2020中考数学总复习课件PPT

合集下载

2020届中考数学总复习课件:第23课时 矩形、菱形、正方形

2020届中考数学总复习课件:第23课时 矩形、菱形、正方形
第 2 题答图
3.[2019·眉山]如图 23-1,在矩形 ABCD 中,AB=6,BC=8,过对角线交点 O 作 EF⊥AC 交 AD 于点 E,交 BC 于点 F,则 DE 的长是( B )
图 23-1
A.1
B.74
C.2
D.1பைடு நூலகம்2
【解析】 如答图,连结 CE.∵四边形 ABCD 是矩形,∴∠ADC=90°,CD=AB=6, AD=BC=8,OA=OC,∵EF⊥AC,∴AE=CE,设 DE=x,则 CE=AE=8-x,在 Rt△CDE 中,由勾股定理,得 x2+62=(8-x)2,解得 x=74,即 DE=74.
第五单元 四边形
第23课时 矩形、菱形、正方形
一、选择题(每题 3 分,共 15 分)
1.[2019·十堰]矩形具有而平行四边形不一定具有的性质是( C )
A 对边相等
B.对角相等
C.对角线相等
D.对角线互相平分
2.[2019·泸州]一个菱形的边长为 6,面积为 28,则该菱形的两条对角线的长度之和为
图 23-9
解:(1)证明:在矩形 EFGH 中,EH=FG,EH∥FG, ∴∠GFH=∠EHF. ∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF, ∴∠BFG=∠DHE. 在菱形 ABCD 中,AD∥BC,∴∠GBF=∠EDH. ∴△BGF≌△DEH(AAS),∴BG=DE;
第12题答图
【解析】 ∵阴影部分的面积与正方形 ABCD 的面积之比为 2∶3,∴S 阴影=23×9=6, ∴S 空白=9-6=3, ∵CE=DF,BC=CD,∠BCE=∠CDF,∴△BCE≌△CDF, ∴∠DCF=∠CBE,∵∠DCF+∠BCF=90°, ∴∠CBE+∠BCF=90°,∴∠BGC=90°, ∴S△BCG=S 四边形 DEGF=12×3=32, 设 BG=a,CG=b,则12ab=32,

2020届中考数学总复习课件:第10课时 一次函数(正比例函数)的图象与性质

2020届中考数学总复习课件:第10课时 一次函数(正比例函数)的图象与性质
第三单元 函数及其图象
第10课时 一次函数(正比例函数)的图象与性质
一、选择题(每题 5 分,共 30 分)
1.[2019·广安]一次函数 y=2x-3 的图象经过的象限是( C )
A.一、二、三
B.二、三、四
C.一、三、四
D.一、二、四
2.已知点(-1,y1),(4,y2)在一次函数 y=3x-2 的图象上,则 y1,y2,0 的大小关系 是( B )
解:(1)令 y=0,则-12x+4=0,∴x=8, ∴B 点坐标为(8,0). ∵C(0,4),在 Rt△BOC 中,BC= 82+42=4 5. 又∵E 为 BC 中点,∴OE=12BC=2 5;
(2)如答图①,作 EM⊥OC 于点 M,则 EM∥CD,设 DE 交 CO 于点 N, 第 15 题答图①
6.[2019·自贡]均匀的向一个容器内注水,在注满水的过程中,水面的高度 h 与时间 t 的函数关系如图 10-2 所示,则该容器是下列四个中的( D )
图 10-2
A
B
C
D
【解析】 ∵由图象可知,高度 h 随时间 t 的变换规律是先快后慢,D 选项的底面积是 由小变大,∴D 选项的水面高度随时间变换符合先快后慢.故选 D.
解得 x<53; (2)y=x-3 的图象如答图,当 x=1 时,y=x-3=-2,把(1,-2)代入 y1=kx+2 得 k +2=-2,解得 k=-4,
当-4≤k<0 时,y1>y2; 当 0<k≤1 时,y1>y2.
第 12 题答图
13.(6 分)已知 a+b=2,b≤2a,那么对于一次函数 y=ax+b,给出下列结论:①函数
作 QH⊥x 轴于点 H,则 PH=BH=12PB, ∵BQ=6 5-s=6 5-32 5t+ 5=7 5-32 5t, 又∵cos∠QBH=25 5, ∴BH=14-3t, ∴PB=28-6t, ∴t+28-6t=12, ∴t=156;

2020届中考数学总复习课件:核心素养专题四 开放与探究型问题 (共46张PPT)

2020届中考数学总复习课件:核心素养专题四 开放与探究型问题 (共46张PPT)

∠NPG=∠P′NH, 在△PGN 和△NHP′中,PN=P′N,
第5题答图③
6.(15 分)[2019·连云港]【问题情境】如图 6①,在正方形 ABCD 中,E 为边 BC 上一点 (不与点 B,C 重合),垂直于 AE 的一条直线 MN 分别交 AB,AE,CD 于点 M,P,N. 判断线段 DN,MB,EC 之间的数量关系,并说明理由. 【问题探究】在“问题情境”的基础上. (1)如图②,若垂足 P 恰好为 AE 的中点,连结 BD,交 MN 于点 Q,连结 EQ,并延长 交边 AD 于点 F.求∠AEF 的度数; (2)如图③,当垂足 P 在正方形 ABCD 的对角线 BD 上时,连结 AN,将△APN 沿着 AN 翻折,点 P 落在点 P′处,若正方形 ABCD 的边长为 4,AD 的中点为 S,求 P′S 的最小 值.
(2)AB=AF+CF. 证明:如答图,延长 AE 交 DF 的延长线于点 G. ∵E 是 BC 的中点,∴CE=BE, ∵AB∥DC,∴∠BAE=∠G, 且 BE=CE,∠AEB=∠GEC, ∴△AEB≌△GEC(AAS),∴AB=GC. ∵AE 是∠BAF 的平分线, ∴∠BAG=∠FAG, ∵∠BAG=∠G,∴∠FAG=∠G, ∴FA=FG,∵CG=CF+FG,∴AB=AF+CF.
3.(15 分)[2019·安顺](1)如图 3①,在四边形 ABCD 中,AB∥CD,点 E 是 BC 的中点, 若 AE 是∠BAD 的平分线,试判断 AB,AD,DC 之间的等量关系.
图3
解决此问题可以用如下方法:延长 AE 交 DC 的延长线于点 F,易证△AEB≌△FEC, 得到 AB=FC,从而把 AB,AD,DC 转化在一个三角形中,即可判断 AB,AD,DC 之 间的等量关系是___A_D__=__A__B_+__D__C_; (2)问题探究:如图②,在四边形 ABCD 中,AB∥CD,AF 与 DC 的延长线交于点 F, 点 E 是 BC 的中点,若 AE 是∠BAF 的平分线,试探究 AB,AF,CF 之间的等量关系, 并证明你的结论.

2020届中考数学总复习讲义课件:第四单元 第20课时 直角三角形和勾股定理

2020届中考数学总复习讲义课件:第四单元  第20课时 直角三角形和勾股定理
典例答图
跟踪训练 1.[2018·湘潭]《九章算术》是我国古代最重要的数学著作之一,在“勾 股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺, 问折者高几何?”翻译成数学问题是:如图 20-8 所示,△ABC 中,∠ACB=90°, AC + AB = 10 , BC = 3 , 求 AC 的 长 , 如 果 设 AC = x , 则 可 列 方 程 为 x_2_+___3_2_=___(1__0_-___x_).2
第四单元 三角形
第20课时 直角三角形和勾股定理
1.在 Rt△ABC 中,∠C=90°,∠B=30°,斜边 AB 的长为 2 cm,则 AC 长为( C )
A.4 cm
B.2 cm
C.1 cm
1 D.2 cm
2.[2019·毕节]如图 20-1,点 E 在正方形 ABCD 的边 AB 上,若 EB=1,EC=2, 那么正方形 ABCD 的面积为( B )
3.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛 藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图 20-15,把 枯木看做一个圆柱体,因一丈是十尺,则该圆柱的高为 20 尺,底面周长为 3 尺, 有葛藤自点 A 处缠绕而上,绕五周后其末端恰好到达点 B 处.则问题中葛藤的最 短长度是____2_5_____尺.
1.面积法 用面积法证明是常用的技巧之一,勾股定理的证明通常用面积法,即利用某个图 形的多种面积求法或面积之间的和差关系列出等式,从而得到证明的结论. 2.数形结合思想 在解决一些实际问题时,如立体图形侧面两点的距离问题,折叠问题,航海问题, 梯子下滑问题等,常直接或间接运用勾股定理及其逆定理,解决这些问题的过程, 充分体现了数形结合思想,这是中考的热点.

2020届中考数学总复习课件:微专题十三 以圆为背景的相似三角形的计算与证明 (共28张PPT)

2020届中考数学总复习课件:微专题十三 以圆为背景的相似三角形的计算与证明 (共28张PPT)

(1)求证:EF 是⊙O 的切线; (2)求证:BD2=AC·BF.
图 Z13-3
证明:(1)∵AC=BC,CD 是圆的直径, ∴由圆的对称性可知:∠ACD=∠BCD, ∴CD⊥AB,∵AB∥EF,∴∠CDF=∠CGB=90°, ∵OD 是圆的半径,∴EF 是⊙O 的切线; (2)∵∠BDF+∠CDB=∠CDB+∠DCB=90°, ∴∠BDF=∠DCB,∴△BCD∽△BDF, ∴BBDF=BBDC,∴BD2=BC·BF, ∵BC=AC,∴BD2=AC·BF.
图 Z13-7
解:(1)如答图①,连结 BC,AC,AD, ∵CD⊥AB,AB 是直径, ∴A︵C=A︵D,CE=DE=12CD=3, ∴∠ACD=∠ABC,且∠AEC=∠CEB, ∴△ACE∽△CBE,∴ACEE=CBEE,∴13=B3E, ∴BE=9,∴AB=AE+BE=10, ∴⊙O 的半径为 5;
图 Z13-5
解:(1)证明:如答图,连结 OC. ∵PE 是⊙O 的切线,∴OC⊥PE, ∵AE⊥PE,∴OC∥AE, ∴∠DAC=∠OCA, ∵OA=OC,∴∠OCA=∠OAC, ∴∠DAC=∠OAC, ∴AC 平分∠BAD;
中考变形4答图
(2)线段 PB,AB 之间的数量关系为 AB=3PB.理由: ∵AB 是⊙O 的直径, ∴∠ACB=90°,∴∠BAC+∠ABC=90°, ∵OB=OC,∴∠OCB=∠ABC, ∵∠PCB+∠OCB=90°,∴∠PCB=∠PAC, ∵∠P 是公共角,∴△PCB∽△PAC, ∴PPAC=PPBC,∴PC2=PB·PA, ∵PB∶PC=1∶2,∴PC=2PB, ∴PA=4PB,∴AB=3PB.
图 Z13-8
解:(1)如答图,连结 OC, ∵CD 与⊙O 相切于点 C,∴∠OCD=90°. ∴∠OCB+∠DCF=90°. ∵∠D+∠DCF=90°,∴∠OCB=∠D, ∵OB=OC,∴∠OCB=∠B, ∵∠B=∠AEC,∴∠D=∠AEC;

2020年中考数学几何复习课件:八字模型模型(19张ppt)

2020年中考数学几何复习课件:八字模型模型(19张ppt)

八字形模型秒杀技巧
4.如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.
构造“8”字形
秒杀技巧: ∠A+∠B=∠C+∠D
∠D-∠B=∠C-∠A
八字形模型秒杀技巧
5:如图,BP平分∠ABC,DP平分∠ADC,求证:∠P= 1 (∠A+∠C) 2
构造“8”字形
秒杀技巧: ∠A+∠B=∠C+∠D
构造“8”字形
秒杀技巧: ∠A+∠B=∠C+∠D
∠D-∠B=∠C-∠A
八字形模型秒杀技巧
8.如图,BP平分∠ABC交CD于F,DP平分∠ADC交AB于E,AB与CD相交于G,如果 ∠A=42°,∠C=38°,求∠P的度数
构造“8”字形
秒杀技巧: ∠A+∠B=∠C+∠D
∠D-∠B=∠C-∠A
八字形模型秒杀技巧
秒杀技巧: ∠A+∠B=∠C+∠D ∠D-∠B=∠C-∠A
八字形模型秒杀技巧
1.如图,线段AB,CD相交于点O,连接AD,CB. (1)求证:∠A+∠D=∠C+∠B; (2)若∠A=40°,∠C=60°,则∠D-∠B= ; (3)若∠C=α,∠A=β(α>β),则∠D-∠B= .
秒杀技巧: ∠A+∠B=∠C+∠D ∠D-∠B=∠C-∠A
A
D O
C B
若∠D=∠C,这个图形为“歪8”, 显然△AOD∽△BOC,添油加醋—连接 AB、DC, △AOB∽△DOC相似吗?为什么?
八字倒角(共边等角,一等三等、四点共圆): 如图:如果∠BAC与∠BDC; ∠DAC与∠DBC; ∠ABD与∠ACD ∠BDA与∠ACB四对共边等角中,有一对相等,则另外三对一定相等。 思考:为什么叫“共边等角”? (学了圆,理解、记忆更容易)

2020年重庆中考复习数学课件 “线段最值问题”漫谈(56张PPT)

5
y
B
M1
O
点M1为最值点, P1D1为所求线段 M
x
D1
H
P1
P
D C
“阿氏圆”问题
【问题背景】阿氏圆又称阿波罗尼斯圆,已知平面上两点 A、B, 则所有满足PA/PB=k(k≠1)的点 P 的轨迹是一个圆,这个轨迹 最先由古希腊数学家阿波罗尼斯发现,故称“阿波罗尼斯圆”简称 “阿氏圆”.如下图所示,其中PA:PB=OP:OB=OA:OP=k.
小伙子从A走到P,然后从P折往B,可望最早到达B。
问 题 : 若 在 驿 道 上 行 走 的 速 度 为 v1=8km/h , 在 沙 地 上 行 走 的 速 度 为
v2=4km/h.(1)小伙子回家需要的时间可表示为 (2)点P选择在何处他回家的时间最短?
AP P; B
84
1 4
1 2
PA
PB
PA最长 PB最短
⑦圆圆之间,连心线截距最短(长)
基本图形
E
A
O
C
B DM
F
结论
AB最长 CD最短
解决策略
复杂的几何最值问题都是在基本图形的基础上进行变式 得到的,在解决这一类问题的时候,常常需要通过几何变换 进行转化,逐渐转化为“基本图形”,再运用“基本图形” 的知识解决。常运用的典型几何变换有: (1)平移------“架桥选址” (2)翻折------“将军饮马“ (3)旋转------“费马点问题“ (4)相似------“阿氏圆问题“ (5)三角------“胡不归问题“ (6)多变换综合运用
解题要点:
将定点沿定长方向平移
定长距离 将军饮马
B1
B1
架桥选址类
【例20】如图,在矩形ABCD中,AB= 3 ,BC=1,将△ABD

2020届中考数学总复习课件:核心素养专题一 选择填空难题突破 (共41张PPT)


5.在平面直角坐标系中,任意两点 A(x1,y1),B(x2,y2)规定运算:①A⊕B=(x1+x2,
y1+y2);②A⊗B=x1x2+y1y2;③当 x1=x2 且 y1=y2 时,A=B.有下列四个命题:(1)若 A(1,
2),B(2,-1),则 A⊕B=(3,1),A⊗B=0;(2)若 A⊕B=B⊕C,则 A=C;(3)若 A⊗B
11.[2019·咸宁]有一列数,按一定规律排列成 1,-2,4,-8,16,-32,…其中某三 个相邻数的积是 412,则这三个数的和是__-__3__8_4_. 【解析】 ∵一列数为 1,-2,4,-8,16,-32,…∴这列数的第 n 个数可以表示为(- 2)n-1,设这三个相邻的数为(-2)n-1,(-2)n,(-2)n+1,由题意得(-2)n-1·(-2)n·(-2)n+1 =412,即(-2)3n=(22)12=224,∴3n=24,解得 n=8,∴这三个数的和是(-2)7+(-2)8 +(-2)9=(-2)7×(1-2+4)=(-128)×3=-384.
10.[2019·十堰]对于实数 a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+ 2)◎(m-3)=24,则 m=_-___3_或__4_. 【解析】 根据题意得[(m+2)+(m-3)]2-[(m+2)-(m-3)]2=24,(2m-1)2=49,2m -1=±7,解得 m1=-3,m2=4.
3+ 5 >
3-
5,故
x>0,由
x2


3+ 5-
3-
5
2

3

5+3-
5-
2 (3+ 5)(3- 5)=2,解得 x= 2,即 3+ 5- 3- 5= 2.根据以上方法,

2020届中考数学总复习讲义课件:第九单元 第31课时 轴对称与中心对称


【解析】 如答图,连结 CC′,交 BD 于点 M,过点 D 作 DH⊥BC′于点 H,
跟踪训练 2 答图 ∵AD=AC′=2,D 是 AC 边上的中点, ∴DC=AD=2,
由翻折知△BDC≌△BDC′,BD 垂直平分 CC′, ∴DC=DC′=2,BC=BC′,CM=C′M, ∴AD=AC′=DC′=2, ∴△ADC′为等边三角形, ∴∠ADC′=∠AC′D=∠C′AC=60°, ∵DC=DC′, ∴∠DCC′=∠DC′C=12×60°=30°, 在 Rt△C′DM 中,∠DC′C=30°,DC′=2,
3.[2020·原创]如图 31-13,已知菱形 ABCD 的周长为 16,面积为 8 3,E 为 AB 的中点,若 P 为对角线 BD 上一动点,则 EP+AP 的最小值为____2__3_____.
图 31-13
【解析】 如答图,作 CE′⊥AB 于 E′,交 BD 于 P′,连结 AC,AP′.∵菱形 ABCD 的周长为 16,面积为 8 3,
【知识拓展】
轴对称
轴对称图形
轴对称是指两个全等图形之间的相互 轴对称图形是指具有轴对称性
区别
位置关系
质的一个图形
把轴对称的两个图形看成一个整体, 轴对称图形中对称的两个部分
联系
就是轴对称图形
的关系就是轴对称
2.中心对称与中心对称图形 中心对称图形:如果一个图形绕着一个点旋转 180°后,所得到的图形能够和原来 的 图 形 互 相 ____重___合____ , 那 么 这 个 图 形 叫 做 中 心 对 称 图 形 , 这 个 点 叫 做 _对___称___中__心__. 中心对称:把一个图形绕着一个点 O 旋转 180°后,能够与另外一个图形 _互___相__重___合__,那么就说这两个图形关于这个点 O 成中心对称. 中心对称图形的性质:对称中心平分连结两个对称点的线段.

2020届中考数学总复习课件:微专题十五 巧用旋转进行证明与计算 (共29张PPT)


(2)MN2=ND2+DH2.理由如下: 由旋转可知,∠BAM=∠DAH, ∵∠BAM+∠DAN=45°, ∴∠HAN=∠DAH+∠DAN=45°. ∴∠HAN=∠MAN. 在△AMN 与△AHN 中,A∠MM=AANH=,∠HAN,
AN=AN,
∴△AMN≌△AHN(SAS),∴MN=HN. ∵∠BAD=90°,AB=AD, ∴∠B=∠ADB=45°, ∴∠HDN=∠HDA+∠ADB=90°, ∴NH2=ND2+DH2,∴MN2=ND2+DH2;
(3)如答图①,∵∠AEB=∠ACB=90°, ∴A,B,C,E 四点共圆, ∴∠CEB=∠CAB=30°,∠ABD=∠ACE, ∵∠DAE=∠BAC=30°,∴∠BAD=∠CAE, ∴△BAD∽△CAE,∴BEDC=AACB=cos30°= 23, ∴EC= 23BD, 在 Rt△ABE 中,∵AB=5,AE=3,
∴PP′2+P′D2=PD2,∴∠PP′D=90°,
中考变形4答图
∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,
∴∠APB=∠AP′D=135°. ∵∠APB+∠AP′P=135°+45°=180°, ∴P′,P,B 三点共线. 过点 A 作 AE⊥PP′于点 E,则 AE=PE=12PP′=2, ∴BE=PE+PB=2+1=3, 在 Rt△ABE 中,AB= AE2+BE2= 22+32= 13.
3.如图 Z15-4,已知 AC⊥BC,垂足为 C,AC=4,BC=3 3,将线段 AC 绕点 A 按 逆时针方向旋转 60°,得到线段 AD,连结 DC,DB. (1)线段 DC=__4__; (2)求线段 DB 的长度.
图 Z15-4
解:(1)∵AC=AD,∠CAD=60°, ∴△ACD 是等边三角形,∴DC=AC=4; (2)如答图,作 DE⊥BC 于点 E. ∵△ACD 是等边三角形, ∴∠ACD=60°,又∵AC⊥BC, ∴∠DCE=∠ACB-∠ACD=90°-60°=30°. 在 Rt△CDE 中,DE=12DC=2,CE= 23DC=2 3, ∴BE=BC-CE=3 3-2 3= 3. 在 Rt△BDE 中,BD= DE2+BE2= 22+( 3)2= 7.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档