认识一元一次方程优秀教学设计
北师大版七年级数学上册教学设计:5.1认识一元一次方程

7.教学方法多样化,结合讲授、讨论、实验等多种教学手段,提高学生的学习兴趣和积极性。
四、教学内容与过程
(一)导入新课
1.教学活动:教师向学生展示一个与年龄有关的实际问题,如“小华今年10岁,比小亮大3岁,小亮今年几岁?”引导学生用算术法解决问题,然后提出问题:“如果小华年龄的3倍等于小亮年龄的2倍,他们各是多少岁呢?”
1.教学内容:对本节课所学的一元一次方程的概念、一般形式、求解方法等进行总结。
2.活动过程:教师引导学生回顾本节课所学内容,让学生用自己的话总结一元一次方程的特点和求解方法,并对学生在课堂上的表现给予肯定和鼓励。
3.设计意图:通过总结归纳,帮助学生梳理所学知识,形成系统的认识,同时培养学生的概括能力和自信心。
2.设计意图:通过生活中的实际问题,让学生感受到方程的实用性和趣味性,激发学生探究一元一次方程的欲望。
(二)讲授新知
1.教学内容:一元一次方程的概念、一般形式及求解方法。
(1)概念:教师引导学生从实际问题中抽象出一元一次方程,让学生理解方程中未知数、常数和等式的含义。
(2)一般形式:ax+b=0(a,b是常数,且a≠0),教师通过实例解释一元一次方程的一般形式,并强调a≠0的条件。
(2)在实际问题中,如何将问题转化为的一元一次方程?请举例说明。
作业要求:
1.请同学们认真完成作业,确保作业的整洁、规范。
2.对于选做题,鼓励同学们积极挑战,提升自己的解题能力。
3.完成作业后,请认真检查,确保解答正确。
4.对于作业中的疑问,及时与同学或老师交流,共同解决问题。
4.通过方程求解的过程,培养学生观察、分析、归纳和总结问题的能力。
数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)随着时光的流逝,新的一个学期又开始了,为了更好的完成新学期的教育教学工作,使以后的工作有目的、有计划、有组织的顺利的进行,这次帅气的小编为您整理了数学《一元一次方程》教学设计(优秀3篇),希望大家可以喜欢并分享出去。
教学目标:篇一知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。
过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。
情感与态度:增强应用数学的意识,激发学习数学的热情。
教学重点:从实际问题中寻找相等关系。
教学难点:从实际问题中寻找相等关系。
学习路线:篇二1、阅读课本。
2、完成以下学习任务:(1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。
求王家庄到翠湖的路程?①列算式用算术方法解决这个实际问题:____________________②用方程来解决这个实际问题:先画示意图:再找相等关系来列方程:(小组交流,讨论多种方法)(2)方程的概念:___________________________判断以下式子哪些是方程?是的画3+1=4; ;(3)根据下列问题列方程:①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________④课本的三道练习题:(完成后小组批改)(4)一元一次方程的概念:___________________________注意:是整式方程。
(5)什么叫做解方程:____________________________(6)什么叫做方程的解?__________________________(7)括号里的数( =3,=4,=-4)是方程的解有____________归纳:设未知数列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
认识一元一次方程教学设计通用3篇

认识一元一次方程教学设计通用3篇元一次方程教学设计篇一一、教学目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念3、积累活动经验。
二、重点和难点重点:归纳一元一次方程的概念难点:感受方程作为刻画现实世界有效模型的意义三、教学过程1、课前训练一(1)如果|| = 9,则= ;如果2 = 9,则=(2)在数轴上距离原点4个单位长度的数为(3)下列关于相反数的说法不正确的是()A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等C、0的相反数是0D、互为相反数的两个数的和为0(字母表示为、互为相反数则)E、有理数的相反数一定比0小(4)乘积为1的两个数互为倒数,如:(5)如果,则()A、互为倒数B、互为相反数C、都是0D、至少有一个为0(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程2、由课本P149卡通图画引入新课3、分组讨论P149两个练习4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()A、+25=310B、+(+25)=310C、2 =310D、2=310课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。
已知每个笔记本比练习本贵1.2元,求每个练习本多少元?解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:6、归纳方程、一元一次方程的概念7、随堂练习PO1518、达标测试(1)下列式子中,属于方程的是()A、B、C、D、(2)下列方程中,属于一元一次方程的是()A、B、C、D、(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。
《一元一次方程》的优秀教案(精选9篇)

《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
一元一次方程教案最新7篇

一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
七年级数学上册《认识一元一次方程》教案、教学设计
4.学生的情感态度。初中生对新鲜事物充满好奇,但也可能因为遇到困难而产生挫败感。在教学过程中,应注重激发学生的学习兴趣,及时给予鼓励和支持,帮助他们建立自信心,形成积极向上的学习态度。
1.学生对方程概念的理解程度。大部分学生可能对方程的认识仅限于等式的平衡性,对于一元一次方程的解法和应用还不够熟悉,需要通过具体例子的引导和解释来帮助他们理解。
2.学生的数学思维能力。七年级学生正处于抽象逻辑思维的发展阶段,他们需要通过具体操作和形象思维来辅助理解和解决问题,因此在教学中应注重形象与抽象的结合,逐步引导学生向更高层次的数学思维过渡。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握一元一次方程的概念及其解法是本章节的重点。学生需要从具体的实例中抽象出一元一次方程的一般形式,并学会运用基本的解法步骤进行求解。
-重难点突破设想:通过生活实例引入一元一次方程,如购物找零、年龄问题等,让学生在实际问题中发现方程的模型,进而理解方程的含义。在教学过程中,逐步引导学生从特殊到一般,从直观到抽象,最终掌握一元一次方程的解法。
-设想实施:利用交互式白板、教学软件等现代教学工具,设计互动性强、形象直观的课件,让学生在视觉和操作上更好地理解一元一次方程的解法。
3.实施分层次教学,关注学生的个体差异。针对不同学生的学习能力和学习风格,设计不同难度的问题和练习,使每个学生都能在原有基础上得到提高。
-设想实施:准备基础、提高、拓展三个层次的问题和练习,让学生自主选择适合自己水平的任务,同时提供个别辅导,帮助学习有困难的学生克服困难。
一元一次方程教案优秀7篇
一元一次方程教案优秀7篇元一次方程教案篇一一、背景与意义分析本课安排在第1章有理数之后,属于《全日制义务教育数学课程标准(实验稿)中的数与代数领域。
方程有悠久的历史,它随着实践需要而产生,被广泛应用。
从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。
从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。
本课中引出了方程、一元一次方程等基本概念,并且对根据实际问题中的数量关系,设未知数,列出一元一次方程的分析问题过程进行了归纳。
以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。
分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。
列方程中蕴涵的数学建模思想是本课始终渗透的主要数学思想。
在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。
本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式方程。
这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。
算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。
列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的`突破。
正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。
二、学习与导学目标1、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。
2、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。
认识一元一次方程优秀教学设计
5.1认识一元一次方程一、定标导学班级姓名【学习目标】1、通过对多种实际问题中数量关系的分析,感受方程是刻画现实世界数量关系的有效模型;2、通过观察,归纳一元一次方程的概念;3、理解方程解的概念。
【学习重点】在实际问题中找出等量关系,准确列出方程,并总结所列方程的共同特点,从而归纳出一元一次方程的概念。
【学习难点】1、准确找出实际问题中的等量关系,并列出一元一次方程;2、会判断一个方程是不是一元一次方程。
二、自主互助自主互助一:探究一:阅读以下几个情境,尝试列出方程。
(1)如果设小彬的年龄为x 岁,那么“乘2 再减5”就是,所以得到方程:;(2)小颖种了一株树苗,开始时树苗高为40 cm,栽种后每周树苗长高约 5 cm,大约几周后树苗长高到1 m?如果设x 周后树苗长高到1 m,那么可以得到方程:;(3)甲、乙两地相距22 km,张叔叔从甲地出发到乙地,每时比原计划多行走1 km,因此提前12 min 到达乙地,张叔叔原计划每时行走多少千米?设张叔叔原计划每时行走x km,可以得到方程:;(4)根据第六次全国人口普查统计数据,截至2010 年11 月 1 日0 时,全国每10 万人中具有大学文化程度的人数为8 930 人,与2000 年第五次全国人口普查相比增长了147.30%.如果设2000 年第五次全国人口普查时每10 万人中约有x 人具有大学文化程度,那么可以得到方程:;(5)某长方形操场的面积是5850m2,长和宽之差为25m,这个操场的长与宽分别是多少米?如果设这个操场的宽为x m,那么长为m。
由此可以得到方程程:;其中,我熟悉的方程有:,它们的共同点是:.小结:在一个( )方程中,只含有( ),并且未知数的( ),这样的方程叫做一元一次方程。
即时练习一:请试着举出两个一元一次方程的例子,并请小组同学帮你判断一下吧!。
自主互助二知识点概述:使方程左、右两边相等的未知数的值,叫做方程的解。
一元一次方程教学设计与教学反思[共5篇][修改版]
第一篇:一元一次方程教学设计与教学反思人教版七年级数学上册第三章《一元一次方程》教学设计呈贡区第一中学邹秀存一、教学分析(一)教学内容分析1.方程是代数学的核心,是刻画现实世界的一个有效的数学模型,而一元一次方程是最简单的代数方程,也是所有代数方程的基础。
2. 用一元一次方程解决实际问题是初中阶段应用数学知识解决实际问题的开端,也是增强学生学数学、用数学的重要题材;教材渗透的符号化、模型化思想及类比、化归、归纳等数学思想方法,都是学生今后学习和工作中必备的数学修养和素质。
3. 通过本节课,使学生了解一元一次方程及其相关概念,认识到从算术到方程是数学的进步,并体会方程的意义,同时在“观察分析-抽象表示-符号变换-解释体验”的过程中,感受数学的科学价值和人文价值;体会从实际问题到方程中蕴含的模型化思想,提高分析问题和解决问题的能力。
“从算术到方程”是本章第一节内容,是从算术模型到方程模型的首次尝试跨越,对后续学习有着重要的意义。
(二)教学对象分析该内容属于2012年审定人教版义务教育教科书七年级上册第三章的内容。
1.学生在小学阶段已对简单方程有所认识,也会用方程表示简单情境中的数量关系,但多数学生说不出方程的本质。
2.学生已会用算术模型和方程模型解决简单的实际问题,但学生说不出算术算式与代数方程的区别与联系,感受不到方程是更简便、更有力的数学工具,从算术方法到代数方程是数学的进步。
3.学生尽管已会模仿解决一些简单的实际问题,但学生缺乏多角度思考的习惯,也没有交流、合作、质疑的意识,不会用数学方式去思考。
大部分学生思维比较活跃,敢想也敢说。
二、教学目标(一)通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;(二)初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;(三)培养学生获取信息,分析问题,处理问题的能力。
三、教学重点、难点均是从实际问题中寻找相等关系。
四、教学过程(一)问题解决,体会方程播放2010年南非世界杯宣传曲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识一元一次方程第1课时
一、教学目标
知识与技能
1.归纳出方程、一元一次方程的概念.
2.感受方程作为刻画现实世界有效模型的意义.
过程与方法:
1.经历和体验运用方程解决实际问题的过程,初步认识运用方程解决实际问题的关键是建立相等关系,提高思维水平和应用数学知识分析问题、解决实际问题的能力.
2.尝试在方程建模过程中,多角度地思考问题,寻求从不同角度解决问题的方法.
情感、态度与价值观:
1.体会数学与社会的密切联系,了解数学的价值.
2.敢于展示自己的思考视角,并与人交流、沟通.
3.敢于面对挑战,大胆尝试,从中获得成功的体验,激发学习数学的热情.
二、重点难点
重点:通过丰富的实例,建立一元一次方程,展现方程是刻画现实生活的有效数学模型.难点:根据具体问题中的数量关系列一元一次方程.
三、教学设计
(一)、情境引入
师:我能很快地猜出你们的年龄,相信吗?不管是哪一个同学,只要回答我一个问题,我就能马上猜到他的年龄是多少,怎么样?下面让我们来试试吧?
问:你的年龄乘2加3等于多少?
学生说出结果,教师很快地猜出年龄,多让几个同学回答问题,充分激发他们的兴趣与好奇心.
师:你们知道我是怎么做的吗?(学生讨论并回答.)
(二)、知识探究
1.方程的教学
小彬和小华也在进行猜年龄游戏,我们来看一看.
学生阅读教材130图的内容.
找出这道题中有哪些相等的关系,列出方程:
解:设小彬今年x岁,根据题意,“你的年龄乘2减5”就是2x-5,因此得到等式2x-5=21.
甲、乙两地相距22 km,张叔叔从甲地出发到乙地,每小时比原计划多行走1 km,因此提前12 min到达乙地,张叔叔原计划每小时行走多少千米?
设张叔叔原计划每小时行走x km,可以得到方程:________
解:根据题意得:
22 x-22
x+1=1 5
大家观察,这两个式子有什么特点?
讨论并回答:
1.什么是方程?方程有哪些特点?
答:我们把含有未知数的等式叫作方程.方程的特点:
①方程中一定含有未知数;
②方程是等式.
2.判断下列式子是不是方程?
(1)x+2=3(是)(2)x+3y=6(是)
(3)3x-6(不是) (4)1+2=3(不是)
(5)x+3>5(不是) (6)y-12=5(是)
(三)、合作交流
1.如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)
情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约10厘米,大约几周后树苗长高到1米?
你能找出题中的等量关系吗?怎样列方程?由此题你们想到了什么?
情景二:第六次全国人口普查统计数据
截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8 930人,比2000年第五次全国人口普查增长了147.30%,2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?
情景三:西湖中学的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?
以上给出的问题有的比较复杂,师生进行充分的交流讨论,找出每一道题中的相等的关系,并用方程表示以上相等关系.
下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?
40+10x=100.
x(1+147.3%)=8 930
2[x+(x+12)]=200或2[y+(y-12)]=200.
在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程(linear equation with one unknown).
使方程左、右两边的值相等的未知数的值,叫做方程的解.
问:大家刚才都已经自己列出了方程,哪个同学能够说一下你是怎样列出方程的,你在列方程的过程中大体可以分为哪几步呢?
生:分组讨论,回答列方程的步骤:
(1)找等量关系;(2)设未知数;(3)列方程.
(三)、小结与作业
1.这节课你学到了什么?
2.这节课给你印象最深的是什么?
(四)、作业布置:课后习题。