子空间的直和

合集下载

子空间的直和

子空间的直和
又 V1 V2是 Pn的子空间, P n V1 V2 .
§6.7 子空间的直和
再证 Pn V1 V2 .
任取 V1 V2, 即 V1且 V2 . 由 V1, 必有 Pn, 使A . 由 V2 , 有A 0. 从而 A A2 A( A ) A 0.
V1 V2 0
所以 Pn V1 V2 .
(3)Vi Vj 0,i 1,2,
ji
§6.7 子空间的直和
s
, s (4)dimW dimVi
i 1
例1 每一个n 维线性空间都可以表示成 n 个一维
子空间的直和.
证:设 1, 2 , , n 是 n 维线性空间V的一组基,
则 V L(1, 2 , , n ) L(1 ) L( 2 ) L( n )
s
是唯一的,则和 Vi 就称为直和,记作
i 1
V1 V2 Vs
§6.7 子空间的直和
2、判定
设 V1,V2 , ,Vs 都是线性空间V的子空间,则下面 四个条件等价:
s
(1)W Vi 是直和
i 1
(2)零向量分解式唯一,即
1 2 s 0, i Vi , 必有 i 0, i 1, 2, , s
§6.7 子空间的直和
A(k ) kA k0 0 V2 , k V2
故 V2 是 Pn的子空间.
§6.7 子空间的直和
(2)先证 P n V1 V2 .
任取 Pn, 有 A ( A ),
其中 A V1, 又 A( A ) A A2 A A 0 A V2 . 于是有 V1 V2 . Pn V1 V2 .
§6.7 子空间的直和
2、和 V1 V2是直和 V1 V2 0.
证:“ ”
若 1 2 0, 1 V1, 2 V2 .

子空间的直和的充要条件

子空间的直和的充要条件

子空间的直和的充要条件一、引言在线性代数中,子空间是向量空间的一个重要概念。

直和则是子空间的一个重要性质。

本文将介绍子空间的直和以及充要条件。

二、子空间2.1 定义向量空间V中的非空子集U称为V的子空间,如果U对于向量加法和数乘运算也构成一个向量空间。

2.2 子空间的性质•零向量属于任意子空间•对于任意u,v属于U,u+v也属于U•对于任意k,u属于U,ku也属于U三、直和3.1 定义设V是线性空间,W1和W2是V的两个子空间。

如果满足以下两个条件,则称W1与W2的直和为V:•V = W1 + W2:即任意v属于V都可以表示为v = w1 + w2,其中w1属于W1,w2属于W2。

•W1 ∩ W2 = {0}:即W1与W2只有零向量交集。

3.2 直和的几何理解直和可以理解为两个子空间在几何上没有交集,并且它们的所有组合可以覆盖整个向量空间V。

四、充要条件子空间的直和有以下充要条件:4.1 直和的充要条件一设W1和W2是向量空间V的两个子空间,则V是它们的直和当且仅当对于任意v属于V,存在唯一的v1属于W1和v2属于W2,使得v = v1 + v2。

4.2 直和的充要条件二设W1和W2是向量空间V的两个子空间,则V是它们的直和当且仅当维数公式成立:dim(V) = dim(W1) + dim(W2)。

4.3 证明充分性证明:如果存在唯一的v1属于W1和v2属于W2,使得v = v1 + v2,那么对于任意v属于V,都可以表示为v = v1 + v2。

这说明V = W1 + W2。

另外,假设存在一个非零向量w同时属于W1与W2,则w既属于W1又属于W2,那么存在唯一的w’属于W1和w’‘属于W2,使得w = w’ + w’’。

由此可知w也可以表示为其他两个不同向量之和,与唯一性矛盾。

因此,W1与W2的交集只有零向量。

必要性证明:如果V是两个子空间W1和W2的直和,那么对于任意v属于V,都可以表示为v = w1 + w2,其中w1属于W1,w2属于W2。

7.子空间的直和

7.子空间的直和
§6.7 子空间的直和
反之,若 V1 V2 直和,则 dim(V1 V2 ) dimV1 dimV2 r s
从而 1, 2 , , r ,1,2 , ,s 的秩为r+s . 所以 1, 2 , , r ,1,2 , ,s 线性无关.
§6.7 子空间的直和
总之,设 V1,V2 为线性空间V的子空间,则下面
§6.7 子空间的直和
三、多个子空间的直和
1、定义
V1,V2 , ,Vs 都是线性空间V的子空间,若和
sБайду номын сангаас
Vi V1 V2 Vs 中每个向量 的分解式
§6.7 子空间的直和
一、两个子空间的直和 二、余子空间 三、多个子空间的直和
§6.7 子空间的直和
引入
设 V1,V2为线性空间V的两个子空间,由维数公式 dimV1 dimV2 dim(V1 V2 ) dim(V1 V2 )
有两种情形: 1) dim(V1 V2 ) dimV1 dimV2 此时 dim(V1 V2 ) 0, 即,V1 V2 必含非零向量.
§6.7 子空间的直和
注意:
余子空间 一般不是唯一的(除非U是平凡子空间). 如,在R3中,设
1 (1,1,0), 2 (1,0,0), 1 (0,1,1), 2 (0,0,1) 令 U L(1,2 ), W1 L(1 ), W2 L(2 ), 则 R3 U W1 U W2 , 但 W1 W2
§6.7 子空间的直和
证:由题设,V1 L(1, 2 , , r ), dimV1 r V2 L(1,2 , ,s ), dimV2 s
V1 V2 L(1, 2 , , r ,1,2 , ,s ). 若 1, 2 , , r ,1,2 , ,s 线性无关,

6[1].7 子空间的直和

6[1].7  子空间的直和

1 - 1 = 0 , 2 - 2 = 0 , 即 1 = 1 , 2 = 2 .
这就是说,向量 的分解式是唯一的.
证毕
推论 和 V1 + V2 为直和的充分必要条件是
V1 ∩ V2 = { 0 } .
证明 先证充分性. 假设有等式
1 + 2 = 0,
那么
1 V1 , 2 V2 ,
是唯一的,这个和就称为直和. 记为 V1 V2 … Vs .
和两个子空间的直和一样,我们有
定理 4 设 V1 , V2 , … , Vs 都是线性空间 V
的子空间,则下面这些条件是等价的:
1) W Vi 是直和;
2) 零向量的表法唯一; 3) Vi
V
j i
j
{0}
(i 1,2,, s) ;
则 R 3 U W1 U W2 , 但 W1 W2
例 3 设 V = P 3,U = L(1 ), 1 = (1, 1, 1),
求 U 的补空间 W .
解 要求补空间 W,即要求 W 的一组基. 只需
把 U 的基扩充为 P 3 的基. 取
e1 = (1, 0, 0), e2 = ( 0, 1, 0),
② 分解式唯一的不是在任意两个子空间的和中 都成立. 例如,R3的子空间
V1 L( 1 , 2 ), V2 L( 2 , 3 ), V3 L( 3 )
这里, 1 (1,0,0), 2 (0,1,0), 3 (0,0,1)
在和 V1 V2 中,向量的分解式不唯一,如
而0有分解式 0= 0 0,
1 0, 2 0.
充分性.
设 V1 + V2 1 + 2 , 1 , 1 V1 , 2 , 2 V2.

51-子空间直和的判定与证明

51-子空间直和的判定与证明

子空间直和的判定与证明一、直和的定义:设V1,V2是线性空间V的子空间,如果和V1+V2中每个向量α的分解式α=α1+α2,α1V1,α2V2,是惟一的,这个和就称为直和,记为V1⊕V2.二、判定定理:1.定理:和V1+V2是直和的充分必要条件是等式α1+α2=0,αiVi (i=1,2)只有在αi全为零向量时才成立.证明:要证明零向量的分解式是唯一的即可。

必要性:显然成立;充分性:设αV1+V2,它有两个分解式α=α1+α2=β1+β2,αi,βiVi (i=1,2)于是(α1-β1)+(α2-β2)=0.其中αi-βiVi (i=1,2).由定理的条件,应有α1-β1=0,αi=βi (i=1,2).这就是说,向量α的分解式是唯一的。

2.定理:和V1+V2为直和的充分必要条件是V1∩V2={0}.证明:充分性:假设α1+α2=0,αiVi (i=1,2)那么α1=-α2 V1∩V2.由假设α1=α2=0.这就是证明了V1+V2是直和。

必要性:任取向量αV1∩V2,于是零向量可以表成0=α+(-α),αV1,—αV2.因为是直和,所以α=-α=0,这就证明了V1∩V2={0}.3.定理:设V1,V2是线性空间V的子空间,令W= V1+V2,则W= V1⊕V2的充分必要条件是维(W)=维(V1)+维(V2).证明:充分性:维(W)=维(V1)+维(V2),由维数公式知,维(V1∩V2)=0,则V1∩V2={0},由定理2得,V1+V2是直和。

必要性:因为维(W)+维(V1∩V2)=维(V1)+维(V2),由定理2得,V1+V2是直和的充分必要条件是V1∩V2={0},这与维(V1∩V2)=0等价,则维(W)=维(V1)+维(V2).4.定理:设U是线性空间V的一个子空间,那么一定存在一个子空间W,使V=U⊕W.证明:取U得一组基α1,……,αm,把它扩充为V的一组基α1,……,αm,αm+1,……,αn,令W=L(αm+1,……,αn).W即满足条件。

6.7 子空间的直和

6.7 子空间的直和

第六章 线性空间学习单元7: 子空间的直和_________________________________________________________● 导学学习目标:了解子空间的直和的概念;理解子空间的直和的判别;掌握证明线性空间V 是两个子空间的直和的证明方法。

学习建议:本学习单元的理论比较抽象,建议大家认真看书,深刻理解概念及定理的条件与结论,通过例题掌握证明方法。

重点难点:重点:深刻理解子空间的直和的概念与判别法。

难点:线性空间分解成两个子空间的直和的证明。

_________________________________________________________● 学习内容一、直和的概念观察两个子空间的和的特点例 212,{(,,0)|,},{(0,,)|,}V P V a b a b P V x y x y P ==∈=∈,则12V V V +=,但V 中向量表为1V 与2V 中向量的和时表法不唯一,如(1,7,4)(1,2,0)(0,5,4)(1,3,0)(0,4,4)=+=+ 又12{(,,0)|,},{(0,0,)|}V a b a b P V x x P =∈=∈。

则12V V V +=,而V 中向量表为1V 与2V 中向量的和时表法唯一。

定义 V 为P 上线性空间,12,V V V ≤,如果12V V +中向量表为1V 与2V 中向量的和时,表法唯一,即由1212111222,,,,V V αααββαβαβ=+=+∈∈可推出1122,αβαβ==,则称这个和为直和,记为12V V ⊕。

二、直和的判别定理 设12,V V 为数域P 上线性空间V 的两个子空间,则下列几条等价。

(1)1212V V V V +=⊕;(2)12V V +中零向量表法唯一;(3)12{0}V V =I ;(4)1212dim()dim dim V V V V +=+。

推广定理 设1,,s V V V ≤L ,则下列几条等价。

子空间的和与直和

子空间的和与直和

5.5 子空间的和与直和授课题目:子空间的和与直和.教学目标:1.理解并掌握子空间的概念.2.掌握子空间的判别方法,熟悉几种常见的子空间. 3.掌握子空间的交与和的概念.授课时数:3学时教学重点:子空间的判别. 教学难点:子空间的交与和. 教学过程: 一 子空间的的和回忆:令W 是数域F 上向量空间V 的一个非空子集.如果W 对于V 的加法以及标量与向量的乘法来说是封闭的,那么就称W 是V 的一个子空间. 一个向量空间V 本身和零空间叫做V 的平凡子空间。

V 的非平凡子空间叫做V 的真子空间。

1. 定义:设12,W W V ⊆,则称V 的子集{}121122/,W W αααα+∈∈ 为1212w w W W +与的和,记为即12W W +={}121122/,W W αααα+∈∈定理5.5.1:若12,W W 均为V 的两个子空间,则12W W +仍然是子空间.证明:12,W W θθθθθ∈∈∴=+∈ 12W W +故12W W +≠φ对121212,,,,a b F W W αβαααβββ∀∈∉+=+=+有,111222,,,W W αβαβ∈∈ 12W W +均为v 子空间.∴111222,a b W a b W αβαβ+∈+∈于是()()()()1212112212a b a b a b a b W W αβααββαβαβ+=+++=+++∈+∴12W W +是V 的子空间。

推广:12,,,n W W W V n 为的个子空间,则{}12121122/,,,n n n n W W W W W W αααααα+++=+++∈∈∈仍然是V 的子空间.补充:若W =L ()ααα,,, ,(),,,W L βββ=证明:∈γ12W W +,有βαγ+=,12,W W αβ∈∈ 设r r k k k αααα+++= 2211t t l l l ββββ+++= 2211∴ =+=βαγr r k k k ααα+++ 2211+βββt l l l +++ 2211 ∴12W W +=L ()t r βββααα,,,,,,,2121定理5.5.2 维数定理。

§7子空间的直和

§7子空间的直和
从而
W1 W2 L(1 ,, m ) L( 1 ,, s )
L(1 ,, m , 1 ,, s )
故 1 , 2 ,, m , 1 , 2 ,, s 的秩
dim(W1 W2 )
dim W1 dim W2 m s
是 W1 W2 的基. W1 W2 ,令
1 2 1 2 , 1 ,1 W1 , 2 ,2 W2

1 k11 k2 2 km m 2 l1 1 l2 2 l s s
1 l2 2 ls s 2 km m 2 l1 1 k11 k2
4) dim(W1 W2 Wt ) dimW1 dimW2 dimWt ; 5) 各取合起来构成的基.
例3 设
P nn 的子空间
S

A A P nn , A A ,

T A A P nn , A A
证明:


S T P nn .
0 1 2 , 1 W1 , 2 W2
则 1 0, 2 0 ;
3)
W1 W2 0.
证明 1) 2)显然的
.
2) 3) W1 W2 ,则 W1 , W2 ,由
0 ( ),因而 0 ,故 W1 W2 0 3) 1) 设 W1 W2 中的向量 的分解式为
1 2 , 1 W1 , 2 W2
是唯一的.称 W1 W2 为直和(direct sum), 记为 W1 W2
下面,我们讨论子空间的和是直和的等价条件. 定理7.1 设为数域上的线性空间的两个子空间.则下 列命题等价: 1) W1 W2 是直和; 2) 零向量分解式是唯一的.即若
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档