实验步进电机控制实验

合集下载

步进电机实验报告册(3篇)

步进电机实验报告册(3篇)

第1篇一、实验目的1. 熟悉步进电机的工作原理和特性。

2. 掌握步进电机的驱动方式及其控制方法。

3. 学会使用常用实验设备进行步进电机的调试和测试。

4. 了解步进电机在不同应用场景下的性能表现。

二、实验设备1. 步进电机:选型为双极性四线步进电机,型号为NEMA 17。

2. 驱动器:选型为A4988步进电机驱动器。

3. 控制器:选型为Arduino Uno开发板。

4. 电源:选型为12V 5A直流电源。

5. 连接线、连接器、电阻等实验配件。

三、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机。

它具有以下特点:1. 转动精度高,步距角可调。

2. 响应速度快,控制精度高。

3. 结构简单,易于安装和维护。

4. 工作可靠,寿命长。

步进电机的工作原理是:通过控制驱动器输出脉冲信号,使步进电机内部的线圈依次通电,从而产生步进运动。

四、实验步骤1. 搭建实验电路(1)将步进电机连接到驱动器上,确保电机线序正确。

(2)将驱动器连接到Arduino Uno开发板上,使用连接线连接相应的引脚。

(3)连接电源,确保电源电压与驱动器要求的电压一致。

2. 编写控制程序(1)使用Arduino IDE编写程序,实现步进电机的正转、反转、调速等功能。

(2)通过串口监视器观察程序运行情况,调试程序。

3. 调试步进电机(1)测试步进电机的正转、反转功能,确保电机转动方向正确。

(2)调整步进电机的转速,观察电机运行状态,确保转速可调。

(3)测试步进电机的步距角,确保步进精度。

4. 实验数据分析(1)记录步进电机的正转、反转、调速等性能参数。

(2)分析步进电机的运行状态,评估其性能。

五、实验结果与分析1. 正转、反转测试步进电机正转、反转功能正常,转动方向正确。

2. 调速测试步进电机转速可调,调节范围在1-1000步/秒之间。

3. 步距角测试步进电机的步距角为1.8度,与理论值相符。

4. 实验数据分析步进电机的性能指标符合预期,可满足实验要求。

单片机步进电机控制实验报告

单片机步进电机控制实验报告

单片机步进电机控制实验报告单片机步进电机控制实验报告引言:步进电机是一种常用的电动机,具有结构简单、体积小、转速稳定等优点,广泛应用于工业自动化、机械设备等领域。

本实验旨在通过单片机控制步进电机,实现电机的正转、反转、加速、减速等功能。

通过实验,深入了解步进电机的工作原理和控制方法,提高对单片机的编程能力。

一、实验目的本实验的主要目的是掌握步进电机的工作原理,了解单片机控制步进电机的方法和步骤,并通过实验验证控制效果。

二、实验器材1. 步进电机:XX型号,XXV,XXA2. 单片机开发板:XX型号3. 驱动电路:包括电源、驱动芯片等三、实验原理步进电机是一种特殊的电动机,其转子通过电磁螺线管的工作原理实现转动。

步进电机的转子分为若干个极对,每个极对上都有一个螺线管,通过对这些螺线管施加电流,可以使转子转动。

单片机通过控制螺线管的电流,实现步进电机的控制。

四、实验步骤1. 连接电路:根据实验器材提供的电路图,将步进电机与单片机开发板相连接。

2. 编写程序:使用C语言编写单片机控制步进电机的程序。

程序中需要包括电机正转、反转、加速、减速等功能的实现。

3. 上传程序:将编写好的程序通过编程器上传到单片机开发板上。

4. 实验验证:通过按下开发板上的按键,观察步进电机的运动情况,验证程序的正确性。

五、实验结果与分析经过实验验证,编写的程序能够准确控制步进电机的运动。

按下不同的按键,电机可以实现正转、反转、加速、减速等功能。

通过调整程序中的参数,可以实现不同速度的控制效果。

实验结果表明,单片机控制步进电机具有较高的精确性和可靠性。

六、实验总结通过本次实验,我深入了解了步进电机的工作原理和控制方法,掌握了单片机控制步进电机的编程技巧。

实验中遇到了一些问题,如电路连接不正确、程序逻辑错误等,但通过仔细分析和排除,最终解决了这些问题。

通过实验,我不仅提高了对步进电机的理论认识,还锻炼了自己的动手实践能力和问题解决能力。

步进电控制实验报告

步进电控制实验报告

一、实验目的1. 理解步进电机的工作原理及其应用领域。

2. 掌握单片机控制步进电机的技术方法。

3. 熟悉步进电机的驱动电路设计。

4. 通过实验验证步进电机控制系统的性能。

二、实验原理步进电机是一种将电脉冲信号转换为角位移的电机,具有精度高、响应快、控制简单等优点。

其工作原理是:当输入一定频率的脉冲信号时,步进电机按照一定的步距角转动。

步进电机的步距角与线圈匝数、绕组方式有关。

本实验采用单片机控制步进电机,通过编写程序实现步进电机的正转、反转、停止、转速调节等功能。

三、实验设备1. 单片机实验平台:包括51单片机、电源、按键、数码管等。

2. 步进电机驱动模块:用于驱动步进电机,包括驱动电路和步进电机本体。

3. 实验指导书。

四、实验步骤1. 搭建实验电路(1)连接单片机实验平台,包括电源、按键、数码管等。

(2)连接步进电机驱动模块,包括电源、控制线、步进电机本体等。

(3)检查电路连接是否正确,确保无误。

2. 编写控制程序(1)初始化单片机相关端口,包括P1口、定时器等。

(2)编写步进电机控制函数,包括正转、反转、停止、转速调节等功能。

(3)编写主函数,根据按键输入实现步进电机的控制。

3. 下载程序(1)将编写好的程序下载到单片机实验平台。

(2)检查程序是否下载成功。

4. 测试实验(1)观察数码管显示的转速挡次和转动方向。

(2)通过按键控制步进电机的正转、反转、停止和转速调节。

(3)观察步进电机的转动情况,验证控制程序的正确性。

五、实验结果与分析1. 实验结果(1)通过按键控制步进电机的正转、反转、停止和转速调节。

(2)数码管显示转速挡次和转动方向。

(3)步进电机按照设定的方向和转速转动。

2. 实验分析(1)通过实验验证了单片机控制步进电机的可行性。

(2)实验结果表明,控制程序能够实现步进电机的正转、反转、停止和转速调节等功能。

(3)实验过程中,需要对步进电机驱动模块进行合理设计,以确保步进电机的稳定运行。

步进电机控制实验报告

步进电机控制实验报告

步进电机控制实验报告开课学院及实验室:学院年级、专业、班姓名学号实验课程名称计算机控制技术成绩实验项目名称步进电机控制实验指导老师一、实验目的1.了解步进电机的工作原理。

2.掌握步进电机的驱动及编程方法。

二、实验原理步进电机是一种电脉冲转化为角位移的执行机构。

当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的。

通过设定脉冲数来使步进电机转过一定的角度。

步进电机多为永磁感应式,有两相、四相、六相等多种,实验所用电机为四相八拍式。

三、使用仪器、材料1.TPCC-III计算机控制技术实验箱一台。

2. 数字式万用表一个。

3.微型计算机一台(安装“DICE计算机控制实验软件”)。

四、实验步骤本实验使用的AD35-02M型四相八拍电机,电压为DC12V,其励磁线圈及励磁顺序如下图3-1。

图3-1 励磁线圈及励磁顺序图3-2 实验接线图表3-1 8255B口输出电平在各步中的情况步骤1:按图3-2接线:步骤2:在汇编程序编辑界面输入程序,将宏汇编程序经过汇编,连接后形成.EXE文件。

打开调试窗口,复位,待出现“Welcome to you!”,装入系统,输入命令“G=2000↙”。

EXP3.ASM汇编程序如下:STACK SEGMENT STACKDW 256 DUP(?)STACK ENDSDATA SEGMENTTABLE DB 01H,03H,02H,06H,04H,0CH,08H,09H ;Step of motorDATA ENDSCODE SEGMENTASSUME CS:CODE,DS:DATASTART: MOV AX,DATAMOV DS,AXMAIN: MOV AL,80H ;Initiate 8255 B(OUT)OUT 63H,ALA1: MOV BX,OFFSET TABLEMOV CX,0008H ; Number of stepA2: MOV AL,[BX] ; 8255 outOUT 61H,AL。

步进电机控制试验

步进电机控制试验

实验6 步进电机控制试验一、实验目的1)、了解步进电机的工作原理。

2)、掌握步进电机的驱动及编程方法。

二、实验设备计算机,仿真器,EXP-II实验箱三、实验步骤1、将“步进电机”单元中的拨码开关S4的拨码开关1置“ON”。

2、连接好DSP开发系统,实验箱上电,运行CCS软件3、调入样例程序,运行。

4、观察实验结果,写实验报告5、程序实验操作说明可以看到步进电机先顺时针旋转,然后再逆时针旋转,“数字量输入输出单元”中的LED10-LED13在不停的闪烁。

用“Halt”暂停程序运行,将“delay_f”延时子程序中的i值由1000更改为8000,如下图所示。

该“delay_f”子程序控制步进电机的A、B、C、D相的延迟时间。

“Rebuild All”后,重新加载程序,运行程序。

可以观察到步进电机正转与反转的转速变慢;用“Halt”暂停程序运行,如下图,将“delay_f”循环中的i值还原为1000,将“delay_s”延时子程序中j的值由3000更改为10000,如下图所示。

该“delay_s”子程序控制步进电机的步与步之间的延迟时间。

“Rebuild All”后,重新加载程序,运行程序。

可以观察到步进电机正转与反转的转速变慢,而且步进电机的步进效果较明显。

关闭相关程序窗口,本实验结束。

四、实验说明:步进电机多为永磁感应式,有两相、四相、六相等多种,实验所用的电机为两相四拍式,通过对每相线圈中的电流的顺序切换来使电机作步进式旋转,驱动电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。

脉冲信号是有DSP的IO端口(地址8001H)的低四位提供。

位0对应“D”,位1对应“C”,位2对应“B”,位3对应“A”;如下图所示,电机每相电流为0.2A,相电压为5V,两相四拍的通电顺序如下表所示:。

实验三-PLC步进电机控制实验

实验三-PLC步进电机控制实验

实验三 PLC步进电机控制实验一、实验目的1、掌握步进电机工作原理;2、用PLC构成五相步进电机控制系统。

二、实验要求1、通过实验,加深并验证学过的理论知识,掌握实验的基本方法和实验原理;2、正确使用仪器设备;3、认真观察仪器设备的运动方式,独立编写控制程序并进行操作。

4、学生在实验过程中,应学会独立思考,应用所学专业理论知识分析和解决实验中遇到的具体问题;三、实验原理步进电机工作原理步进电机按工作原理可分为电磁式、磁阻式、永磁式、混合式四类。

其中混合式步进电机从定子或转子的导磁体来看,它如反应式步进电机,所不同的是它的转子上置有磁钢,反应式转子则无磁钢。

从它的磁路内含有永久磁钢这一点来说,又可以说它是永磁式,但因其结构不同,使其作用原理及性能方面,都与永磁式步进电机有明显区别。

它好像是反应式和永磁式的结合,所以常称为混合式。

混合式步进电机具有驱动电流小,效率高,过载能力强、控制精度高等特点,是目前市面上应用最为广泛的一种步进电机。

四、实验所用仪器1、三菱FX1N-60MR一台;2、计算机一台;五、实验步骤和方法1、熟悉编程环境,输入所编制的程序;2、接通实验箱电源、串口通讯线;3、将程序下载至PLC并运行。

六、实验注意事项经指导教师检查同意后,方可接通电源进行实验操作。

七、实验预习要求1、预习PLC编程环境,上机前预先将控制程序编制完成;2、预习步进电机工作原理。

八、实验报告要求实验报告的主要内容1、实验目的2、实验所用仪器3、实验原理方法简要说明4、程序清单。

实验报告册样式实验步骤:1、熟悉编程环境,编制程序;2、接通实验箱电源、串口通讯线和各种连线;3、将程序下载至PLC并运行。

步进电机实验及结果

步进电机实验及结果

一、实验目的1、了解步进电机工作原理。

2、掌握步进电机转动控制方式和调速方法。

3、学会protel99使用。

二、实验设备及器件IBMPC机一台单片机仿真器、编程器、实验仪三合一综合开发平台一台三、实验内容1、编写程序,通过单片机的P1口控制步进电机的控制端,使其按一走的控制方式进行转动。

2、分别采用双四拍(AB->BC->CD->DA->AB)方式、单四拍(A->B->C->D->A)方式和单双八拍(A->AB->B->BC->C->CD->D->DA->A)方式编程,控制步进电机的转动方向和转速。

3、观察不同的控制方式下,步进电机转动时的振动情况和步进角的大小,比较这几种控制方式的优缺点。

四、实验要求学会步进电机的工作原理和控制方法,掌握一些简单的控制电路和基本的电机基础知识。

五、实验步骤1)安装C10区JP6接口上的短路帽,将C10区J41接口与A2区J61接口的P10~P13对应相连。

2)打开TKStudy仿真器,仿真调试编写好的软件程序,观察步进电机的转动情况。

3)修改步进电机的控制程序,再次进行程序,比较它们的不同控制效果。

六、实验原理6.1单片机选用51单片机优异的性价比以及独特的系统结构、不断增加的片内设备以及强大的指令系统使得它依然是单片机中的主流。

本次设计以CPU选用89C51作为步进电机的控制芯片。

AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于多功能8位CPU 和闪烁存储器,单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

6.2 步进电机的工作原理步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

实验六 步进电动机实验

实验六  步进电动机实验

实验六步进电动机实验一、实验目的1、通过实验加深对步进电动机的驱动电源和电机工作情况的了解。

2、掌握步进电动机基本特性的测定方法。

二、预习要点1、了解步进电动机的工作情况和驱动电源步进电动机有哪些基本特性?怎样测定?三、实验项目图1为步进电机控制器和步进电机实验台之间的连线图步进电机控制器步进电机实验台24V0A AB BC C图1 步进电机实验连线图1、单步运行状态接通电源,将控制器系统设置于单步运行状态,或复位后,按执行键,步进电机走一步距角,绕组相应的发光管发亮,再不断按执行键,步进电机转子也不断步进运动。

改变电机转向,电机作反向步进运动。

2、角位移和脉冲数的关系控制系统接通电源,设置好预置步数,按执行键,电机运转,观察并记录电机偏转角度,再重设置另一置数值,按执行键,观察并记录电机偏转角度于表1中,并利用公式计算电机偏置较大与实际值是否一致。

表1 角位移和脉冲数的关系序号步数实际电机偏转角度理论电机偏转角度123、空载突跳频率的测定控制系统置连续运行状态,按执行键,电机连续运转后,调节速度调节旋钮使频率提高至某频率(自动指示当前频率)。

按设置键让步进电机停转,再从新启动电(按执行键),观察电机能否运行正常,如正常,则继续提高频率,直至电机不失步启动的最高频率,则该频率为步进电机的空载突跳频率。

记为Hz。

4、空载最高连续工作频率的测定步进电机空载连续运转后,缓慢调节速度调节旋钮使频率提高,仔细观察电机是否不失步,如不失步,则再缓慢提高频率,直至电机能连续运转的最高频率,则该频率为步进电机空载最高连续工作频率。

记为Hz。

5、转子振动状态的观察步进电机空载连续运转后,调节并降低脉冲频率,直至步进电机声音异常或出现电机转子来回偏摆即为步进电机的振荡状态。

6、定子绕组中电流和频率的关系在步进电机电源的输出端串联一只直流电流表(注意+、-端)使步进电机连续运转,由低到高逐渐改变步进电机的频率,读取并记录6组电流表的平均值、频率值于表2中表2 定子绕组电流和频率的关系序号 1 2 3 4 5 6f(Hz)I(A)7、平均转速和脉冲频率的关系接通电源,将控制系统设置于连续运转状态,再按执行键,电机连续运转,改变速度调节旋钮,测量频率f与对应的转速n,即n=f(f)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验步进电机控制实验
一、实验目的
掌握步进电机的工作原理和控制方法
二、实验设备
1、EL-MUT-III型单片机实验箱
2、8051CPU模块
3、电机综合模块
三、实验内容
单片机通过244设置步进电机运行的步数和方向,并显示在数码管上,同时驱动电机按照设定的步数和方向转动,同时在数码管上显示电机的实际转动步数。

四、实验原理
步进电机工作原理见模块说明书,控制电路如下图:
五、实验步骤
1、实验连线:
P1口的P1.0---P1.3分别接模块上的A、B、C、D。

CS244接CS0,244的输入IN0--IN7接平推开关KK1--KK8的输入K1--K8。

P1.7接单脉冲输出P-。

2、运行Keil C运行环境,打开Step4文件夹下的Step4.uv2,检查工程的Debug 参数设置是否正确,然后全速运行,数码管的左两位显示设定的步数(16进制),可以通过改变平推开关kk1—kk7的状态设定不同的运行步数,改变kk8的状态可改变电机的转动方向,在数码管上当数值位的小数点位点亮时,表示为逆时针方向,否则为顺时针方向。

完成设置后,按动单脉冲开关Pules,电机按照设定的方向和步数开始转动,同时在数码管的右侧显示电机的转动步数,当达到设定值时,电机停止转动。

3、观察步进电机的运动与设定值是否一致。

六、实验结果
输入运行步数N,电机运行N步后停止,且方向与设定方向一致。

七、程序框图
实验直流电机调压调速实验
一、实验目的
掌握直流电机测速和调速的工作原理
二、实验设备
1、EL-MUT-III型单片机实验箱
2、8051CPU模块
3、电机综合模块
三、实验内容
电机每转一周,SIGNAL端产生一如图所示的脉冲,通过用INT0检测该脉冲的高电平,并从P10输出输出一8253的GATA信号来控制8253计数器的启停。

通过8253的计数值计算转速,转速值经主机箱RS232串口送至PC机,在PC机上进行PID计算,计算结果通过串口送给CPU,经D/A转换成电压,控制电机转速。

四、实验原理
(详细说明见模块说明书)
(当做综合模块其它实验时,DRV端应接+5V,或调整电位器DC MOTOR使电机停止转动。

)
五、实验步骤
1、实验连线:
CPU板上的INT0接电机模块上的SIGNAL。

试验箱(台)上的CS0832选择CS1,A/D模块上的DS的1、2脚短接,DAOUT接电机
模块的DRV。

试验箱(台)上的CS244接CS0,244的输入IN0--IN7接平推开关KK1--KK8的输入
K1--K8
2、在断开DRV的情况下,调节电机模块的R9即标号为“DC_MOTOR”的电位器,使“MOTOR-”端(即D880的C集电极)电压约为9V左右,使直流电机刚好能通电自由转动即可。

3、运行Keil C运行环境,打开dcMOTOR文件夹下的dcMOTOR.uv2,检查工程的Debug参数设置是否正确,然后全速运行。

(由于本实验改变了0832输出电压范围,实验结束后或在做其它0832实验前应重新调整0832输出电压基准值)
六、实验结果
全速运行程序后,在数码管的左两位显示设定的转速(16进制),此数值可通过与244输入端相连的8个平推开关kk1---kk8设定,同时在数码管的右两位显示电机实际转速,显示的格式同左两位。

认真观察数码管的右两位数值的变化,可以了解电机转速的控制过程。

备注:转速的设定值在30—B0之间,当低于30时,电机可能停转,高于B0时,因转速已经达到最大,可能超过电机的极限速度而达不到设定值。

当初次上电电机不转动时,可轻轻拨动电机转盘使电机开始转动或微调模块上的电位器DC MOTOR使电机转动起来。

实验温度PWM控制实验
一、实验目的
了解温度控制系统的特点。

2、
二、实验设备
1、EL-MUT-III型单片机实验箱
2、8051CPU模块
3、电机综合模块
三、实验内容
1、设定炉子的温度在一恒定值。

2、系统能够自动稳定在设定温度。

四、实验原理
1、温度控制电路原理说明:
由温度信号采集单元、加热信号驱动单元、模块温箱加热控制电路组成。

温度信号采集单元电路的热敏电阻(接在HR1与HR2之间)的阻值随温度的变化而变化,经运放LM358处理,输出一个电压变化的温度信号给系统板的A/D采集输入端;加热信号驱动单元将系统送来的加热信号分两路处理:一路经Q1隔离放大后驱动加热指示二极管发光;另一路经隔离后驱动可控硅导通。

模拟温箱加热控制电路由加热信号隔离电路、AC220V控制电路(可控硅电路组成),基原理图见模块说明。

2、五、实验步骤
1、实验连线
试验箱(台)上的CS244接CS0,244的输入IN0--IN7接平推开关KK1--KK8的输入K1--K8
试验箱(台)上的CS0809接CS2,模块上的TEMP_OUT接0809的输入ADIN0,
CPU板上的P15接模块上的HEATER.
2、在室温(25℃)条件下,调节温控部分10K电位器,使TEMPOUT的输出近似为3.75V。

接通温控模块的220V电源。

3、运行Keil C运行环境,打开Wk文件夹下的Wk.uv2,检查工程的Debug参数设置是否正确,然后全速运行。

六、实验结果
全速运行程序后,通过与244输入端相连的8个平推开关kk1---kk8设置设定温度, 并在数码管的左两位显示(10进制),此数值的设定范围为0--79。

同时在数码管的右两位显示实际温度,认真观察数码管的右两位数值的变化,可以了解温度的控制过程。

七、程序框图
实验 继电器实验
一、实验目的
掌握继电器控制的基本方法和经验。

二、实验设备
1、EL-MUT-III 型单片机实验箱
2、8051CPU 模块
3、电机综合模块 三、实验内容
单片机对继电器控制,观察继电器常开、常闭端的导通状态。

四、实验原理
当控制端A-TRL 为高电平时,继电器断开,KA 由常开端A-NO 打到常闭端A-NC ,
A-COM 与A-NC 连通;当控制端A-TRL 为低电平时,继电器吸合,KA 由常闭端A-NC 打到常开端A-NO ,A-COM 与A-NO 连通。

五、实验步骤
1、实验连线
P1口的P1.4、P1.6分别接模块上的A-CTL 、B-CTL 。

模块上的A-COM 和B-COM 都接到试验箱的GND 上。

试验箱的发光二极管L1--L4的输入LED1--LED4分别接到模块上的A-NC 、A-NO 、B-NC 、A-NO.
2、运行Keil C 运行环境,打开RELAY 文件夹下的RELAY.uv2,检查工程的Debug 参数设置是否正确,然后全速运行。

六、实验结果 全速运行程序后,观察发光二极管L1--L4的亮灭变化,同时能听到继电器动作声音。

七、程序框图
5
6
U1C
74LS07
KA
RELAY
A-COM
A-NC
A-NO +5V A-CTL。

相关文档
最新文档