(实数域R上的)线 性空间. 证明: 对任意a, bR+, R, ab = abR+, a = aR+, 所以对R+上定义的加法与乘数运算封闭.
说明2. 向量(线性)空间中的元素称为向量, 但不一 定是有序数组. 说明3. 判别线性空间的方法: 一个集合, 对于定义 的加法和数乘运算不封闭, 或者运算不满足八条性质 的任一条, 则此集合就不能构成线性空间. 线性空间的判定方法: (1) 如果在一个集合上定义的加法和乘数运算是 通常实数间的加, 乘运算, 则只需检验运算的封闭性. 例1: 实数域上的全体mn矩阵, 对矩阵的加法和 数乘运算构成实数域R上的线性空间, 记作Rmn. Rmn 中的向量(元素)是mn矩阵. 例2: 次数不超过n的多项式的全体记作P[x]n, 即 P[x]n ={ p(x)=a0+a1x+· · · +anxn | a0, a1, · · · , a n R } 对通常多项式加法, 数乘构成向量空间.
二、线性空间的性质
1. 零元素是唯一的. 证明: 假设01, 02是线性空间V中的两个零元素. 则对任何V有, + 01 =, + 02 = , 由于01, 02V, 则有 02+01=02, 01+02=01. 所以 01=01+02 =02+01 =02.
线性空间与线性变换

个实际得 R元n 素对应起来,从而将抽象具体化进行
研究。
大家学习辛苦了,还是要坚持
继续保持安静
*例3 设R22中向量组{Ai}
1 1
0 2
A1 1 2 A2 1 3
3 1 A3 0 1
2 4 A4 3 7
1 讨论{Ai}得线性相关性、 2求向量组得秩与极大线性无关组、 3把其余得向量表示成极大线性无关组得
求 V1 V2, V1 V2.
§1、3 线性空间V与Fn得同构
坐标关系
V
Fn
V得基{1,2,。。。 n}
由此建立一个一一对应关系
V,X Fn, ()=X
(1+2)=(1)+(2) (k)=k()
在关系下,线性空间V与Fn同构。
同构得性质
定理1、3、1:数域F上两个有限维线性空 间同构得充分必要条件就是她们得维数 相同。 同构保持线性关系不变。 应用: 借助于空间Fn中已经有得结论与方法研 究一般线性空间得线性关系。
1. 求从基(I)到基(II)得过渡矩阵C。
2. 求向量 7 3 在基(II)得坐标Y。 1 2
§1、2 子空间
概述:线性空间V中,向量集合V可以有集合得 运算与关系:
Wi V, W1W2, W1W2, 问题: 这些关系或运算得结果就是否仍然为 线性空间 ?
1、 子空间得概念
定义: 设非空集合WV,W ,如果W中得 元素关于V中得线性运算为线性空间,则称W 就是V得子空间。 判别方法:Important Theorem W就是子空间 W对V得线性运算封闭。
定义: T 得秩=dim R(T); T 得零度=dim N(T)
例 (P018) Rn中得变换 T:设A Rn×n就是一个给定 得 矩阵,XRn,T(X)=AX。 (1)T就是线性变换; (2)Ker(T)就是AX=0得解空间; (3)Im(T)=Span{a1,a2,…,a n}, 其中ai就是矩阵A得列 向量;
研究。
大家学习辛苦了,还是要坚持
继续保持安静
*例3 设R22中向量组{Ai}
1 1
0 2
A1 1 2 A2 1 3
3 1 A3 0 1
2 4 A4 3 7
1 讨论{Ai}得线性相关性、 2求向量组得秩与极大线性无关组、 3把其余得向量表示成极大线性无关组得
求 V1 V2, V1 V2.
§1、3 线性空间V与Fn得同构
坐标关系
V
Fn
V得基{1,2,。。。 n}
由此建立一个一一对应关系
V,X Fn, ()=X
(1+2)=(1)+(2) (k)=k()
在关系下,线性空间V与Fn同构。
同构得性质
定理1、3、1:数域F上两个有限维线性空 间同构得充分必要条件就是她们得维数 相同。 同构保持线性关系不变。 应用: 借助于空间Fn中已经有得结论与方法研 究一般线性空间得线性关系。
1. 求从基(I)到基(II)得过渡矩阵C。
2. 求向量 7 3 在基(II)得坐标Y。 1 2
§1、2 子空间
概述:线性空间V中,向量集合V可以有集合得 运算与关系:
Wi V, W1W2, W1W2, 问题: 这些关系或运算得结果就是否仍然为 线性空间 ?
1、 子空间得概念
定义: 设非空集合WV,W ,如果W中得 元素关于V中得线性运算为线性空间,则称W 就是V得子空间。 判别方法:Important Theorem W就是子空间 W对V得线性运算封闭。
定义: T 得秩=dim R(T); T 得零度=dim N(T)
例 (P018) Rn中得变换 T:设A Rn×n就是一个给定 得 矩阵,XRn,T(X)=AX。 (1)T就是线性变换; (2)Ker(T)就是AX=0得解空间; (3)Im(T)=Span{a1,a2,…,a n}, 其中ai就是矩阵A得列 向量;
第六章 线性空间

2 23 1
首页
上页
下页
返回
结束
19
例5 设1 , 2 , A是n s矩阵, (1 , 2 , 证明 : L( 1 , 2 ,
, n 是n维线性空间V 的一组基, , s ) (1 , 2 , , n ) A
, s )的维数等于A的秩.
证 设秩( A) r , 则存在可逆矩阵P , Q , 使得 Er A P O
(4) 基变换
其中1 , 2 ,
, n 和1 , 2 ,
首页
, n 都是V的
上页 下页 返回 结束
基, A为过渡矩阵, 可逆.
3
性质:设1 , 2 , 则 1 , 2 ,
, n为V 的基, , n ) ( 1 , 2 , , n ) A, , n 也为V 的基 A可逆.
首页 上页 下页 返回 结束
若 V2 , 则因 V2 , 有 ( ) V2 , 与 V2矛盾. 故在V中存在向量x , x V1且x V2 .
注: 此例说明,若V1 ,V2是V的两个非平凡子空 间, 则在V中存在向量x, 使x V1 V2 ,即V V1 V2 .
证 取P n的一组基 1 , 2 , 个 i , 使得A
m 1
i 0.
, n, 令
B ( 1 , 2 , , n )
事实上,若Am1 j 0, j 1,2,
则B可逆, 且有Am1 B O. 于是Am1 O. 与题设矛盾.
令 i , 则Am1 0, Am 0.
k1 l1 k2 l2 则有坐标变换公式 : A kn ln
首页
上页
下页
返回
结束
19
例5 设1 , 2 , A是n s矩阵, (1 , 2 , 证明 : L( 1 , 2 ,
, n 是n维线性空间V 的一组基, , s ) (1 , 2 , , n ) A
, s )的维数等于A的秩.
证 设秩( A) r , 则存在可逆矩阵P , Q , 使得 Er A P O
(4) 基变换
其中1 , 2 ,
, n 和1 , 2 ,
首页
, n 都是V的
上页 下页 返回 结束
基, A为过渡矩阵, 可逆.
3
性质:设1 , 2 , 则 1 , 2 ,
, n为V 的基, , n ) ( 1 , 2 , , n ) A, , n 也为V 的基 A可逆.
首页 上页 下页 返回 结束
若 V2 , 则因 V2 , 有 ( ) V2 , 与 V2矛盾. 故在V中存在向量x , x V1且x V2 .
注: 此例说明,若V1 ,V2是V的两个非平凡子空 间, 则在V中存在向量x, 使x V1 V2 ,即V V1 V2 .
证 取P n的一组基 1 , 2 , 个 i , 使得A
m 1
i 0.
, n, 令
B ( 1 , 2 , , n )
事实上,若Am1 j 0, j 1,2,
则B可逆, 且有Am1 B O. 于是Am1 O. 与题设矛盾.
令 i , 则Am1 0, Am 0.
k1 l1 k2 l2 则有坐标变换公式 : A kn ln
第1章 线性空间与线性变换讲义

定义加法:
a + b = ( x 1 + y1 , x 2 + y 2 , , x n + y n ) T
定义数乘:
ka = ( kx1 , kx 2 , , kx n ) T ,
R n 是数域 R 上的线性空间。 C n 是数域 C 上的线性空间。
4
例2 实数域 R上的全体 m×n 矩阵,对矩阵的加法 和数乘运算构成 R上的线性空间,记作 Rm×n
定义:设 V 是一个非空集合,F 为数域,a, b, g V, 对于任意的a, b V, 总有唯一的元素 g V
与之对应,称 g 为a 与b 的和,记作 g =a +b,且
(1) a + b = b + a ;
( 2 ) (a + b ) + g = a + ( b + g );
( 3) 存在零元素: b V , a V , a + b = a, 称 b 为零元素, 并记 b 为 0 ; ( 4) 存在负元素 a V , b V, a + b = 0; 称 b 为 a 的负元素, 并记 b 为 - a ;
(1) a , b W , 则a + b W (2) a W , k F , 则 ka W
则称W 是V 的子空间。
21
例1. 实数域上 n 维向量的集合
W = { ( 0, x 2 , , x n ) T | x 2 , , x n R }
则 W是 R n 的 子 空 间 。
则 P 称为由基 a 1 , a 2 , , a n 到基 b 1 , b 2 , , b n 的 转移矩阵(或过渡矩阵),其中
p11 p21 P= p n1 p12 p22 pn 2 p1n p2 n pnn
a + b = ( x 1 + y1 , x 2 + y 2 , , x n + y n ) T
定义数乘:
ka = ( kx1 , kx 2 , , kx n ) T ,
R n 是数域 R 上的线性空间。 C n 是数域 C 上的线性空间。
4
例2 实数域 R上的全体 m×n 矩阵,对矩阵的加法 和数乘运算构成 R上的线性空间,记作 Rm×n
定义:设 V 是一个非空集合,F 为数域,a, b, g V, 对于任意的a, b V, 总有唯一的元素 g V
与之对应,称 g 为a 与b 的和,记作 g =a +b,且
(1) a + b = b + a ;
( 2 ) (a + b ) + g = a + ( b + g );
( 3) 存在零元素: b V , a V , a + b = a, 称 b 为零元素, 并记 b 为 0 ; ( 4) 存在负元素 a V , b V, a + b = 0; 称 b 为 a 的负元素, 并记 b 为 - a ;
(1) a , b W , 则a + b W (2) a W , k F , 则 ka W
则称W 是V 的子空间。
21
例1. 实数域上 n 维向量的集合
W = { ( 0, x 2 , , x n ) T | x 2 , , x n R }
则 W是 R n 的 子 空 间 。
则 P 称为由基 a 1 , a 2 , , a n 到基 b 1 , b 2 , , b n 的 转移矩阵(或过渡矩阵),其中
p11 p21 P= p n1 p12 p22 pn 2 p1n p2 n pnn
第讲-线性空间与线性变换

例1、已知向量空间
V x1, x2, x3, x4 x1 x2 x3 x4 0, x2 x3 x4 0, x1, x2 , x3, x4 R
(1)求V的基和维数;
(2)求V的一组标准正交基。
解 由V的构成可知,V是4元齐次线性方程组
x1 x2
x2 x3
x3 x4 x4 0
证 (1)由加法的定义知 V1 V2 对加法封闭,并容 易验证加法满足交换律与结合律。且
设 1,2分别是V1,V2 中的零元,则1,2 是V1 V2 的
零元。
对1,2 V1 V2 , 存在 1, 2 V1 V2 , 使得
1,2 1, 2 1,2 .
其次由数乘的定义知 V1 V2 对数乘封闭,且
构成V的一个子空间,称之为由1,2, ,s 生成的子空
间,记为L 1,2, ,s .
验证线性空间V的非空子集W是否构成子空间,只 要验证W对于V的两种线性运算的封闭性。
2、线性子空间的有关结果
(1)如果数域P上的线性空间V的非空子集W对于V的
两种线性运算封闭,即对于任意, W 有 W ,又 对于任意 k P, W 有 k W ,则W是V的子空间。
a1, a2 , , an .
设1,2, ,s 是线性空间V中的一组元素,则
dim L 1,2, ,n r1,2, ,n
且元素组 1,2, ,s 的任一极大线性无关组都是生成
子空间 L 1,2, ,s 的基。
设W是数域P上 n 维线性空间V的一个m 维子空间,
1,2, ,m 是W的一组基,则这组元素必可扩充成V 的一组基。即在V中必可找到n m个元素m1,m2, ,n 使得1,2, m,m1, ,n 是V的一组基。
dimV . 即V 不是有限维线性空间。
V x1, x2, x3, x4 x1 x2 x3 x4 0, x2 x3 x4 0, x1, x2 , x3, x4 R
(1)求V的基和维数;
(2)求V的一组标准正交基。
解 由V的构成可知,V是4元齐次线性方程组
x1 x2
x2 x3
x3 x4 x4 0
证 (1)由加法的定义知 V1 V2 对加法封闭,并容 易验证加法满足交换律与结合律。且
设 1,2分别是V1,V2 中的零元,则1,2 是V1 V2 的
零元。
对1,2 V1 V2 , 存在 1, 2 V1 V2 , 使得
1,2 1, 2 1,2 .
其次由数乘的定义知 V1 V2 对数乘封闭,且
构成V的一个子空间,称之为由1,2, ,s 生成的子空
间,记为L 1,2, ,s .
验证线性空间V的非空子集W是否构成子空间,只 要验证W对于V的两种线性运算的封闭性。
2、线性子空间的有关结果
(1)如果数域P上的线性空间V的非空子集W对于V的
两种线性运算封闭,即对于任意, W 有 W ,又 对于任意 k P, W 有 k W ,则W是V的子空间。
a1, a2 , , an .
设1,2, ,s 是线性空间V中的一组元素,则
dim L 1,2, ,n r1,2, ,n
且元素组 1,2, ,s 的任一极大线性无关组都是生成
子空间 L 1,2, ,s 的基。
设W是数域P上 n 维线性空间V的一个m 维子空间,
1,2, ,m 是W的一组基,则这组元素必可扩充成V 的一组基。即在V中必可找到n m个元素m1,m2, ,n 使得1,2, m,m1, ,n 是V的一组基。
dimV . 即V 不是有限维线性空间。
§7.1 线性空间的定义与性质

例1 在实数域 R 和 R 集合(正实数全体)
上定义运算 a b aba,b R
o a a R, R
验证 R 对上述定义的加法 与数乘 o 。
运算构成实数域上的线性空间。
解 对加法封闭:对任意的 a,b R ,有
a b ab R 对数乘封闭:对任意的 R, a R ,有 o a a R
⑦ o a a aa a a oa oa
⑧ oa b oab ab ab a b o a ob 经验证 R 所定义的运算构成了线性空间。
例2 设集合 V 为:与向量 0,0,1 不平行的全体
三维数组向量。定义两种运算为:数组向量的加 法和数乘运算。验证集合 V 是否为实数域 R 上 的线性空间。
说明 求差的运算称为减法运算。
定义3 设 W 是线性空间 V 的一个非空子集,若 W 对于 V 中定义的加法与数乘运算也构成一个 线性空间,称 W 是 V 的子空间。
对于子空间,有如下定理加以判别。
定理 设 W 是线性空间 V 的一个非空子集,则 W 是 V 的子空间充要条件是 W 对于 V 的加 法与数乘运算具有封闭性,即
下面再验证满足8条规律: ① a b ab ba b a
② a b c ab c abc abc a b c
③ R 存在零元素1,对 a R 有 a 1 a1 a ④ 对 a R ,有负元素 a1 R ,使
a a1 aa1 1
⑤ 1 a a1 a
⑥ o o a o a a a o a , R
证(6)由 0 0 得
0 0 ,根据加法消去律有 0 0 证(8)若 0 ,据性质(5)可知 0 ;
若 0 ,则 1 存在,有 1 10 ,故
1 1 0 ,证毕
线性代数_第六章

a x1a1 + x2a2 + … + xnan
成立, 则称这组有序数x1, x2, …, xn 为元素a 在 基a1, a2, …, an下的坐标,记作(x1, x2, …, xn )T , 称
为坐标向量.
例4 求四维线性空间R2╳2中矩阵a在基{E11,
E12, E21, E22}下的坐标。
试求P[x]2中向量在这两个基下的坐标变换公式。
§6.3 欧氏空间
线性空间中,只定义了加法与数乘两种 运算;
在线性空间中引入度量的概念后,成为 欧几里德空间;
6.3.1 内积的概念与性质
定义1 设V是实数域R上的线性空间,若在V上定义了一个二元
实函数(a, b),它满足以下条件: 1)对称性 (a, b) (b, a) 2)齐次性 (ka, b) k(a, b) 3)可加性 (ab,g)(a, b)(a, g) 4)非负性 (a, a)≥0, 当且仅当a0时(a, a)0 其中, a,b,g为V中任意元素,则称此二元实函数(a, b)为元素a与 b的内积;定义了内积的线性空间称为内积空间.
例7 齐次线性方程组
AX=0 的全部解向量构成线性空间Rn的一个子 空间,称为(1)的解空间.
例8 设C[a,b]是闭区间[a,b]上所有连续实函 数组成的线性空间,P[x][a,b]是 [a,b]上所有的 实系数多项式集合;
则C[a,b]中的定义加法与数乘, P[x][a,b]构成 C[a,b]的一个子空间.
R, R2, Rn 都是有限维线性空间; P[x]是无限维线性空间;
例1 求齐次线性方程组的解空间N(A)的维数.
x1 x1
2x2 3x2
3x3 x4 10x3 5x4
0
成立, 则称这组有序数x1, x2, …, xn 为元素a 在 基a1, a2, …, an下的坐标,记作(x1, x2, …, xn )T , 称
为坐标向量.
例4 求四维线性空间R2╳2中矩阵a在基{E11,
E12, E21, E22}下的坐标。
试求P[x]2中向量在这两个基下的坐标变换公式。
§6.3 欧氏空间
线性空间中,只定义了加法与数乘两种 运算;
在线性空间中引入度量的概念后,成为 欧几里德空间;
6.3.1 内积的概念与性质
定义1 设V是实数域R上的线性空间,若在V上定义了一个二元
实函数(a, b),它满足以下条件: 1)对称性 (a, b) (b, a) 2)齐次性 (ka, b) k(a, b) 3)可加性 (ab,g)(a, b)(a, g) 4)非负性 (a, a)≥0, 当且仅当a0时(a, a)0 其中, a,b,g为V中任意元素,则称此二元实函数(a, b)为元素a与 b的内积;定义了内积的线性空间称为内积空间.
例7 齐次线性方程组
AX=0 的全部解向量构成线性空间Rn的一个子 空间,称为(1)的解空间.
例8 设C[a,b]是闭区间[a,b]上所有连续实函 数组成的线性空间,P[x][a,b]是 [a,b]上所有的 实系数多项式集合;
则C[a,b]中的定义加法与数乘, P[x][a,b]构成 C[a,b]的一个子空间.
R, R2, Rn 都是有限维线性空间; P[x]是无限维线性空间;
例1 求齐次线性方程组的解空间N(A)的维数.
x1 x1
2x2 3x2
3x3 x4 10x3 5x4
0
高等代数第六章 线性空间

线性空间的维数
定义7 如果在线性空间V中有n个线性无关 的向量,但是没有更多数目的线性无关的向 量,那么V就称为n维的;如果在V中可以找 到任意多个线性无关的向量,那么V就称为 无限维的。
按照这个定义,几何空间中向量所成的 线性空间是三维的;n元数组所成的空间是n 维的;
由所有实系数多项式所成的线性空间是 无限维的,因为对于任意的N,都有N个线
线性空间的元素也称为向量. 当然,这里 所谓向量比几何中所谓向量的涵义要广泛得 多。线性空间有时也称为向量空间。以下我 们经常是用小写的希腊字母 , , ,代表线 性空间V中的元素,用小写的拉丁字母 k,l, p, 代表数域F中的数
线性空间的性质
1.零元素是唯一的。 假设01,02是线性空间V中的两个元素。
(1,0,,0),
显然
2 (0,1,,0),
n (0,0,,1)
是一组基。对每一个向量 (a1, a2,, an ) ,
都有 a11 a22 ann
所以
(a , 1
a 2
,,
a n
)
就是向量
在这组基下的坐
标。不难证明,
1 ' (1,1,,1), 2 '(0,1,,1), n ' (0,0,,1)
2.如果向量组
线性无关,而且
可以被
线1,性2 ,表出,,r 那么
。
, ,,
1
2
s
rs
由此推出,两个等价的线性无关的向量
组,必定含有相同个数的向量。
3.如果向量组
1
,
2
,,
r
线性无关,但向
量组
1
,
2
,,
r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称 1 , 2 ,, m 为矩阵 A 的行向量组.
线性方程组的向量形式
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 设线性方程组 (1) am 1 x1 am 2 x2 amn xn bm
向量表示矩阵
1 2 n
a11 a 21 矩阵 A a m1 a1n a 2 n ( , ,, ), 1 2 n a mn 称 1 , 2 ,, n 为矩阵 A 的列向量组. a12 a 22 am 2
a
1 a a 构成线性空间 R (kl ) a a kl (a l )k k (l a ) (k l ) a a k l a k a l (k a ) (l a ) k (a b) (ab)k a k b k a k b k (k a ) (k b)
若干个同维数的列向量 (同维数的行向量) 所组成的集合
向量组就是指
a11 a 21 矩阵 A a m1
a12 a 22 am 2
a1n 1 1 a2 n 2 2 , a mn 1 1
向量的线性运算满足八条运算律
设 、 、 是n维向量,0是n维零向量,k、 l
是任意实数。 (1) + = + (2) ( + ) + = + ( + ) (3) + 0 = (4) + (- ) = 0 (5) 1· = (6) ( k l ) = k ( l ) (7) k ( + ) = k + k (8) ( k + l ) = k + l
(k11 k 2 2 k m m )
(k1 )1 (k 2 ) 2 (k m ) m {k1 1 k 2 2 k m m | ki R i 1,2,, m}
设 = ( a1, a2, …, an ), = (b 1, b 2, …, b n ), 是数
规定:
(1) 加法:
+ = ( a1 + b1, a2 + b2, …, an + bn) = ( a1, a2, …, an )
(2) 数与向量的乘法:
向量的加法及数乘统称为向量的线性运算。
如没特别说明所给向量默认为列向量
行向量和列向量是特殊的矩阵,所以向量相等 与向量的线性运算均按矩阵运算来进行。
规定:两个向量 = ( a1, a2, … an ), = (b 1, b 2, … b n )
相等,记 = ai = bi ( i = 1, 2, … , n)
2、n 维向量的线性运算
设V1 ,V2向量空间 V 的两个子空间 例4: 则(1) V1 +V2 1 2 1 V1 , 2 V2 仍是V 的子空间,称为V1 ,V2的和空间; V2 V1且 V2 (2) V1 仍是V 的子空间,称为V1 ,V2的交空间。
§1
向量空间
一、n维向量的定义及运算
一个n维向量。 记为: = ( a1, a2, … an )
n维向量是二维、 三维向量的推广
1.定义 由n个数组成的有序数组(a1, a2, … an)称为
其中第 i 个数 ai ( i = 1, 2, … , n ) 称为 n 维向量
的第 i 个分量或第i个坐标。
(2) V1 = { ( 1, a2, … , an ) | ai R, i = 2, 3, … n }
不是一个向量空间,
( 1, a2, … , an ) V1 1 时,
三、子空间
定义
设V是一个线性空间,V1 V,若V1也是一 个线性空间 ,则称 V1 是 V 的一个子空间。
称为由 1, 2, … , m 生成的向量空间,
对于向量 1 , 2 , , m R
n
则
记为 L (1, 2, … , m )
设 1 (2,0), 2 (1,1), L(1) ? L(1,2 ) ?
L(2 ) ?
例 3: 齐次线性方程组 A m nX = 0 的解集合记为 V = {X | A m n X = 0}, 证明 V 是 R n 的一个子空间。
向量空间是线性空间的特例,线性空间称为 广义向量空间
思考 (1) V = {0}构成向量空间吗?
(2) V1 = { ( 1, a2, … , an ) | ai R, i = 2, 3, … n }
构成向量空间吗吗?
0 = 0, 解答 (1) V = {0},由于 0 + 0 = 0,k·
V = {0} 构成一个向量空间,称为零空间。
思考 非齐次线性方程组 A m nX 构成线性空间吗?
AX1 b AX2 b
n 1
= b 的解集合
A( X1 X 2 ) ?
不构成线性空间
2b
思考 正实数的全体记作 R ,在其中定义加法和数乘
a b ab, a a ( R, a, b R ) R 对上述线性运算构成线性空间吗? 解 先验R 证对加法和数乘运算封闭。略 再验证满足八条运算规律: a b ab ba b a (a b) c a (b c) a 1 a 1 a, 1相当于R 中零元素 1 a 1 1, 1 aa 相当于 a 在 中负元素 R a
( 2)
二、向量空间
若集合 V非空, R为实数域,且定义了 定义 加法(记为 )和数乘(记为 )两种运算 如果集合 V对于加法及数乘两种运算封闭, 即 (1) 若 V , V , 则 V ; (2) 若 V , R, 则 V 并满足八条运算规律 则称集合 V 为数域R上的线性空间 += + 1· = ( + ) + = + ( + ) ( k l ) = k ( l ) +0= ( k + l ) = k + l + (- ) = 0 k ( + ) = k + k
零向量 0 = ( 0, 0, … , 0 ) 负向量 对 = ( a1, a2, … an ) 称 ( -a1, -a2, …, -an ) 为 的负向量。记为- 。
行向量 = ( a1, a2, …, an )
- = (-a1, -a2, …, -an )
a1 1 n n 维行向量即 行矩阵 a2 T ( a , a , , a ) 列向量 1 2 n a n维列向量即 n 1列矩阵 n
(6,5,1 / 2,1)T .
n 维向量的实际意义
确定飞机的状态,需 要以下6个参数: 机身的仰角 ( ) 2 2 机翼的转角 ( )
(0 2 ) 飞机重心在空间的位置参数P(x,y,z)
机身的水平转角 所以,确定飞机的状态,需用6维向量 a ( x , y , z , , , )
n 1 n 1
证:设X1和X2是齐次线性方程组AX=0的解,
即 A X1 = 0, A X2 = 0
则 (1) A( X1 + X2 )= 0,X1 + X2 仍是 AX = 0的解
(2) R , A( X1 ) = 0,X1仍是AX = 0 的解。
故 V 是 R n 的一个子空间。 V 称为齐次线性方程组 AX = 0 的解空间。
例1 设 1 ( 2,4,1,1) ,
T
2 ( 3,1,2,5 / 2) ,
T
如果向量满足 31 2( 2 ) 0, 求 .
解 由题设条件, 有
31 2 2 2 0
1 ( 2 2 31 ) 2 2 3 1 2 T T 3 ( 3,1,2,5 / 2) ( 2,4,1,1) 2
例如
(1) 全体 n 维向量构成一个线性空间,称为 n维向
特别有R3 , R 2 , R . (2) 实数域R上全体 m n 矩阵组成的集合Rm n
量空间:记作 Rn ;
按矩阵的加法和数乘运算是一个线性空间。 (3) 定义在闭区间[a,b]上的全体连续函数的集合 C[a,b]按照函数的加法和数乘是一个线性空间。
令 i
a1 j a2 j a mj
( j 1,2,, n),
则线性方程组 (1) 可表为:
b1 b2 b m
1 x1 2 x2 n xn
i 1,2,, m}
证明:L 构成一个向量空间。 证: , L, R k11 k 2 2 k m m 1 k 2 2 k m m k1 2 k m m ) (k11 k 2 2 k m m ) (k11 k 2 )1 (k 2 k 2 ) 2 (k m k m ) m L (k1 k1
1. 理解n维向量的概念。 2.理解向量组线性相关、线性无关的定义,了解有关 的重要性质并会进行判别。 3.理解向量组的最大无关组与向量组的秩的概念,并 会求向量组的最大无关组与向量组的秩。 4.知道维向量空间、子空间、基底、维数、坐标等概 念,知道基变换和坐标变换。 5.了解向量内积的概念,了解标准正交基的概念,会 用线性无关向量组正交规范化的施密特(Schmidt)方法。 6.了解线性变换的概念,了解正交变换和正交矩阵的 概念和性质。 7.理解线性变换的特征值与特征向量的概念并掌握其 求法。 8.了解相似矩阵的概念及性质。了解矩阵对角化的充 要条件。会求实对称矩阵的相似对角形矩阵。