饲料中可利用氨基酸研究进展

合集下载

功能性氨基酸在生长、繁殖和健康中的作用

功能性氨基酸在生长、繁殖和健康中的作用
1 . 基 酸的 降解 2氨
长期 以来 ,人们认 为 日粮氨基 酸被消化 后通过 肠上皮 细胞 吸收 ,然后 以完整形 式进入 门静脉 。但
是 ,最 近 的研究 表 明 ,仔 猪肠 内营养 中的 E A和 A NA E A可在 小肠大 量 降解 ,其 中 <2 %的 氨基酸 被 0
用 于肠 粘膜蛋 白质 的合 成 。肠 内营养 中几 乎所有 的
09 W/, . g B d 当降解 率不 低 于 11 gB d或 3 ag .l W/, 至少有 6 %脯 氨酸用 于蛋 白质合成 时 , 氨酸 就会 0 脯
从头合 成 。此外 , 母乳 中分别有 2 %甘氨酸 和 6 % 3 6 丙氨 酸用 于仔 猪 的蛋 白质 合成 , 而仔 猪 日粮 中甘氨 酸 和 丙 氨 酸 的量 分 别 不 得 低 于 07 .1和 01 /g .8gk
成 ,而且威胁 机体稳态 。所 以 ,在 E粮 中添加某种 t F A可最大程度地提高幼年动物 的生长潜 能 ,还能 A
防治动物 和人类疾病的产生 ( 如肥胖症 、 尿病 、 糖 坏死
性肠炎和宫内发 育迟缓等 ) 。因此 , 本文综 述 F A在 A
营养代谢 、 、 和健康 中的作用研究进展。 生长 繁殖
响其 营养 和健康 。但是 , 来 越多 的细胞 培养 和动 越 物研 究表 明 , 统上 认为 N A 如谷 氨酰胺 、 传 E A( 谷氨 酸 和精 氨 酸 )在许 多信 号 通路 中发挥 中重要 的作 用, 如调控 基 因表达 、 细胞 内蛋 白质周 转 、 营养 代谢
和 氧化 防护 等 。还 有研究 证实 , 哺乳 动物 不能 合成
1研 究现状
1 氨 基 醢 的 合 成 . 1
【 收稿 日期]o o 1 2 2 l一1— 0 [ 作者简介】 朱翠( 9 5 , , 士研 究生, 东河源人 , 18 一)女 博 广 动物营养与饲料科 学专业

猪饲料中可消化氨基酸研究与应用

猪饲料中可消化氨基酸研究与应用

中图分类号 S2 Q r 文献标志码:A 88 7 文章编号:l0- (0 11—0 10 o1 ̄ 2 1)002- 3
Rs a c n pia ino g sil e r h a dAp l t fDie t eAmioAcd i g F e c o b n i n Pi e d
设 计 低 蛋 白质 饲 料 配 方 ,能 更 准 确 地 配 制 出氨 基 酸 、蛋 白质 与能量 之 间平衡 的饲 粮 ,在利 用可 消化
22 饲料博览 21 年第lr 01 o e
氨基酸配制 日粮时,由于降低 了E粮中的粗蛋 白含 l 量 ,因此可以提高 日 粮的能量利用率 ,减少能量 的
基 酸消化率研究 动物营养学报, 0 3 l( ) 5 — 8 20,53:35.
[ 2】 杨凤. 动物营养学[l 北京: r1 O. 中国农 业出版社 ,9 9 19 .
浪费。从而达到降低饲粮粗蛋 白质水平 ,提高经济
效益 ,减少氮代谢引发的疾病 ,减小粪氮污染环境 的 目的 。
【 参 考 文 献 】
[ ] 姜建 阳, 3 黄德仕, 藏兰. 长猪 高蛋 白豆粕氨基酸 回肠可消 李 生 化率 的研究m. 中国畜牧杂志, 0 8 9 : 5 2 . 20()2—8
[ 4] 姜建 阳, 李洁 云, 谯仕 彦. 热处 理对大豆 制品在生长 猪回肠表
观 和真 可消化 氨基 酸消化 率 的影 响l _中国畜牧 杂志, 0 8 J l 2 0
收稿 日期 :2 1- 5 2 0 10—6
作者简 介:涂兴强 (9 9 ) 18 一 ,男 ,江西南 昌人 ,硕士研究生 ,研究方 向为动物营养与饲料a t 。 l o
通 讯 作 者 :教 授 ,硕 士 生 导 师 。

畜禽饲用精氨酸的研究进展

畜禽饲用精氨酸的研究进展

2018年第13期中国饲料5[■V V V V V V V V V V V V V V V V V V V V V V V V V VV V V VV V VV V V VV V VV V V VV V V VV V VV V V VV V V VV V VV V V VV V VV V V VV V V D O I:10.15906/11-2975/s.20181301畜禽饲用請氨酸的研究进展代张超,李吕木*袁卫爱莲,李姗,鲁陈,闫一博(安徽农业大学动物科技学院,安徽合肥230036)[摘要]精氨酸作为一种条件必需氨基酸,会对畜禽生产、繁殖、免疫等生理功能产生影响。

本文就精氨酸的理化 性质、吸收和分解代谢、生理功能等进行综述。

[关键词]精氨酸;代谢;生理功能[中图分类号]S816.7 [文献标识码]A[文章编号]1004-3314(2018)13-0005-051886年,德国科学家Schulze等人首次从羽 扇豆幼苗中分离出晶体形式的精氨酸,并对其进 行了命名。

1895年,H ed in发现精氨酸存在于哺乳 动物的蛋白质中。

20世纪初,精氨酸的分子结构 已经清楚,并能进行人工合成。

精氨酸学名为2- 氨基-5-胍基-戊酸,分子式为C6H M N402,一种脂 肪族的碱性的含有胍基的极性琢氨基酸,有D型 和L型两种。

健康的成年哺乳动物能够自主合成 精氨酸,且合成的量能够满足机体需要;但幼年动 物及成年动物受损伤或代谢旺盛时,自身合成的 精氨酸量并不能满足机体需求,因此,精氨酸是哺 乳动物的一种条件必需氨基酸;家禽体内缺乏合 成精氨酸前体物质所必需的甲酰磷酸酶等酶,不 能合成精氨酸,只能由日粮提供,所以精氨酸对于 家禽来说是必需氨基酸(孙丰等,2010)。

1精氨酸的来源和吸收动物机体精氨酸主要来源有日粮渊大约占 40%)、机体蛋白质的分解和机体内其他氨基酸(谷 氨酸和瓜氨酸等)的转化(王喜波等,2007)。

我国氨基酸现状与发展意见

我国氨基酸现状与发展意见

我国氨基酸是生产现状与发展意见氨基酸是含氨基和羧基的有机化合物的统称,是构成生物体蛋白质的基本单位。

蛋白质氨基酸有20种,非蛋白质氨基酸有400多种,其衍生物和合成的短肽品种达数千种之多。

氨基酸广泛应用于医药、食品、保健、饲料、化妆品、农药、肥料、制革、科学研究等领域。

据统计全世界氨基酸的年需求量以每年10%的速度增长,年总产量120万t以上。

作为食品添加占40%,饲料添加剂占40%,医药保健等占20%。

饲料工业氨基酸应用量较大的有蛋氨酸、赖氨酸、色氨酸、苏氨酸,日本已有30年的应用历史。

1999年蛋氨酸生产能力达到72万t,产量48.9万t;赖氨酸生产能力达到60万t,产量43万t。

国际氨基酸生产厂家主要有日本味之素、协和发酵、田边制药以及德国De-gussa公司。

日本在氨基酸产量、品种和技术水平均居世界领先地位,并在美国、法国以及我国的四川、上海建有合资公司。

1我国氨基酸生产现状我国已成为氨基酸原料的生产大国。

其中味精(谷氨酸)年产量40多万t,产销量居世界第一位,胱氨酸和半胱氨酸年产量分别达到2000 t和1500 t,产销量也居世界第一位。

其它各种氨基酸大多数能够生产,年产量3万t左右。

生产企业有100多家。

临床用氨基酸输液的10多种原料,大多数依赖进口。

我国药用氨基酸占世界总产量的1%左右,但销售额占氨基酸产品总额的18%~20%。

我国氨基酸工业,在50年代只生产味精,其它品种基本没有。

70年代开始以水解法制备胱氨酸为起点,同时开发了精氨酸、酪氨酸、亮氨酸、半胱氨酸等产品。

1999年国内氨基酸产值30亿元,2000年预计可达40亿元。

目前用于氨基酸输液的18种氨基酸原料药品种,14种实现了国产化。

天津、广东、湖北的输液生产使用国产氨基酸原料比例超过50%,有些品种在成分和质量上达到了国际先进水平,并出口创汇。

氨基酸原料药生产厂家从1989年的8家发展到现在的40多家,产量1997年达到3000 t,是1994年的5倍,1999年达到4000 t,主要生产单位有湖北八峰药化、天津氨基酸、广东肇庆星湖、上海冠生园、宜昌三峡、南宁安力泰、潜江氨基酸等。

氨基酸矿物质螯合物的制备方法和应用研究进展

氨基酸矿物质螯合物的制备方法和应用研究进展

第23卷第1期衡水学院学报Vol. 23, No.1氨基酸矿物质螯合物的制备方法和应用研究进展吴海静,孙金旭,虞竹韵(衡水学院生命科学学院,河北衡水053000)摘要:氨基酸矿物质螯合物有强稳定性、低副作用、生物效价高、环保等众多优点,经过近50年的发展,已经在饲料行业取得了丰硕成果,并逐步在农业、食品和医药等行业发展起来。

为了更好推动氨基酸矿物质螯合物的发展应用,就氨基酸矿物质螯合物和制备方法及其应用进展进行阐述。

建议应大力开发以氨基酸矿物质螯合物为添加剂的功能食品,在医药领域要进一步研究氨基酸矿物质螯合物在机体内的吸收代谢机制。

关键词:氨基酸矿物质螯合物;制备方法;添加剂;农业;食品;医药DOI:10.3969/j.issn.1673-2065.2021.01.005作者简介:吴海静(1991-),女,河北衡水人,助教;孙金旭(1975-),男,河北景县人,教授,理学博士。

中图分类号:Q517;O743 文献标识码:A 文章编号:1673-2065(2021)01-0018-06收稿日期:2020-01-09氨基酸矿物质螯合物是20世纪70年代首先由美国ALBICN生物实验室最早研制成功的一类新型高效饲料添加剂,即将蛋白螯合铁应用于预防哺乳仔猪贫血。

此后其他许多国家包括美国、意大利、丹麦、荷兰等国都对其进行了一系列的研究和开发应用[1]。

氨基酸矿物质螯合物作为第三代新型矿物元素添加剂,它既克服了第一代添加剂无机盐性质不稳定、易潮解、结块、氧化,以及在饲料中混合不均匀等缺点,也避免了第二代传统有机盐不易吸收、生物效价低、机体耗能高等缺点。

氨基酸矿物质螯合物化学稳定性强、生物效价高、副作用低,同时还具有环保、低添加量作用明显等优点[2-3]。

为了更好地发挥氨基酸矿物质螯合物的应用,推动行业的发展,笔者对氨基酸矿物质螯合物性质和制备方法进行了介绍,综述了其在农业、食品、医药和饲料行业中的应用情况,为进一步研究提供依据。

水产饲料中氨基酸类诱食剂的研究进展

水产饲料中氨基酸类诱食剂的研究进展

表1几种常见鱼的初级嗅板数目鱼类品种初级嗅板数目/对鱼类品种初级嗅板数目/对大口鲶30~45日本鳗鲡54革胡子鲶17~22斑点叉尾25~28黄颡鱼32~34泥鳅5~8长吻50~66鲤鱼15~16基金项目:安徽省重大科技专项(0701*******)*通讯作者研究表明,外源性氨基酸类物质不仅具有营养作用,而且对水产动物的摄食行为有着极强的刺激作用,是水产动物良好的诱食剂。

本文就国内外关于氨基酸类物质作为诱食剂的研究作一综述,为氨基酸诱食剂的进一步研究和在水产养殖中的应用提供参考。

本文所述的氨基酸类物质不仅包括一般形式的氨基酸单体,还包括复合氨基酸、氨基酸衍生物和含氨基酸提取物等。

1水产动物的摄食感受器系统与诱食机理水产动物的摄食感受器系统主要包括嗅觉感受器与味觉感受器。

1.1嗅觉感受器鱼类的嗅觉感受器由一些嗅觉上皮内陷形成的嗅囊,以及嗅囊内的嗅觉上皮通过褶皱形成的初级嗅板构成。

初级嗅板的多少与鱼类的嗅觉灵敏度相关,嗅板数目多其嗅觉上皮的相对面积就大,鱼类的嗅觉也就较灵敏。

表1为几种常见鱼的初级嗅板数目。

嗅觉检测结果证明,欧洲鳗能感受浓度为2×10-6mol/L 的芷香酮和3×10-19mol/L 的苯乙醇,是人类嗅觉能力的1000多倍。

另外,鱼类的嗅觉灵敏度因其不同发育阶段而有差异,研究发现,牙鲆的初孵鱼仔嗅囊内没有嗅觉上皮细胞,而25日龄的稚鱼嗅囊中各嗅觉细胞均已分化成熟,嗅觉功能出现。

对甲壳类动物的研究表明,其嗅觉感受器与脊椎动物的相比有较大的不同,如龙虾的嗅觉感受器主要集中在附肢第一对触角上,通过神经元树突感受外界信息。

在电镜下,龙虾的嗅觉神经元数目为35万个,能对三甲基甘氨酸、半胱氨酸、谷氨酸、牛磺酸等物质产生不同的反应(曾瑞和杨春贵,2002)。

1.2味觉感受器味觉系统的外部器官是味蕾。

鱼类的味蕾遍布体内外,不仅存在于口腔、咽、食管和鳃上,也存在于唇、触须、体侧和鳍上,而甲壳类动物的味觉感受器则主要分布在口器和颚足上。

饲料中氨基酸的作用

饲料中氨基酸的作用

饲料中氨基酸的作用饲料中的氨基酸是动物生长发育和健康维持的重要营养成分,对于动物的生长、免疫功能和繁殖能力具有重要作用。

本文将从不同角度探讨饲料中氨基酸的作用。

1. 促进动物生长发育氨基酸是构成蛋白质的基本组成单位,对于动物的生长发育至关重要。

饲料中的氨基酸可以提供动物所需的蛋白质合成所必需的氨基酸,从而促进动物体内蛋白质的合成和新陈代谢。

特定的氨基酸比例可以提高蛋白质的利用率,促进动物的生长速度和体重增加。

2. 保持免疫功能氨基酸不仅是蛋白质的构成单位,还是调节免疫功能的重要分子。

饲料中的氨基酸可以提供机体所需的免疫球蛋白的合成所必需的氨基酸,增强免疫功能。

一些特定的氨基酸,如谷氨酸和精氨酸,还可以促进抗体的产生和细胞免疫的活性,提高动物的抗病能力。

3. 提高饲料利用率饲料中的氨基酸可以提高动物对饲料中蛋白质的利用率。

一方面,饲料中的氨基酸可以补充动物体内所缺乏的氨基酸,避免蛋白质合成的限制。

另一方面,饲料中的氨基酸可以减少蛋白质的分解和氨基酸的代谢消耗,提高饲料中蛋白质的利用效率,降低饲料成本。

4. 促进繁殖能力饲料中的氨基酸对于动物的繁殖能力也具有重要影响。

氨基酸是性激素合成的重要原料,可以促进生殖细胞的发育和成熟,提高动物的繁殖能力。

一些特定的氨基酸,如精氨酸和色氨酸,还可以提高动物的性行为和繁殖行为,促进配种和受精率的提高。

5. 改善饲料品质和口感饲料中的氨基酸可以改善饲料的品质和口感,增加动物对饲料的摄食量。

一些特定的氨基酸,如谷氨酸和赖氨酸,可以增加饲料的香气和味道,提高动物对饲料的喜好和摄食率。

同时,饲料中的氨基酸可以改善饲料的消化吸收率,减少排泄物的产生,降低环境污染。

饲料中的氨基酸对动物的生长发育、免疫功能和繁殖能力具有重要作用。

合理调配饲料中的氨基酸含量和比例,可以提高动物的生产性能和健康水平,降低饲料成本,促进畜牧业的可持续发展。

氨基酸添加剂在饲料中的合理应用

氨基酸添加剂在饲料中的合理应用

动 物 将 … 现 叫 症 状 , L 表 为 常 见 氨 基 文 f 1
J l 乏 症 状 ( 1 If 缺 J 2 页 )、 2
般 的 1 l i
I 址 , 命 i J I贝 l i — l l。 勒 1 :J j 【顷 1 址坂 』 J l f l 5 , 腋 的 ,ll l
法 J: 侧 料 级 氦 酸 添 力l 主 要 品 种 有 以 , l 剂
卜儿 类 : 2 1 一赖 氨 盐 酸 盐 .L
需 氨 基 酸 又 依 据 需 求 程 度 和 蕈 性 依 次 分 为 第 一 限 制 性 氨 基 酸 、 第 二 限 制 性 氮 酸 等 , 不 同 动 物 种 类 和 动 物 不 同 生 长 期 , 其 必 须 氨 基 酸 的 种 料 和 数 量 各 不 同 , 如 猪 的 必 需 氨 基 酸 为 赖 氨 酸 、 蛋 氨 酸 、 氨酸 、 氨酸 、 氨酸等 1 色 精 苏 0种 , 雏 鸡 的 必 而 须 氨 基 酸 为 蛋 氨 酸 、 氨 酸 、 氨 酸 、 氨 酸 等 十 赖 甘 缬 三 种 。 随 着 饲 料 配 方 技 术 的 向 前 发 展 ,饲 料 配 方 已 由 传 统 的 能 量 一蛋 白 模 式 慢 慢 向 可 利 用 氨 基 酸
物 j . … ・l , ¨: p一 的 坂 J 。 仃
2 氨 基 酸 饲 料 添 加 剂 的 种 类 随 愀 化 ,J : d 料 』 ‘ 术 n 进 一 步 捉 离 和 牛 产 的 舰 技 , J 炎 d 添 刹 t 饲 料 l业 中 料 Z
2 I ,J 功 物 监 I J l J 圣人约 J2 l/ 5币 ,f l l I2 J J , , , I矗『 J 0f i l l
合 成 满 动 物 L小畋 f 范
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4期401~409 JOURNAL OF GANSU AGRICULTURAL UNIVERSITY 季刊2饲料中可利用氨基酸研究进展刘超,闵育娜,雷海宁,白存江,段建功(西北农林科技大学畜牧兽医研究院,咸阳窖店 712039)摘要:综述了可利用氨基酸在饲料中的研究进展,对部分研究成果进行了评述。

认为氨基酸可利用率的测定方法应从生产现场进行选择,畜禽可利用氨基酸需要量研究应成为研究重点,并对可利用氨基酸在日粮中的应用前景进行了展望。

关键词:饲料;可利用氨基酸;研究进展中图分类号:S 816.11 文献标识码:A文章编号:1003-4315(2002)04-0401-091 氨基酸营养研究的理论基础以蛋白质配制日粮并评定营养价值,是由于蛋白质是次于能量的重要营养物质,构成动物体蛋白质必需的氮元素与植物体相差的百分率最大(70.0 %)[1];部分饲料成本,蛋白质饲料约占四分之一。

因此,蛋白质资源利用和低蛋白质日粮的研究,是以提高蛋白质的生物学价值为目的。

对氨基酸营养的认识,使人们明白蛋白质营养价值变化的基本原因。

蛋白质不是整体消化,而是被分解成小肽或氨基酸吸收利用。

使用纯合日粮或低蛋白质平衡氨基酸日粮并不能使动物达到最佳生产性能[2~4],肽在蛋白质营养中有着特殊的意义[5,6]。

蛋白质生物学价值不具备可加性,在实践上难以依次配制日粮[7]。

由于不同氨基酸蛋白质配合后的互补作用,以及添加限制性氨基酸可使日粮其它氨基酸平衡性得到改变的事实,说明蛋白质生物学价值不具备理想的重现性,只能在特定的如基础日粮为无氮日粮时才能重现[8]。

氨基酸可利用率的可加性、重现性,因能在日粮或非常规饲料评价中成功表达受到学者认同[9],是蛋白质营养走向氨基酸营养的重要原因。

氨基酸从19世纪末Magendie发现到结构测定(Fischer)及willcock等人的添加试验,已认识到蛋白质营养价值受氨基酸组成的影响。

Rose通过试验将氨基酸划分为必需和非必需。

Block和Bolling注意到营养价值高的蛋白质在氨基酸组成上与采食该种蛋白质动物体蛋白氨基酸构成基本相似,由此提出了生长动物氨基酸需要量大体可由体蛋白氨基酸组成来确定的“理想蛋白质”新理论。

Mettchell建议以体组织中赖氨酸与其它氨基酸的比例关系估测其需要量,由此赋予“理想蛋白质”以实质性内容,表示日粮中最佳氨基酸组成模作者简介:刘超(1963–),男,陕西兴平人,副研究员,从事动物营养研究。

资助基金:陕西省重大产业科技示范资助项目(编号:96ST07)收稿日期:2002–02–20 修改稿日期:2002–05–20式,是以赖氨酸为参照的各种氨基酸比例关系。

由于不同来源的饲料配制的相同氨基酸平衡日粮,也可能得到不同的饲养效果,学者开始注意到氨基酸的生物学价值问题[10、11],Carpenter提出了氨基酸有效率的概念,Sibbald发明了真代谢能测定方法,并将其移植到氨基酸真消化率测定上,形成了氨基酸研究的新领域。

2 氨基酸营养研究的方法和途径氨基酸的营养研究大体可分为三个领域,一是氨基酸饲料资源研究,这对于棉籽饼粕、动物屠宰下脚料等非常规饲料和大豆饼粕等常规饲料资源,以及传统饲料资源如玉米、豆饼和非传统饲料资源如蚯蚓、蟾蜍都有重要意义,为生产现场客观评价饲料提供了理论依据和实测方法。

二是工业合成氨基酸研究,通过氨基酸的同分异构体及其衍生物研究,生产具有相同分子量结构或相同生理营养功能的必需氨基酸,如一羟基蛋氨酸等生产工艺和生物活性工业检测研究等。

三是氨基酸营养效率研究,寻找提高氨基酸营养功能的方法和途径。

氨基酸营养效率的研究有四个途径,一是氨基酸功能结构研究,以寻找氨基酸营养功能的官能团及其活化部位。

如赖氨酸的ε—氨基处于游离状态时才有生物学价值。

这种研究已在破译控制氨基酸合成和营养功能基因密码及密码子上获得重要进展[12、13],证实生物体或组织中存在可以表示群体含量抽样概率的特定氨基酸生物配比模式,通过这种模式可以增加对蛋白质结构的预见性和饲料中氨基酸含量测度的准确性。

这种研究有望破解生物体中氨基酸构型构象之迷,从而为以生物生产具有生物活性的氨基酸奠定了基础,其研究可直接与低蛋白日粮相联系[14~26],已在赖氨酸、苏氨酸、蛋氨酸上获得成功[22]。

二是影响氨基酸营养功能因素研究,如能量与必需氨基酸的比例关系[23]、必需氨基酸与非必需氨基酸之比[24]等。

三是理想蛋白质氨基酸构成模式研究,方向多为单胃动物,多以赖氨酸为参比,是基于和其他氨基酸相比,其测定简单易行,且机体吸收的赖氨酸主要用于蛋白质沉积,同源的三甲基赖氨酸不用于沉积,而是用于合成参与脂肪氧化的肉毒碱。

从日粮配制上说,赖氨酸是畜禽需要量较大的限制性氨基酸,配制日粮时可应用工业合成的单体赖氨酸,同时对畜禽赖氨酸需要量和影响因素研究的比较清楚。

第四条途径是可利用性研究,这已从研究方法、研究对象、研究手段上初具体系雏形,其学术价值和实践意义在于通过这种研究可形成新型饲料配方体系。

3 氨基酸可利用率的测定饲料中的氨基酸多以化合物(蛋白质)形式存在,在畜禽消化道内不能100 %的被吸收[25],不同原料中的相同氨基酸在同一动物体内的消化率不同,同一原料中相同的氨基酸在畜禽间的消化率不同,同一原料中的不同氨基酸在同一动物的消化率不同。

这种可消化性是指饲料中的氨基酸有多少可被畜禽消化吸收,实质上是氨基酸的生物学价值,而生物学第4期刘超等:饲料中可利用氨基酸研究进展 403价值具有多种含义,实际引用中常被界定在消化阶段上,从而有表观消化率和真消化率之说。

真与表观两者的差异在于是否用内源氨基酸进行了校正,常趋于真消化率。

在测定方法上有去盲肠和不去盲肠之别,在排空取样的时间上又有32小时和48小时之分,使同名术语的技术参数失去了可比性。

理论上,氨基酸是蛋白质消化吸收的最小单位,完全相同的氨基酸不能区分为消化与不消化,仅由于动物吸收速率或效率的限制使其来不及吸收而排出体外。

实践上,正常生理状况下血液和淋巴中氨基酸含量的恒定,表明已吸收的氨基酸对代谢着的氨基酸进行等量补偿,使消化、吸收、代谢氨基酸等量,代谢即利用。

在应用上,同一表达式被赋予消化率、吸收率等不同定义。

消化率和利用率有着同样的生物学意义和理论数理基础,只要统一测定方法并规范赋式定义,所测参数即可相互参考。

家禽中进入大肠的蛋白质或氨基酸对动物几乎没有营养作用,但很大一部分却被微生物降解和再合成,盲肠是微生物活动的主要场所[26、27],食糜中有相当数量的未被消化的氨基酸进入盲肠被微生物利用[28],影响了可利用率测值[29、30],切除盲肠又可导致正常生理消化规律的变化。

盲肠严重干扰测值[31],其来自盲肠微生物还是去盲肠后的手术生理应激,尚无直接实验证据。

猪粪氮的60 % ~ 80 %来自大肠微生物降解含氮物,使可利用率测值严重偏差,为此产生了回肠末端取样法,派生出屠宰法、瘘管法、回–直吻合法等。

马永喜[32]对此进行了详细综述,从手术操作、取样代表性和可测饲料种类上推荐了回–直吻合法。

根据真可利用率的计算方法,内源氨基酸是影响测值的重要因子,去盲肠否对内源氨基酸的影响当然引起关注。

内源氨基酸的排泄量去盲肠鸡极显著地高于未去盲肠鸡[33、34],这种差异仅是相互比较的相对值,而不是绝对值,不能说明去盲肠增加了排泄量,还是未去盲肠减少了排泄量。

未去盲肠动物当然处于正常生理期,内源氨基酸的排泄量符合生产实际排泄量。

据此则去盲肠显著增加氨基酸排泄量,使测值偏离真值,采用正常鸡可能更接近其消化生理和生产现场[35、36]。

以氨基酸消化率的可加性评价去盲肠与不去盲肠测值[9],是将测定方法推向生产现场。

最直接的方法是以生产性能评价两种测值[36],这既符合畜禽正常生理,也接近生产实际。

马永喜[32]对猪饲料氨基酸生物学价值评价方法做了评述,认为可加性及重现性是测定方法的重要原则。

学者趋向认同回肠末端瘘管取样法和回–直吻合述所得数据的内源氨基酸校正值。

4 饲料中可利用氨基酸含量的计算饲料中可利用氨基酸含量是可利用率乘以其氨基酸含量所得,这在可利用率测不准上又增加偶然误差,饲料氨基酸含量可因地域或时空变化而改变。

如果就饲料本身研究可利用率既脱离生产现场又缺乏理论基础,氨基酸构象上虽有D、L型之分和左右旋之别,尚未证实其就是可利用与不可利用的化学基础,植物中的氨基酸大多数为L型却不能100 %的被利用。

以体内或体外氮消化率、体外氨基酸消化率、蛋白质回肠末端消化率和氨基酸含量为自变量建立回归模型以估计饲料氨基酸消化率[37],受原始数据及测定方法等诸多因素影响,距实际应用还有许多问题需要研究。

以TME法测定鸡饲404 甘肃农业大学学报 2002年料氨基酸利用率,盲肠显著影响(P<0.05)消化率低的饲料氨基酸可利用率测定值[38]。

戎易等应用体外法(Carpenter)的化学染色法之染色结合赖氨酸(dyebindinglysine, DLB)测定了赖氨酸含量,对其测定结果与TME法进行比较[39、40],两者相关系数达0.96。

用可溶性蛋白指数估算氨基酸利用率[41],只有赖氨酸、精氨酸、苯丙氨酸的相关系数达0.9以上,其余没有相关性。

体外法测定的“可利用”或“有效”氨基酸,只能代表饲料样品活性氨基酸含量,并不意味着“可利用”,也不能完全反映动物消化吸收的量。

但体外法简单快速的优点和体内法的诸多争议使体外法的研究前景大为可观。

基因拼接技术的日趋成熟,可以展望育成可利用氨基酸含量高的饲料作物。

但除动物因素外,控制氨基酸在动物体内消化利用的蛋白质因素仍需深入研究。

如果单体氨基酸在动物体内能100 %被吸收,可能氨基酸在蛋白质中的结合状态和结构状态是影响消化吸收的主要因素。

5 动物可利用氨基酸需要量由于氨基酸消化率的测定方法尚未统一,畜禽可利用氨基酸需要量的研究资料较少。

一些试验研究所使用的需要量是根据氨基酸可利用率可加性原理,以组成日粮的单个原料氨基酸消化率加权均值与日粮氨基酸含量乘积而得。

常用的估测氨基酸需要量的方法是稀释法和低蛋白日粮法[42],均是以氨基酸的浓度梯度法进行试验,其日粮的生产性能指标多不一致,以增重、产蛋率、饲料成本等不同目标函数所求得的条件函数必然不同(Jensen)。

吴世林等[23]用此法测出肉仔鸡和5~110 kg猪最佳生产性能的日粮氨基酸需要量,再根据组成日粮原料氨基酸可利用率,推荐了肉仔鸡可利用蛋+胱氨酸和可利用赖氨酸需要量为氨基酸需要量的90 % ~ 92 %,据此分生长体重阶段给出了猪的赖氨酸、蛋+胱氨酸、苏氨酸、色氨酸的可利用氨基酸需要量。

Green等人[43]以消化试验测定了混合日粮的消化率,并结合生长试验推荐了猪和鸡的可利用氨基酸需要量。

相关文档
最新文档