数字信号处理知识总结
dsp知识点总结

dsp知识点总结一、DSP基础知识1. 信号的概念信号是指用来传输信息的载体,它可以是声音、图像、视频、数据等各种形式。
信号可以分为模拟信号和数字信号两种形式。
在DSP中,我们主要研究数字信号的处理方法。
2. 采样和量化采样是指将连续的模拟信号转换为离散的数字信号的过程。
量化是指将信号的幅度离散化为一系列离散的取值。
采样和量化是数字信号处理的基础,它们决定了数字信号的质量和准确度。
3. 傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法,它可以将信号的频率分量分解出来,从而可以对信号进行频域分析和处理。
傅里叶变换在DSP中有着广泛的应用,比如滤波器设计、频谱分析等。
4. 信号处理系统信号处理系统是指用来处理信号的系统,它包括信号采集、滤波、变换、编解码、存储等各种功能。
DSP技术主要用于设计和实现各种类型的信号处理系统。
二、数字滤波技术1. FIR滤波器FIR滤波器是一种具有有限长冲激响应的滤波器,它的特点是结构简单、稳定性好、易于设计。
FIR滤波器在数字信号处理中有着广泛的应用,比如音频处理、图像处理等。
2. IIR滤波器IIR滤波器是一种具有无限长冲激响应的滤波器,它的特点是频率选择性好、相位延迟小。
IIR滤波器在数字信号处理中也有着重要的应用,比如通信系统、控制系统等。
3. 数字滤波器设计数字滤波器的设计是数字信号处理的重要内容之一,它包括频域设计、时域设计、优化设计等各种方法。
数字滤波器设计的目标是满足给定的频率响应要求,并且具有良好的稳定性和性能。
4. 自适应滤波自适应滤波是指根据输入信号的特性自动调整滤波器参数的一种方法,它可以有效地抑制噪声、增强信号等。
自适应滤波在通信系统、雷达系统等领域有着重要的应用。
三、数字信号处理技术1. 数字信号处理器数字信号处理器(DSP)是一种专门用于数字信号处理的特定硬件,它具有高速运算、低功耗、灵活性好等特点。
DSP广泛应用于通信、音频、图像等领域,是数字信号处理技术的核心。
数字信号处理知识点整理Chapter3.

第三章 自适应数字滤波器3.1 引言滤波器的设计都是符合准则的最佳滤波器。
维纳滤波器参数固定,适用于平稳随机信号的最佳滤波;自适应滤波器参数可以自动地按照某种准则调整到最佳。
本章主要涉及自适应横向滤波器.....、自适应格型滤波器........、最小二乘自适应滤波器..........。
3.2 自适应横向滤波器自适应...线性组合....器.和自适应....FIR ...滤波器...是自适应信号......处理的基础.....。
3.2.1 自适应线性组合器和自适应FIR 滤波器自适应滤波器的矩阵表示式 滤波器输出:()()()1N m y n w m x n m -==-∑n 用j 表示,自适应滤波器的矩阵形式为T T j jj y ==X W W X 式中1212,,,,,,,TTN N w w w x x x ⎡⎤⎡⎤==⎣⎦⎣⎦W X误差信号表示为T T j j j j jj j e d y d d =-=-=-X W W X 与维纳滤波相同,先考虑最小均方误差准则:()2222T T j j j j dx xx E e E d y E e ⎡⎤⎡⎤⎡⎤=-=-+⎣⎦⎣⎦⎢⎥⎣⎦R W W R W2j E e ⎡⎤⎣⎦称为性能函数....,将其对每个权系数求微分,形成一个与权系数相同的列向量: 2221222,,,Tj j jj xx dx N E e E e E e w w w ⎡⎤⎡⎤⎡⎤⎡⎤∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥∇==-∂∂∂⎢⎥⎣⎦R W R令梯度为零,可得最佳权系数此时最小均方误差为:22*min T j j dx E e E d ⎡⎤⎡⎤=-⎣⎦⎣⎦W R 要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W ,先求自相关矩阵xx R 和互相关矩阵dx R 。
3.2.2 性能函数表示式及几何意义3.2.3 最陡下降法3.2.1给出了要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W 的理论求解方法,但实际很难应用。
数字信号处理知识点汇总

数字信号处理知识点汇总数字信号处理是一门涉及多个领域的重要学科,在通信、音频处理、图像处理、控制系统等众多领域都有着广泛的应用。
接下来,让我们一同深入了解数字信号处理的主要知识点。
一、数字信号的基本概念数字信号是在时间和幅度上都离散的信号。
与模拟信号相比,数字信号具有更强的抗干扰能力和便于处理、存储等优点。
在数字信号中,我们需要了解采样定理。
采样定理指出,为了能够从采样后的信号中完全恢复原始的连续信号,采样频率必须至少是原始信号最高频率的两倍。
这是保证数字信号处理准确性的关键原则。
二、离散时间信号与系统离散时间信号可以通过序列来表示,常见的有单位脉冲序列、单位阶跃序列等。
离散时间系统则是对输入的离散时间信号进行运算和处理,产生输出信号。
系统的特性可以通过线性、时不变性、因果性和稳定性等方面来描述。
线性系统满足叠加原理,即多个输入的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合。
时不变系统的特性不随时间变化,输入的时移会导致输出的相同时移。
因果系统的输出只取决于当前和过去的输入,而稳定系统对于有界的输入会产生有界的输出。
三、Z 变换Z 变换是分析离散时间系统的重要工具。
它将离散时间信号从时域转换到复频域。
通过 Z 变换,可以方便地求解系统的差分方程,分析系统的频率特性和稳定性。
Z 变换的收敛域决定了其特性和应用范围。
逆 Z 变换则可以将复频域的函数转换回时域信号。
四、离散傅里叶变换(DFT)DFT 是数字信号处理中的核心算法之一。
它将有限长的离散时间信号转换到频域。
DFT 的快速算法——快速傅里叶变换(FFT)大大提高了计算效率,使得在实际应用中能够快速处理大量的数据。
通过 DFT,可以对信号进行频谱分析,了解信号的频率成分和能量分布。
五、数字滤波器数字滤波器用于对数字信号进行滤波处理,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,稳定性好,但设计相对复杂。
数字信号处理常用知识点

z 实信号具有双边频谱的特性,复信号则具有单边频谱的特性。
z 列出三种关于数字信号处理的实现方法通用计算机软件实现、特殊专用集成电路ASIC实现以及可编程器件如FPGA 硬件实现和通用DSP 器件实现等。
z 设系统用差分方程y(n)=x(n)sin(wn)描述,x(n)与y(n)分别表示系统的输入和输出,则这个系统是线性且时变。
z 由于IIR 数字滤波器的冲激响应无限长,故不能采用时域卷积(或频域卷积)的方法实现,只能通过差分方程的形式来实现。
z 第二类线性相位FIR 数字滤波器的相频特点是具有-90o 初相,因此常被用作移相器等非选频特性之应用。
z FIR 数字滤波器常采用窗函数法、频率采样法和最佳等纹波逼近法等直接数字域设计方法,不能采用模拟滤波器的经典设计理论。
z 实信号具有双边频谱的特性,复信号则具有单边频谱的特性。
z 当采用基于DFT 的方法(可使用FFT 算法)对模拟实信号进行谱分析时,会存在四种主要的、无法避免的、或难以减轻的误差,它们是:时域采样时产生的频谱混叠现象,DFT(频率采样)造成的栅栏效应,信号截断(有限长度)导致的频谱(或频率)泄漏和谱间干扰。
z 设系统用差分方程y(n)=x(n)+2x(n-1)+3x(n-2)描述,x(n)与y(n)分别表示系统的输入和输出,则这个系统是线性且时不变。
(注:从线性和时变性回答)z 数字滤波器均可通过差分方程的形式来实现。
对于FIR 数字滤波器,由于冲激响应有限长,故也可用时域卷积(或频域卷积)的方法实现。
z 第一类线性相位FIR 数字滤波器的相频特点是初相为0。
z IIR 数字滤波器设计常采用模拟滤波器设计的经典理论,从模拟滤波器到数字滤波器的过渡通常采用脉冲响应不变法或双线性变换法。
z 模拟信号和数字信号的描述与分析域分别采用s 域与z 域。
z 如果一个数字因果系统是不稳定的,输出幅度随时间呈发散状,那么它的极点至少有一个在z 平面的单位圆外。
数字信号处理知识点总结

N
1
x(n)
1 N
N 1
X
(k
)W
Nkn,0k0nN
1
2024/1/22
7
Discrete Fourier Transform
DFT Transform Pair
DFT的物理意义
X
(k
)
N 1
n0
x(n)W
k N
n,0
k
N
1
x(n)
1 N
N 1
X
(k
)W
N
k
n,0
k0
n
N
1
N 1
X (z) x(n)zn 1. z-Transform n0
将模拟信号转换为数字信号,并且保证采样前后信息部丢失—采样定理。
xa(t)
采样
量化
编码
x(n)
A/D转换器
xa t sin4 t
2024/1/22
4
采样频率
s
2
Ts
xa( t )|tnT x( n ) sin( nTs ) x( n ) sin(n )
时域离散 幅度量化
3
数字信号处理 Digital signal processing
复加次数: Nlog2N;
2024/1/22
11
FFT computation cost
Comparison between FFT and DFT in complex multiplication
N 16 512 2048
N2 (DFT) 256
262144 4194304
Nlog2N/2(FFT) 32
卷积
(3)
N
数字信号处理知识点总结

数字信号处理第0章绪论1.数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
2.DSP系统构成输入抗混叠滤波A/DDSP芯片D/A平滑滤波输出输入信号首先进行带限滤波和抽样,然后进行A/D(Analog to Digital)变换将信号变换成数字比特流。
根据奈奎斯特抽样定理,为保证信息不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。
DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号。
3.信号的形式(1)连续信号在连续的时间范围内有定义的信号。
连续--时间连续。
(2)离散信号在一些离散的瞬间才有定义的信号。
离散--时间离散。
4.数字信号处理主要包括如下几个部分(1)离散时间信号与系统的基本理论、信号的频谱分析(2)离散傅立叶变换、快速傅立叶变换(3)数字滤波器的设计第一章离散时间信号一、典型离散信号定义1.离散时间信号与数字信号时间为离散变量的信号称作离散时间信号;而时间和幅值都离散化的信号称作为数字信号。
2.序列离散时间信号-时间上不连续上的一个序列。
通常定义为一个序列值的集合{x(n)},n 为整型数,x(n)表示序列中第n 个样值,{·}表示全部样本值的集合。
离散时间信号可以是通过采样得到的采样序列x(n)=x a (nT),也可以不是采样信号得到。
二.常用离散信号1.单位抽样序列(也称单位冲激序列))(n δ⎩⎨⎧≠==0,00,1)(n n n δδ(n):在n=0时取值为12.单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n u 3.矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(4.实指数序列,)()(n u a n x n =,a 为实数5.正弦型序列)sin()(φω+=n A n x 式中,ω为数字域频率,单位为弧度。
15On 1-10()0sin nω()t 0sin Ω16.复指数序列nj e n x )(0)(ωσ+=7.周期序列如果对所有n 存在一个最小的正整数N ,使下面等式成立:)()(N n x n x +=,则称x(n)为周期序列,最小周期为N 。
数字信号处理主要知识点整理复习总结

求出对应
的各种可能的序列的表达式。
解: 有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况: 三种收敛域对应三种不同的原序列。
时,
(1)当收敛域
令
,因为c内无极点,x(n)=0;
,C内有极点0,但z=0是一个n阶极点,改为求圆外极点留数,圆外极点有
数字信号处理课程 知识点概要
第1章 数字信号处理概念知识点
1、掌握连续信号、模拟信号、离散时间信号、数字信号的特点及相互关系(时间和幅度的连续性考量) 2、数字信号的产生; 3、典型数字信号处理系统的主要构成。
量化、编码 ——————
采样 ————
模拟信号
离散时间信号
数字信号
5、部分分式法进行逆Z变换 求极点 将X(z)分解成部分分式形式 通过查表,对每个分式分别进行逆Z变换 注:左边序列、右边序列对应不同收敛域 将部分分式逆Z变换结果相加得到完整的x(n)序列 6、Z变换的性质 移位、反向、乘指数序列、卷积
常用序列z变换(可直接使用)
7、DTFT与Z变换的关系
(a) 边界条件 时,是线性的但不是移不变的。
(b) 边界条件 时,是线性移不变的。
令
….
所以:
….
所以:
可见 是移一位的关系, 亦是移一位的关系。因此是移不变系统。
代入差分方程,得:
……..
所以:
因此为线性系统。
3. 判断系统是否是因果稳定系统。
Causal and Noncausal System(因果系统) causal system: (1) 响应不出现于激励之前 (2) h(n)=0, n<0 (线性、时不变系统) Stable System (稳定系统) (1) 有界输入导致有界输出 (2) (线性、时不变系统) (3) H(z)的极点均位于Z平面单位圆内(因果系统)
数字信号处理知识点

数字信号处理知识点1. 引言数字信号处理(Digital Signal Processing,DSP)是应用数字计算技术来过滤、压缩、存储、生成、识别和其他方式处理信号的科学领域。
本文旨在概述数字信号处理的核心技术和知识点,为学习和应用DSP提供明确的指导。
2. 信号的基本概念2.1 模拟信号与数字信号2.2 信号的时域和频域特性2.3 采样定理(奈奎斯特定理)2.4 量化和编码2.5 信号重构3. 离散时间信号与系统3.1 离散时间信号的定义3.2 线性时不变(LTI)系统3.3 卷积和系统响应3.4 Z变换及其应用3.5 差分方程4. 傅里叶分析4.1 傅里叶级数4.2 傅里叶变换4.3 快速傅里叶变换(FFT)4.4 频谱分析5. 滤波器设计5.1 滤波器的基本概念5.2 理想滤波器5.3 窗函数法5.4 IIR滤波器设计5.5 FIR滤波器设计6. 信号的检测与估计6.1 信号检测理论6.2 最小二乘估计6.3 卡尔曼滤波6.4 信号的自适应滤波7. 语音与图像处理7.1 语音信号的特性7.2 语音编码技术7.3 图像信号的基本概念7.4 图像压缩技术7.5 图像增强技术8. 实时数字信号处理系统8.1 DSP芯片的特性8.2 实时操作系统8.3 硬件与软件协同设计8.4 系统性能评估9. 应用实例9.1 通信系统中的DSP应用9.2 生物医学信号处理9.3 音频和视频处理9.4 雷达和声纳系统10. 结论数字信号处理是一个多学科交叉的领域,涉及信号理论、数学、计算机科学和电子工程。
掌握DSP的基础知识对于理解和设计现代通信系统、音频和视频处理系统以及其他相关应用至关重要。
请注意,本文仅为数字信号处理知识点的概述,每个部分都需要深入学习才能完全理解和应用。
读者应参考相关教材、课程和实践项目,以获得更全面和深入的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 傅里叶变换有限长序列 可看成周期序列的一个周期; 把 看成 的以N 为周期的周期延拓。
有限长序列的离散傅里叶变换(DFT ):① 长度为N 的有限长序列 x(n) ,其离散傅里叶变换 X(k) 仍是一个长度为N 的有限长序列;② x(n)与X(k)是一个有限长序列离散傅里叶变换对,已知x(n) 就能唯一地确定 X(k);同样已知X(k)也就唯一地确定x(n)。
实际上x(n)与 X(k) 都是长度为 N 的序列(复序列)都有N 个独立值,因而具有等量的信息; ③ 有限长序列隐含着周期性。
)(n x )(n x )(~n x )(~n x ⎩⎨⎧===)())(()()(~)())(()(~n R n x n R n x n x n x n x N N N N ⎪⎪⎩⎪⎪⎨⎧====∑∑-=--=101)(1)]([)()()]([)(N k nk NN n nk NW k X N k X IDFT n x W n x n x DFT k X2.循环卷积(有可能会让画出卷积过程或结果)循环卷积过程为:最后结果为:3.(见课本)课本3、线性卷积(有可能会让画出卷积过程或结果)以下为PPT上的相关题目:4.计算分段卷积:重叠相加法和重叠保留法(一定会考一种)重叠相加法解题基本步骤:将长序列均匀分段,每段长度为M;基于DFT快速卷积法,通过循环卷积求每一段的线性卷积;依次将相邻两段的卷积的N-1个重叠点相加,得到最终的卷积结果。
4.级联、并联、直接形(画图) 以下为课后作业相关题目:1. 已知系统用下面差分方程描述:)1(31)()2(81)1(43)(-+--n x n x n y n y n y +-=试分别画出系统的直接型、 级联型和并联型结构。
式中x (n )和y (n )分别表示系统的输入和输出信号。
解: 将原式移项得)1(31)()2(81)1(43)(-+=-+--n x n x n y n y n y将上式进行Z 变换, 得到121)(31)()(81)(43)(---+=+-zz X z X z z Y z z Y z Y21181431311)(---+-+=z z z z H(1) 按照系统函数H(z), 根据Masson 公式, 画出直接型结构如题1解图(一)所示。
(2) 将H (z )的分母进行因式分解:)411)(211(31181431311)(111211--------+=+-+=z z z z z z z H按照上式可以有两种级联型结构:画出级联型结构如题1解图(二)(a)所示画出级联型结构如题1解图(二)(b)所示(3) 将H (z )进行部分分式展开:)411)(211(311)(111-----+=z z z z H 4121)41)(21(31)(-+-=--+=z B z A z z z zz H 413721310)(---=z z zz H 11411372113104137)21(310)(----+-=---=z z z z z z z H1114111211311)(----⋅-+=z z z z H 111411311 2111)(----+⋅-=z z z z H 111411311 2111)(----+⋅-=z z z z H根据上式画出并联型结构如题1解图(三)所示。
3. 设系统的差分方程为y(n)=(a+b)y(n-1)-aby(n-2)+x(n-2)+(a+b)x(n-1)+ab式中, |a|<1,|b|<1, x(n)和y(n)分别表示系统的输入和输出信号, 试画出系统的直接型和级联型结构。
解:(1) 直接型结构。
将差分方程进行Z变换,得到Y(z)=(a+b)Y(z)z-1-abY(z)z-2+X(z)z-2-(a+b)X(z)z-1+ab2121)(1)()()()(-----+-++-==abzzbazzbaabzXzYzH按照Masson公式画出直接型结构如题3解图(一)所示。
(2) 级联型结构。
将H(z)的分子和分母进行因式分解,得到)()()1)(1())(()(211111zHzHbzazzbzazH=----=----按照上式可以有两种级联型结构:①画出级联型结构如题3解图(二)(a)所示画出级联型结构如题3解图(二)(b)所示1111)(----=bzazzH1121)(----=azbzzH1111)(----=azazzH1121)(----=bzbzzH四.设计模拟滤波器(考试时不能编代码)一般步骤:根据A p 、A s 、Ωs 、Ωp ,确定滤波器阶次N 和截止频率Ωc 。
P161 【例6.2.2】设计一个模拟低通巴特沃斯滤波器,指标如下:(1) 通带截止频率:Ωp=0.2π;通带最大衰减:A p=7 dB 。
(2) 阻带截止频率:Ωs=0.3π;阻带最小衰减:A s=16dB 。
解:由Ωp ,得:由Ωs ,得:在上面两个Ωc 之间选Ωc=0.5。
最后可得(级联型) :五、脉冲响应不变法(P177 第6.3节)156-158页脉冲响应不变法的优点:● 时域逼近。
使数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应,即时域逼近良好。
● 线性频率关系。
⎡⎤379.2)3.0/2.0lg(2)]110/()110lg[(6.17.0==⎥⎥⎤⎢⎢⎡--=ππN 4985.01102.067.0=-=πc Q 5122.01103.066.1=-=πc Q )25.05.0)(5.0(125.0)(2+++=s s s s H a模拟频率Ω和数字频率ω之间呈线性关系ω=ΩT。
脉冲响应不变法的缺点:混叠失真效应因此,只适用于限带的模拟滤波器(例如衰减特性很好的低通或带通滤波器),而且高频衰减越快,混叠效应越小;而对于高通和带阻滤波器,由于它们在高频部分不衰减,因此会产生混叠现象。
六、双线性变换法七,与实验相关本题中老师会给出类似于下列表达式的信号:要求用脉冲相应不变法或双线性法编写主要的代码(如下面代码)来达到滤除其中的部分信号,并画出你所设计的滤波器的频响曲线,并标明Ωs 、Ωp ,以及滤波后信号的时域波形(波形中要体现相位特征)。
1)脉冲响应不变法滤除第三个信号:Fs=256; % 采样频率fp=60; % 通带截止频率fs=70; % 阻带截止频率Rp=1; Rs=25;Wp=(fp/Fs)*2*pi; %临界频率采用角频率表示Ws=(fs/Fs)*2*pi; %临界频率采用角频率表示OmegaP=Wp*Fs;OmegaS=Ws*Fs;[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(n,Wc,'s');[Bz,Az]=impinvar(b,a,Fs);2)双线性法滤除第三个信号:Fs=256; % 采样频率fp=60; % 通带截止频率fs=70; % 阻带截止频率Rp=1; Rs=25;Wp=(fp/Fs)*2*pi; % 临界频率采用角频率表示Ws=(fs/Fs)*2*pi; % 临界频率采用角频率表示OmegaP=2*Fs*tan(Wp/2); % 频率预畸OmegaS=2*Fs*tan(Ws/2);[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(n,Wc,'s');()cos(250/180)cos 23 1.5(275/180090)3S t t t ππππ=+⨯+⨯--[Bz,Az]=bilinear(b,a,Fs);注:要好好看实验中关于低通,高通,带通,带阻的设计代码。
带通:fp1=40; % 通带截止频率fs1=30; % 阻带截止频率fp2=60; % 通带截止频率fs2=70; % 阻带截止频率Rp=1; Rs=25;Wp1=(fp1/Fs)*2*pi;Ws1=(fs1/Fs)*2*pi;Wp2=(fp2/Fs)*2*pi;Ws2=(fs2/Fs)*2*pi;Wp=[Wp1,Wp2]; % 向量Ws=[Ws1,Ws2]; % 向量带阻:fp1=30; % 通带截止频率fs1=40; % 阻带截止频率fp2=70; % 通带截止频率fs2=60; % 阻带截止频率Rp=1; Rs=25;Wp1=(fp1/Fs)*2*pi;Ws1=(fs1/Fs)*2*pi;Wp2=(fp2/Fs)*2*pi;Ws2=(fs2/Fs)*2*pi;Wp=[Wp1,Wp2];Ws=[Ws1,Ws2];若信号表达式为()3sin(210030/180) 1.5cos(225090/180)5cos(2270)S t t t t πππππ=⨯-+⨯++⨯则相关代码为:1) 低通滤波器代码fp=110; % 通带截止频率 fs=130; % 阻带截止频率Rp=1; Rs=25;Wp=(fp/Fs)*2*pi; Ws=(fs/Fs)*2*pi; %临界频率采用角频率表示(1):脉冲响应不变法OmegaP=Wp*Fs; OmegaS=Ws*Fs;[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(n,Wc,'s'); % 指明为高通滤波器[Bz,Az]=impinvar(b,a,Fs);(2)双线性变换法OmegaP=2*Fs*tan(Wp/2); OmegaS=2*Fs*tan(Ws/2); % 频率预畸[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(n,Wc,'s'); [Bz,Az]=bilinear(b,a,Fs);2)高通滤波器fp=280; % 通带截止频率fs=260; % 阻带截止频率Rp=1; Rs=25;Wp=(fp/Fs)*2*pi; %临界频率采用角频率表示Ws=(fs/Fs)*2*pi; %临界频率采用角频率表示(2):双线性变换法OmegaP=2*Fs*tan(Wp/2); % 频率预畸OmegaS=2*Fs*tan(Ws/2);[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(2*n,Wc,'high','s');[Bz, Az]=bilinear(b,a,Fs);3)带通滤波器fp1=130; % 通带截止频率 fs1=110; % 阻带截止频率fp2=255; % 通带截止频率 fs2=265; % 阻带截止频率Rp=1; Rs=25;Wp1=(fp1/Fs)*2*pi; Ws1=(fs1/Fs)*2*pi;Wp2=(fp2/Fs)*2*pi; Ws2=(fs2/Fs)*2*pi;Wp=[Wp1,Wp2]; Ws=[Ws1,Ws2];(2):双线性变换法OmegaP=2*Fs*tan(Wp/2); % 频率预畸OmegaS=2*Fs*tan(Ws/2);[n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(2*n,Wc,'s'); [Bz,Az]=bilinear(b,a,Fs);4)带阻滤波器的代码如下:fp1=110; % 通带截止频率 fs1=240; % 阻带截止频率fp2=265; % 通带截止频率 fs2=255; % 阻带截止频率Rp=1; Rs=25;Wp1=(fp1/Fs)*2*pi; Ws1=(fs1/Fs)*2*pi;Wp2=(fp2/Fs)*2*pi; Ws2=(fs2/Fs)*2*pi;Wp=[Wp1,Wp2]; Ws=[Ws1,Ws2];(2):双线性变换法OmegaP=2*Fs*tan(Wp/2); % 频率预畸 OmegaS=2*Fs*tan(Ws/2); [n,Wc]=buttord(OmegaP,OmegaS,Rp,Rs,'s');[b,a]=butter(2*n,Wc,'stop','s'); [Bz,Az]=bilinear(b,a,Fs);。